[go: up one dir, main page]

JP2704157B2 - Magnetic parts - Google Patents

Magnetic parts

Info

Publication number
JP2704157B2
JP2704157B2 JP8311174A JP31117496A JP2704157B2 JP 2704157 B2 JP2704157 B2 JP 2704157B2 JP 8311174 A JP8311174 A JP 8311174A JP 31117496 A JP31117496 A JP 31117496A JP 2704157 B2 JP2704157 B2 JP 2704157B2
Authority
JP
Japan
Prior art keywords
magnetic
alloy
soft magnetic
present
atomic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8311174A
Other languages
Japanese (ja)
Other versions
JPH09213514A (en
Inventor
孝雄 沢
正巳 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18013984&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2704157(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP8311174A priority Critical patent/JP2704157B2/en
Publication of JPH09213514A publication Critical patent/JPH09213514A/en
Application granted granted Critical
Publication of JP2704157B2 publication Critical patent/JP2704157B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、軟磁性合金を用い
てなる磁性部品に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic component using a soft magnetic alloy.

【0002】[0002]

【従来の技術】従来から、スイッチングレギュレータな
ど高周波で使用する磁心としては、パーマロイ,フェラ
イトなど結晶質材料が用いられている。しかしながら、
パーマロイは比抵抗が小さいので高周波での鉄損が大き
くなるという欠点を有している。
2. Description of the Related Art Conventionally, crystalline materials such as permalloy and ferrite have been used for magnetic cores used at high frequencies such as switching regulators. However,
Permalloy has the drawback that iron loss at high frequencies increases because of its low specific resistance.

【0003】また、フェライトは高周波での損失は小さ
いが、飽和磁束密度もせいぜい5kGと低く、そのた
め、大きな磁束密度での使用時にあっては飽和に近くな
り、その結果鉄損が増大するという欠点を有している。
近年、スイッチングレギュレータに使用される電源トラ
ンス,平滑チョークコイル,コモンモードチョークコイ
ルなど高周波で使用される磁心においては、形状の小型
化が望まれているが、この場合、動作磁束密度の増大が
必要となるため、フェライトの鉄損の増大は実用上大き
な問題となっている。
Further, ferrite has a small loss at high frequencies, but also has a low saturation magnetic flux density of at most 5 kG. Therefore, when used at a high magnetic flux density, it becomes close to saturation, resulting in an increase in iron loss. have.
In recent years, magnetic cores used at high frequencies, such as power transformers used in switching regulators, smoothing choke coils, and common mode choke coils, have been required to be smaller in shape. In this case, it is necessary to increase the operating magnetic flux density. Therefore, an increase in iron loss of ferrite is a serious problem in practical use.

【0004】このため、結晶構造を持たない非晶質合金
が高透磁率,低保磁力など優れた軟磁気特性を示すので
最近注目を集め、一部実用化されている。これらの非晶
質合金は、Fe,Co,Niなどを基本としてSi,
P,B,C,Alなどを包含するものである。
[0004] For this reason, amorphous alloys having no crystal structure have recently attracted attention because they exhibit excellent soft magnetic properties such as high magnetic permeability and low coercive force, and some of them have been put to practical use. These amorphous alloys are based on Fe, Co, Ni, etc.
P, B, C, Al and the like are included.

【0005】しかしながら、これら非晶質合金の全てが
高周波領域で鉄損が小さいというわけではない。例え
ば、Fe基非晶質合金は安価であり、50〜60Hzの
低週は領域ではケイ素鋼の約1/4という非常に小さい
鉄損を示すが、10〜50kHzという高周波領域にお
いては著しく大きな鉄損を示し、とてもスイッチングレ
ギュレータなどの高周波領域での使用に適合するもので
はない。このため、これを改善するために、Feの一部
をNb,Mo,Crなどの非磁性合金で置換することに
より低磁歪化し、低鉄損,高透磁率を図っている。しか
し、例えば樹脂モールド時の樹脂の硬化収縮などによる
磁気特性の劣化が比較的大きく、高周波領域で用いられ
る軟磁性材料としては十分な特性を得られるに至ってい
な。
[0005] However, not all of these amorphous alloys have low iron loss in the high frequency range. For example, an Fe-based amorphous alloy is inexpensive, and shows a very small iron loss of about 1/4 of silicon steel in a low frequency range of 50 to 60 Hz in a low frequency range, but significantly large iron loss in a high frequency range of 10 to 50 kHz. It is not suitable for use in high frequency range such as switching regulator. Therefore, in order to improve this, by replacing a part of Fe with a nonmagnetic alloy such as Nb, Mo, Cr, etc., the magnetostriction is reduced to achieve low iron loss and high magnetic permeability. However, for example, the deterioration of the magnetic properties due to the shrinkage of the resin at the time of resin molding is relatively large, and sufficient properties have not been obtained as a soft magnetic material used in a high frequency range.

【0006】一方、Co基非晶質合金は、高周波領域で
低鉄損,高角形比が得られるために可飽和リアクトルな
どの電子機器用磁性部品に実用化されているが、コスト
が比較的高いものである。
On the other hand, Co-based amorphous alloys have been put to practical use in magnetic components for electronic devices such as saturable reactors because of their low iron loss and high squareness in the high frequency range, but their cost is relatively high. It is expensive.

【0007】また、オーディオ,ビデオあるいはコンピ
ュータなど記憶装置における磁気記録は、近年の高密度
化に伴い、磁気記録媒体の高保磁力化が進んでおり、こ
れに対応できる磁気ヘッド材として高飽和磁束密度材の
開発が望まれている。現在は、この材料として、フェラ
イト,パーマロイ,センダスト,Co基非晶質合金等が
用いられている。
In magnetic recording in storage devices such as audio, video, and computers, the coercive force of magnetic recording media has been increasing with the recent increase in density, and a high saturation magnetic flux density has been used as a magnetic head material that can cope with this. The development of wood is desired. At present, ferrite, permalloy, sendust, Co-based amorphous alloy and the like are used as this material.

【0008】ここで、フェライトは耐摩耗性良好である
が飽和磁束密度がせいぜい5kGと低く、パーマロイは
飽和磁束密度が8kG程度でありまだ十分とはいえず耐
摩耗性にも課題が残されている。また、センダストにお
いては軟磁気特性が最も優れている組成において飽和磁
束密度が10kG程度であり、Co基非晶質合金はCo
NbZr系の合金で窒化させることにより12〜13k
Gまで飽和磁束密度を高めることができる。しかし、こ
れらの合金おいても一層の高飽和磁束密度化が望まれて
いる。
Here, ferrite has good wear resistance, but has a low saturation magnetic flux density of 5 kG at most, and permalloy has a saturation magnetic flux density of about 8 kG, which is not sufficient yet, and there remains a problem in wear resistance. I have. In Sendust, the composition having the best soft magnetic properties has a saturation magnetic flux density of about 10 kG.
12-13k by nitriding with NbZr-based alloy
The saturation magnetic flux density can be increased to G. However, even with these alloys, a higher saturation magnetic flux density is desired.

【0009】[0009]

【発明が解決しようとする課題】以上に述べたように、
Fe基非晶質合金は安価な軟磁性材料でありながら磁歪
が比較的大きく、Co基非晶質合金に比べ鉄損,透磁率
とも劣っており、高周波領域における用途には問題があ
った。
As described above, as described above,
Although an Fe-based amorphous alloy is an inexpensive soft magnetic material, it has relatively large magnetostriction, and is inferior in iron loss and magnetic permeability as compared with a Co-based amorphous alloy, and has a problem in use in a high frequency range.

【0010】一方、Co基非晶質合金は磁気特性は良好
であるものの、素材の値段が高いため工業上有利ではな
かった。
On the other hand, although the Co-based amorphous alloy has good magnetic properties, it is not industrially advantageous due to the high price of the material.

【0011】したがって、本発明は上記問題に鑑み、高
周波領域において高飽和磁束密度で優れた磁気特性を有
する軟磁性合金よりなる磁性部品を提供することを目的
とする。
Accordingly, an object of the present invention is to provide a magnetic component made of a soft magnetic alloy having a high saturation magnetic flux density and excellent magnetic properties in a high frequency region in view of the above problems.

【0012】[0012]

【課題を解決するための手段】本発明の第1の発明の磁
性部品は、一般式;Ta b M′c M″d e (T;
Fe,Co,Niから選ばれる少なくとも1種、M;C
u,Ag,Au,Zn,Sn,Pb,Sb,Biから選
ばれる少なくとも1種以上、M′;Zr,Hf,Nbか
ら選ばれる少なくとも1種以上、M″;Ti,V,T
a,Cr,Mo,W,Mn,Alから選ばれる少なくと
も1種以上、Y;Si,P,B,Cから選ばれる少なく
とも1種以上、a+b+c+d+e=100(原子
%)、0.01≦b≦5(原子%)、3≦c≦18(原
子%)、0≦d≦5(原子%)、0.01≦e≦15
(原子%))で表され、微細結晶粒を有する高飽和磁束
密度で優れた軟磁気特性を有する軟磁性合金を用いてな
ることを特徴とする。
The first magnetic component of the invention of the SUMMARY OF THE INVENTION The present invention relates to compounds of the general formula; T a M b M 'c M "d Y e (T;
At least one selected from Fe, Co, and Ni; M; C
at least one selected from u, Ag, Au, Zn, Sn, Pb, Sb, Bi; M '; at least one selected from Zr, Hf, Nb; M "; Ti, V, T
a, at least one selected from Cr, Mo, W, Mn, Al; Y; at least one selected from Si, P, B, C, a + b + c + d + e = 100 (atomic%), 0.01 ≦ b ≦ 5 (atomic%), 3 ≦ c ≦ 18 (atomic%), 0 ≦ d ≦ 5 (atomic%), 0.01 ≦ e ≦ 15
(Atomic%)), characterized by using a soft magnetic alloy having fine crystal grains, high saturation magnetic flux density and excellent soft magnetic properties.

【0013】また、本発明の第2の発明の磁性部品は、
第1の発明の磁性部品において微細結晶粒は合金中に面
積比で30%以上存在し、その中で結晶粒径50〜30
0オングストロームの結晶が80%以上存在することを
特徴とする。
A magnetic component according to a second aspect of the present invention includes:
In the magnetic component of the first invention, the fine crystal grains are present in the alloy in an area ratio of 30% or more, in which the crystal grain size is 50 to 30%.
It is characterized in that at least 80% of 0 angstrom crystals are present.

【0014】また、本発明の第3の発明の磁性部品は、
第1および第2の発明の磁性部品に使用される軟磁性合
金が薄帯であることを特徴とする。
Further, a magnetic component according to a third aspect of the present invention includes:
The soft magnetic alloy used for the magnetic component of the first and second inventions is a thin ribbon.

【0015】また、本発明の第4の発明の磁性部品は、
第1および第2の発明の磁性部品に使用される軟磁性合
金が薄膜であることを特徴とする。
A magnetic component according to a fourth aspect of the present invention includes:
The soft magnetic alloy used for the magnetic component of the first and second inventions is a thin film.

【0016】上記構成により、高周波領域において高飽
和磁束密度で、優れた軟磁気特性を有する軟磁性合金を
使用した、優れた磁気特性を有する磁性部品を得ること
ができる。
According to the above configuration, it is possible to obtain a magnetic component having a high saturation magnetic flux density in a high frequency region and using a soft magnetic alloy having excellent soft magnetic characteristics and having excellent magnetic characteristics.

【0017】[0017]

【発明の実施の形態】本発明の磁性部品に使用される軟
磁性合金の組成限定理由および微細結晶粒の限定理由に
ついて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The reasons for limiting the composition of the soft magnetic alloy used for the magnetic component of the present invention and the reasons for limiting the fine crystal grains will be described.

【0018】Mは、耐食性を高め、結晶粒の粗大化を防
ぐと共に、鉄損,透磁率などの軟磁気特性を改善するの
に有効な元素である。
M is an element effective for improving corrosion resistance and preventing coarsening of crystal grains and improving soft magnetic properties such as iron loss and magnetic permeability.

【0019】しかし、あまりその量が少ないと含有の効
果が得られず、逆にあまりその量が多いと磁気特性の劣
化を生じるために、その量を0.01〜5原子%とし
た。好ましくは0.02〜4.5原子%、より好ましく
は0.5〜4原子%である。また、Mの中でもCu,A
g,Au,Snが軟磁気特性改善のために好ましい。な
お、この中でCuの含有量が3原子%以上になると合金
が脆くなるため、Cuが含有される場合のCuのみの含
有量は0.01原子%以上,3%原子%未満とすること
が好ましい。
However, if the content is too small, the effect of the inclusion cannot be obtained, and if the content is too large, the magnetic properties deteriorate, so the content is made 0.01 to 5 atomic%. Preferably it is 0.02 to 4.5 atomic%, more preferably 0.5 to 4 atomic%. Also, among M, Cu, A
g, Au, and Sn are preferable for improving soft magnetic characteristics. The alloy becomes brittle when the content of Cu is 3 atomic% or more, and therefore, when Cu is contained, the content of only Cu should be 0.01 atomic% or more and less than 3% atomic%. Is preferred.

【0020】M′は、超急冷による非結晶質化および結
晶粒径の均一化に有効であると共に、磁歪および磁気異
方性を低減させ軟磁気特性の改善、さらには温度変化に
対する磁気特性の改善に有効な元素である。
M 'is effective for non-crystallization by ultra-quenching and uniformity of crystal grain size, reduces magnetostriction and magnetic anisotropy to improve soft magnetic properties, and further improves magnetic properties against temperature change. It is an effective element for improvement.

【0021】しかし、その量があまり少ないと非結晶質
化がなされず添加の効果がなく、逆にその量があまり多
いと同様に非結晶質化がなされず、さらに飽和磁束密度
が低下するため、その量を3〜18原子%とした。好ま
しくは5〜12原子%である。
However, if the amount is too small, non-crystallinity is not obtained and the effect of addition is not obtained. Conversely, if the amount is too large, non-crystallization is not performed, and the saturation magnetic flux density is further reduced. And its amount was 3 to 18 atomic%. Preferably it is 5 to 12 atomic%.

【0022】M″は、M′と同様に結晶粒径の均一化に
有効であると共に、磁歪および磁気異方性を低減させ軟
磁気特性の改善、さらには温度変化に対する磁気特性の
改善に有効な元素である。
M ″ is effective in uniformizing the crystal grain size similarly to M ′, and is effective in reducing magnetostriction and magnetic anisotropy to improve soft magnetic characteristics, and also in improving magnetic characteristics against temperature change. Element.

【0023】しかし、その量があまり多いいと非結晶化
がなされず、さらに飽和磁束密度が低下するため、その
量を5原子%以下とした。好ましくは4原子%以下であ
る。
However, if the amount is too large, non-crystallization will not occur and the saturation magnetic flux density will further decrease. Therefore, the amount is set to 5 atomic% or less. It is preferably at most 4 atomic%.

【0024】ここで、M″における各含有元素は上記効
果と共に、さらにそれぞれ次のような効果を有してい
る。まず、Tiは最適磁気特性を得るための熱処理条件
の範囲の拡大、V,Ta,Mnは耐脆化性の向上および
切断などの加工性の向上、Cr,Mo,Wは耐食性の向
上および表面性の向上、Alは結晶粒の微細化と共に磁
気異方性の低減に有効であり、これにより磁歪,軟磁気
特性の改善などの効果を有している。特に、低鉄損化に
はTi,V,Ta,Mo,Wが好ましい。
Here, each element contained in M ″ has the following effects in addition to the above-mentioned effects. First, Ti has an expanded range of heat treatment conditions for obtaining optimum magnetic characteristics. Ta and Mn are effective for improving embrittlement resistance and workability such as cutting, Cr, Mo, and W are effective for improving corrosion resistance and surface properties, and Al is effective for reducing crystal anisotropy and reducing magnetic anisotropy. This has the effect of improving magnetostriction, soft magnetic properties, etc. In particular, Ti, V, Ta, Mo, and W are preferable for reducing iron loss.

【0025】Yは、製造時における合金の非結晶化を助
長する元素であり、結晶化温度の改善ができ、磁気特性
向上のための熱処理に対して有効である。
Y is an element which promotes the non-crystallization of the alloy at the time of manufacturing, can improve the crystallization temperature, and is effective for the heat treatment for improving the magnetic properties.

【0026】しかし、その量があまり多いと飽和磁束密
度が低下するため、その量を15原子%以下とした。好
ましくは2〜14原子%である。特にBは合金の非結晶
質化が顕著であり、そのため非晶質合金を得た後の微細
結晶粒の析出による磁気特性の改善に有効であり、好ま
しいものである。ここで、Bのみの含有あるいはSiと
Bの複合添加の場合には、その量は5原子%未満が好ま
しい。
However, if the amount is too large, the saturation magnetic flux density decreases. Therefore, the amount is set to 15 atomic% or less. Preferably it is 2 to 14 atomic%. In particular, B is remarkable in making the alloy non-crystalline, so that it is effective for improving magnetic properties by precipitation of fine crystal grains after obtaining an amorphous alloy, and is preferable. Here, in the case of containing only B or adding Si and B in combination, the amount is preferably less than 5 atomic%.

【0027】また、Tにおいて、Feを主成分とする場
合には、Co,Niの量は20原子%以下が好ましい。
In T, when Fe is the main component, the content of Co and Ni is preferably 20 atomic% or less.

【0028】上記、本発明に使用される軟磁性合金の製
造方法は、例えば液体急冷法により非晶質合金薄帯を得
た後,アトマイズ法などにより急冷粉末を得た後、ある
いは通常使用されているスパッタ法,蒸着法などにより
同様の特性を有する非晶質合金薄帯を得た後、前記非晶
質合金の結晶化温度に対し、−50〜+120℃、好ま
しくは−30〜+100℃の温度で1分〜10時間、好
ましくは10分〜5時間の熱処理を行い、意図する微細
結晶粒を析出させる方法などにより得ることが可能とな
る。
The method for producing a soft magnetic alloy used in the present invention is, for example, after obtaining an amorphous alloy ribbon by a liquid quenching method, obtaining a quenched powder by an atomizing method or the like, or a method usually used. After obtaining an amorphous alloy ribbon having similar characteristics by a sputtering method, a vapor deposition method, or the like, the temperature is -50 to + 120 ° C, preferably -30 to + 100 ° C with respect to the crystallization temperature of the amorphous alloy. At a temperature of from 1 minute to 10 hours, preferably from 10 minutes to 5 hours to precipitate the intended fine crystal grains.

【0029】ここで、非晶質合金薄膜を得るための製造
方法の一例として、イオンビームスパッタ法による製造
方法について説明する。
Here, as an example of a manufacturing method for obtaining an amorphous alloy thin film, a manufacturing method by an ion beam sputtering method will be described.

【0030】まず、所望の合金を真空高周波溶解法など
を用いて作成し、これを所定の形状に加工した後、バッ
キングプレートに接着してターゲットを製造する。この
ターゲットをスパッタ装置の所定位置に固定し、1×1
-4Torr以上の真空度まで排気した後、Arガスを導入
して基板とターゲット間に電圧をかけて、ターゲットに
Arイオンを衝突させてスパッタし、基板上に堆積させ
る。
First, a desired alloy is prepared by a high-frequency vacuum melting method or the like, processed into a predetermined shape, and then adhered to a backing plate to produce a target. This target was fixed at a predetermined position of a sputtering apparatus, and 1 × 1
After evacuating to a degree of vacuum of 0 -4 Torr or more, Ar gas is introduced, a voltage is applied between the substrate and the target, Ar ions collide with the target and sputtered, and deposited on the substrate.

【0031】なお、積層膜を作成する場合には、例えば
別に用意した絶縁層となるSiO2,Si3 4 ,Al
Nなどのターゲットを用いてスパッタし、非晶質合金薄
膜と交互に積層させればよい。この際の絶縁層の厚さは
5〜100オングストローム程度が好ましく、さらには
10〜50オングストロームが好ましい。
In the case of forming a laminated film, for example, SiO 2 , Si 3 N 4 , Al to be an insulating layer prepared separately are used.
What is necessary is just to sputter | spatter using a target, such as N, and to laminate | stack alternately with an amorphous alloy thin film. At this time, the thickness of the insulating layer is preferably about 5 to 100 Å, and more preferably 10 to 50 Å.

【0032】次に、本発明に使用される軟磁性合金の微
細結晶粒について述べる。
Next, the fine crystal grains of the soft magnetic alloy used in the present invention will be described.

【0033】本発明に使用される合金中において、あま
り微細結晶粒が少ないと、すなわち非晶質相があまり多
いと鉄損が大きく,透磁率が低く,磁歪が大きく,樹脂
モールドによる磁気特性の劣化が増大するため、合金中
の微細結晶粒は、面積比30%以上存在することが好ま
しい。より好ましくは40%以上、新に好ましくは50
%以上である。
In the alloy used in the present invention, if there are too few fine crystal grains, that is, if there are too many amorphous phases, the iron loss is large, the magnetic permeability is low, the magnetostriction is large, and the magnetic properties of the resin mold are low. Since the deterioration is increased, it is preferable that the fine crystal grains in the alloy exist in an area ratio of 30% or more. More preferably 40% or more, newly preferably 50%
% Or more.

【0034】さらに、上記微細結晶粒中においても結晶
粒径があまり小さいと磁気特性の改善が図れず、逆に結
晶粒径があまり大きいと磁気特性の劣化を生じるため、
その微細結晶粒中においても、結晶粒径50〜300オ
ングストロームの結晶が80%以上存在することが好ま
しい。
Further, even in the fine crystal grains, if the crystal grain size is too small, the magnetic properties cannot be improved, and if the crystal grain size is too large, the magnetic properties deteriorate.
It is preferable that 80% or more of crystals having a crystal grain size of 50 to 300 Å exist in the fine crystal grains.

【0035】本発明の磁性部品は、例えば磁気ヘッド,
薄膜ヘッド,大電力用を含む高周波トランス,可飽和リ
アクトル,コモンモードチョークコイル,ノーマルモー
ドチョークコイル,高電圧パルス用ノイズフィルタ,レ
ーザ電源などに用いられる磁心,電流センサ,方位セン
サ,セキュリティーセンサー,トルクセンサーなどの各
種センサー用の磁性材料など、磁性部品として優れた特
性を有している。
The magnetic component of the present invention includes, for example, a magnetic head,
Thin film head, high frequency transformer including high power, saturable reactor, common mode choke coil, normal mode choke coil, noise filter for high voltage pulse, magnetic core used for laser power supply, current sensor, direction sensor, security sensor, torque It has excellent properties as magnetic parts, such as magnetic materials for various sensors such as sensors.

【0036】[0036]

【実施例】表1,2に示した各合金よりAr雰囲気中で
単ロール法によって約15μm,幅4.5mmの非晶質合
金薄帯を得た。その後、この薄帯を巻回し、外径18m
m,内径12mm,高さ4.5mmのトロイダル磁心に成形
した後、各材料の第1発熱ピークから得られる結晶化温
度(昇温速度10deg/min で測定)の40℃上で約50
分間の熱処理を行い、測定に供した。
EXAMPLE An amorphous alloy ribbon having a thickness of about 15 μm and a width of 4.5 mm was obtained from each of the alloys shown in Tables 1 and 2 by a single roll method in an Ar atmosphere. After that, this ribbon is wound and the outer diameter is 18m.
m, an inner diameter of 12 mm, and a height of 4.5 mm, molded into a toroidal magnetic core, and then heated at about 50 ° C. above the crystallization temperature (measured at a heating rate of 10 deg / min) obtained from the first exothermic peak of each material.
After a heat treatment for 5 minutes, the sample was subjected to measurement.

【0037】また比較として、前記巻回体の磁心に各結
晶化温度(昇温速度10deg/min で測定)より70℃低
い温度で約50分間の熱処理を行った非晶質状態の磁心
を作成し、同様に測定に供した。さらに比較として、パ
ーマロイとセンダストとを用いた磁心についても、同様
に測定に供した。
For comparison, a magnetic core in an amorphous state was prepared by subjecting the magnetic core of the wound body to a heat treatment at a temperature 70 ° C. lower than each crystallization temperature (measured at a heating rate of 10 deg / min) for about 50 minutes. And subjected to the measurement in the same manner. For comparison, a magnetic core using Permalloy and Sendust was similarly subjected to measurement.

【0038】得られた磁心を構成する薄帯中の微細結晶
粒の割合と、その中での結晶粒径50〜300オングス
トロームの微細結晶粒の割合をそれぞれA,B(%)と
して、併せて表1に示す。
The ratio of the fine crystal grains in the ribbon constituting the obtained magnetic core and the ratio of the fine crystal grains having a crystal grain size of 50 to 300 Å therein are defined as A and B (%), respectively. It is shown in Table 1.

【0039】さらに、本発明の微細結晶粒が存在する磁
心と、比較して示した微細結晶粒が存在しない磁心につ
いて、それぞれ5個ずつ用い、B=3kG,f=50k
Hzでの熱処理後の鉄損と、磁歪、1kHz,2mOe
での透磁率、飽和磁束密度とを併せて表1に示す。
Further, five magnetic cores having fine crystal grains of the present invention and five magnetic cores having no fine crystal grains shown in comparison were used, and B = 3 kG, f = 50 k
Loss after heat treatment at 1 Hz, magnetostriction, 1 kHz, 2 mOe
Table 1 shows the magnetic permeability and the saturation magnetic flux density at the same time.

【0040】[0040]

【表1】 [Table 1]

【0041】[0041]

【表2】 上記表1,2より明らかなように、本発明に使用される
軟磁性合金は微細結晶粒を設けることにより同組成の非
晶質合金よりなる磁心または他の合金よりなる磁心に比
較し、鉄損が低く、低磁歪で高透磁率であり、高周波に
おいて優れた軟磁気特性を有している。
[Table 2] As is clear from the above Tables 1 and 2, the soft magnetic alloy used in the present invention has a fine crystal grain, so that compared with a magnetic core made of an amorphous alloy having the same composition or a magnetic core made of another alloy, It has low loss, low magnetostriction, high magnetic permeability, and excellent soft magnetic properties at high frequencies.

【0042】また、これらの磁心をエポキシ系樹脂によ
り含浸硬化を行ったところ、本発明の微細結晶粒を有す
る磁心の鉄損も増大はいずれも5%以下であり、良好な
直答性を保持しているが、比較として示した合金および
非晶質合金薄帯を用いた磁心の鉄損の増大は3倍程度と
なり、本発明との差が一層顕著となった。
When these magnetic cores were impregnated and cured with an epoxy resin, the core of the present invention having fine crystal grains also showed an increase in iron loss of 5% or less and maintained good direct response. However, the increase in iron loss of the magnetic core using the alloy and the amorphous alloy ribbon shown as a comparison was about three times, and the difference from the present invention became more remarkable.

【0043】さらに本発明の他の実施例として、表3〜
5に示した試料25〜43,56〜59,71〜78の
各合金よりAr雰囲気中で単ロール法によって約15μ
m,幅4.5mmの非晶質合金薄帯を得た。その後、これ
らの薄帯を巻回し、外径18mm,内径12mm,高さ4.
5mmのトロイダル磁心に成形した。
As another embodiment of the present invention, Tables 3 to
Each alloy of Samples 25 to 43, 56 to 59 and 71 to 78 shown in FIG.
An amorphous alloy ribbon having a width of 4.5 mm and a width of 4.5 mm was obtained. Thereafter, these ribbons are wound, and the outer diameter is 18 mm, the inner diameter is 12 mm, and the height is 4.
It was formed into a 5 mm toroidal magnetic core.

【0044】さらに本発明の他の実施例として、表3〜
5に示した試料44〜55,60〜70,79〜95の
各合金よりRFスパッタ法により、膜厚5μmの非晶質
合金薄膜を得た。
As another embodiment of the present invention, Tables 3 to
An amorphous alloy thin film having a thickness of 5 μm was obtained from each alloy of Samples 44 to 55, 60 to 70, and 79 to 95 shown in No. 5 by RF sputtering.

【0045】さらに他の実施例として、イオンビームス
パッタ装置を使用し表3〜5に示した試料96〜98の
各合金よりなる非晶質合金薄膜を80オングストロー
ム,絶縁膜(SiO2 ,AlN,Si3 4 )を20オ
ングストロームとし、非晶質合金薄膜が4000オング
ストロームになるようにスパッタを繰り返して積層膜を
得た。
As still another embodiment, an amorphous alloy thin film composed of each alloy of Samples 96 to 98 shown in Tables 3 to 5 was used to form an amorphous alloy thin film of 80 Å and an insulating film (SiO 2 , AlN, Si 3 N 4 ) was set to 20 angstroms, and sputtering was repeated so that the thickness of the amorphous alloy thin film became 4000 angstroms, thereby obtaining a laminated film.

【0046】上記トロイダル磁心および薄膜に対し、各
材料の第1発熱ピークから得られる結晶化温度(昇温速
度10deg/min で測定)の80℃上で約2時間の熱処理
を行い、測定に供した。これらの磁心に対し、トロイダ
ル磁心の場合は、1kHz,2mOeの初透磁率(μ′
1kHz)、100kHz,2kGの鉄損(P
100kHz/2kG(mW/cc))および飽和磁化(4πMs
(kG))をインピーダンスアナライザ,U関数計,試
料振動型磁力計を用いて、また薄膜の場合は、1MH
z,2mOeの初透磁率(μ′1MHz)および飽和磁化
(4πMs(kG))をインピーダンスアナライザ,試
料振動型磁力計を用いて測定した。
The toroidal core and the thin film were subjected to a heat treatment at a crystallization temperature (measured at a heating rate of 10 deg / min) of 80 ° C. for about 2 hours, which was obtained from the first exothermic peak of each material. did. In contrast to these cores, in the case of a toroidal core, the initial permeability (μ '
1kHz ), 100kHz, 2kG iron loss (P
100kHz / 2kG (mW / cc)) and saturation magnetization (4πMs
(KG)) using an impedance analyzer, a U function meter, and a sample vibration type magnetometer.
The initial permeability (μ ′ 1 MHz ) and saturation magnetization (4πMs (kG)) of z, 2 mOe were measured using an impedance analyzer and a sample vibration magnetometer.

【0047】[0047]

【表3】 [Table 3]

【0048】[0048]

【表4】 [Table 4]

【0049】[0049]

【表5】 上記表3〜5より明らかなように、本発明に使用される
軟磁性合金は、鉄損が低く、高透磁率であり、高周波に
おいて優れた軟磁気特性を有している。
[Table 5] As is clear from Tables 3 to 5, the soft magnetic alloy used in the present invention has low iron loss, high magnetic permeability, and excellent soft magnetic properties at high frequencies.

【0050】[0050]

【発明の効果】本発明は、所望の合金組成で微細結晶粒
を設けた軟磁性合金を高周波領域において高飽和磁束密
度で、優れた磁気特性を有する磁性部品を得ることがで
きる。
According to the present invention, it is possible to obtain a magnetic component having a high saturation magnetic flux density in a high frequency region and excellent magnetic properties by using a soft magnetic alloy provided with fine crystal grains with a desired alloy composition.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一般式;Ta b M′c M″d e T;Fe,Co,Niから選ばれる少なくとも1種 M;Cu,Ag,Au,Zn,Sn,Pb,Sb,Bi
から選ばれる少なくとも1種以上 M′;Zr,Hf,Nbから選ばれる少なくとも1種以
上 M″;Ti,V,Ta,Cr,Mo,W,Mn,Alか
ら選ばれる少なくとも1種以上 Y;Si,P,B,Cから選ばれる少なくとも1種以上 a+b+c+d+e=100(原子%) 0.01≦b≦ 5 3≦c≦18 0≦d≦ 5 0.01≦e≦15 で表され、微細結晶粒を有する高飽和磁束密度で優れた
軟磁気特性を有する軟磁性合金を用いてなることを特徴
とする磁性部品。
1. A general formula; T a M b M 'c M "d Y e T; Fe, Co, at least one M is selected from Ni; Cu, Ag, Au, Zn, Sn, Pb, Sb, Bi
At least one selected from M '; at least one selected from Zr, Hf, Nb, M "; at least one selected from Ti, V, Ta, Cr, Mo, W, Mn, Al Y; Si , P, B, C at least one selected from a + b + c + d + e = 100 (at.%) 0.01 ≦ b ≦ 53 ≦ c ≦ 180 0 ≦ d ≦ 5 0.01 ≦ e ≦ 15 A magnetic component comprising a soft magnetic alloy having high saturation magnetic flux density and excellent soft magnetic properties having grains.
【請求項2】 微細結晶粒は合金中に面積比で30%以
上存在し、その中で結晶粒径50〜300オングストロ
ームの結晶が80%以上存在することを特徴とする請求
項1に記載の磁性部品。
2. The alloy according to claim 1, wherein the fine crystal grains are present in the alloy in an area ratio of 30% or more, and among them, crystals having a crystal grain size of 50 to 300 Å are present in an amount of 80% or more. Magnetic parts.
【請求項3】 軟磁性合金は、薄帯であることを特徴と
する請求項1および2のいずれかに記載の磁性部品。
3. The magnetic component according to claim 1, wherein the soft magnetic alloy is a thin ribbon.
【請求項4】 軟磁性合金は、薄膜であることを特徴と
する請求項1および2のいずれかに記載の磁性部品。
4. The magnetic component according to claim 1, wherein the soft magnetic alloy is a thin film.
JP8311174A 1996-11-08 1996-11-08 Magnetic parts Expired - Lifetime JP2704157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8311174A JP2704157B2 (en) 1996-11-08 1996-11-08 Magnetic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8311174A JP2704157B2 (en) 1996-11-08 1996-11-08 Magnetic parts

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP63123910A Division JP2894561B2 (en) 1988-05-23 1988-05-23 Soft magnetic alloy

Publications (2)

Publication Number Publication Date
JPH09213514A JPH09213514A (en) 1997-08-15
JP2704157B2 true JP2704157B2 (en) 1998-01-26

Family

ID=18013984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8311174A Expired - Lifetime JP2704157B2 (en) 1996-11-08 1996-11-08 Magnetic parts

Country Status (1)

Country Link
JP (1) JP2704157B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015504005A (en) * 2011-12-20 2015-02-05 アクティエボラゲット・エスコーエッフ Method for producing steel components by flash butt welding, and components created using this method
JP6245391B1 (en) * 2017-01-30 2017-12-13 Tdk株式会社 Soft magnetic alloys and magnetic parts
JP6226093B1 (en) * 2017-01-30 2017-11-08 Tdk株式会社 Soft magnetic alloys and magnetic parts
JP6226094B1 (en) * 2017-01-30 2017-11-08 Tdk株式会社 Soft magnetic alloys and magnetic parts
JP6962232B2 (en) * 2018-02-21 2021-11-05 Tdk株式会社 Soft magnetic alloys and magnetic parts

Also Published As

Publication number Publication date
JPH09213514A (en) 1997-08-15

Similar Documents

Publication Publication Date Title
US5160379A (en) Fe-base soft magnetic alloy and method of producing same
KR930012182B1 (en) Self Alloy with Ultrafine Crystal Particles and Manufacturing Method Thereof
JP3233313B2 (en) Manufacturing method of nanocrystalline alloy with excellent pulse attenuation characteristics
US4918555A (en) Magnetic head containing an Fe-base soft magnetic alloy layer
JPH044393B2 (en)
JP2894561B2 (en) Soft magnetic alloy
JP3759191B2 (en) Thin film magnetic element
US4985088A (en) Fe-based soft magnetic alloy product
JP2704157B2 (en) Magnetic parts
WO1992009714A1 (en) Iron-base soft magnetic alloy
JP2823203B2 (en) Fe-based soft magnetic alloy
JP2848667B2 (en) Method for manufacturing ultra-thin soft magnetic alloy ribbon
JPH07116563B2 (en) Fe-based soft magnetic alloy
JPH0917623A (en) Nano crystal alloy magnetic core and its manufacture
JPH0853739A (en) Soft magnetic alloy
JP2713714B2 (en) Fe-based magnetic alloy
JP3233289B2 (en) Ultra-microcrystalline alloy ribbon and powder and magnetic core using the same
JPH02258957A (en) Fe-base soft-magnetic alloy
JP2760539B2 (en) Fe-based soft magnetic alloy
JPH0754108A (en) Magnetic alloy having iso-permeability, production thereof and magnetic core using the same
JPH01290746A (en) Soft-magnetic alloy
JP3032260B2 (en) Fe-based soft magnetic alloy and method for producing the same
JP2945122B2 (en) Fe-based soft magnetic alloy and method for producing the same
JPH0927413A (en) Choke coil magnetic core and manufacture thereof
JP3638291B2 (en) Low loss core

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071003

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 11