JPH06150993A - Nbti alloy superconducting wire with connection section - Google Patents
Nbti alloy superconducting wire with connection sectionInfo
- Publication number
- JPH06150993A JPH06150993A JP4321465A JP32146592A JPH06150993A JP H06150993 A JPH06150993 A JP H06150993A JP 4321465 A JP4321465 A JP 4321465A JP 32146592 A JP32146592 A JP 32146592A JP H06150993 A JPH06150993 A JP H06150993A
- Authority
- JP
- Japan
- Prior art keywords
- superconducting wire
- nbti
- connection section
- based alloy
- superconducting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、NbTi系合金超電導
線同士の接続部を含む接続部入りNbTi系合金超電導
線に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a NbTi-based alloy superconducting wire containing a connecting portion including a connecting portion between NbTi-based alloy superconducting wires.
【0002】[0002]
【従来の技術】超電導線は一般に、安定化理論に基づ
き、極細線化した超電導フィラメントを低抵抗で熱伝導
性にすぐれたマトリクスに埋め込んだ構造となってい
る。これにより磁束跳躍などの電磁気的不安定性が抑え
られ、安定して電流を流すことができる。2. Description of the Related Art Generally, a superconducting wire has a structure in which a superconducting filament made into an ultrafine wire is embedded in a matrix having low resistance and excellent thermal conductivity based on the stabilization theory. As a result, electromagnetic instability such as magnetic flux jumping is suppressed, and a stable current can flow.
【0003】ところで超電導線でマグネットなどを構成
する場合、超電導線の長さが有限であるため、超電導線
を相互に接続する必要が生じることが多い。従来、Nb
Ti系合金超電導線を接続する場合には、接続すべきN
bTi系合金超電導線の端部に露出させたフィラメント
を集合し、その部分にインジウムまたは半田などを比較
的低温で溶かし込むことにより接続していた。When a magnet or the like is formed of superconducting wires, it is often necessary to connect the superconducting wires to each other because the length of the superconducting wires is finite. Conventionally, Nb
When connecting a Ti-based alloy superconducting wire, N that should be connected
The filaments exposed at the end of the bTi-based alloy superconducting wire were gathered together, and indium or solder was melted into the part at a relatively low temperature for connection.
【0004】このように接続に半田などの低融点金属を
使用する理由は次のとおりである。すなわちNbTi系
合金超電導線では、磁束をピン止めするピンニングセン
ターはNbTi系合金フィラメント内に析出させたα−
Tiであり、このα−Tiは約450℃以上に加熱する
と固溶して消滅してしまうため、接続の際にあまり高い
温度に加熱することができないからである。The reason why the low melting point metal such as solder is used for the connection is as follows. That is, in the NbTi alloy superconducting wire, the pinning center for pinning the magnetic flux is α-precipitated in the NbTi alloy filament.
This is because it is Ti, and this α-Ti dissolves and disappears as a solid solution when heated to about 450 ° C. or higher, so that it cannot be heated to a very high temperature during connection.
【0005】[0005]
【発明が解決しようとする課題】しかし上記のような接
続部を有する超電導線では、接続部のNbTi系合金フ
ィラメントのまわりに、銅やアルミ等の安定化金属に比
べて抵抗の高い半田等が存在することになるため、擾乱
に対する安定性が劣り、接続部で突然クエンチが発生す
るなどの問題があった。However, in the superconducting wire having the above connecting portion, solder or the like having a higher resistance than a stabilizing metal such as copper or aluminum is provided around the NbTi alloy filament in the connecting portion. Since it exists, the stability against disturbance is poor, and there are problems such as sudden quenching at the connection.
【0006】[0006]
【課題を解決するための手段】接続部の安定性を高める
ためには、接続部のNbTi系合金フィラメントのまわ
りに銅やアルミ等の安定化金属を配置することが有効で
ある。しかし接続部に安定化金属を配置し、その機能を
発揮させるためにはフィラメントと安定化金属を金属結
合させる必要があり、そのためには高温での熱処理が必
要となる。高温で熱処理すると前述のようにα−Tiが
固溶し、ピンニングセンターが消滅してしまうため、接
続部のJc が低下し、運転電流が接続部でJc 以上にな
り、常電導転移が起こる結果となる。In order to improve the stability of the connecting portion, it is effective to dispose a stabilizing metal such as copper or aluminum around the NbTi alloy filament of the connecting portion. However, it is necessary to dispose a stabilizing metal in the connection portion and to perform a metal bonding between the filament and the stabilizing metal in order to exert its function, and for that purpose, heat treatment at a high temperature is required. When heat treatment is performed at high temperature, α-Ti is solid-dissolved as described above and the pinning center disappears, so the Jc of the connection part decreases, the operating current exceeds Jc at the connection part, and the result of normal conduction transition occurs. Becomes
【0007】そこで本発明では、接続の際に高温で熱処
理してもピンニングセンターが消滅することのないよう
に、超電導線としてNbTi系合金フィラメント中に例
えばTaやAuなどによる人工ピンニングセンターを導
入したものを使用することとし、かつその接続部は、接
続すべきNbTi系合金超電導線の端部に露出させたフ
ィラメントを集合(撚り合わせたり、束ねたり、編んだ
りすること)し、その部分を金属管で覆い、その金属管
内に安定化金属の粉末を充填した上で、全体を圧縮、熱
処理して一体化した構造とするものである。Therefore, in the present invention, an artificial pinning center made of, for example, Ta or Au is introduced into the NbTi-based alloy filament as a superconducting wire so that the pinning center does not disappear even when heat-treated at a high temperature during connection. The filaments exposed at the end of the NbTi alloy superconducting wire to be connected are assembled (twisted, bundled, or braided), and the connecting part is made of metal. The structure is such that the metal tube is covered with a tube, the powder of the stabilizing metal is filled in the metal tube, and then the whole is compressed and heat-treated to form an integrated structure.
【0008】[0008]
【作用】このようにすれば、接続部のNbTi系合金フ
ィラメントが安定化金属で覆われることになり、接続部
の電磁気的な安定性が高まる。またNbTi系合金フィ
ラメント中に導入した人工ピンニングセンターは、安定
化金属をNbTi系合金フィラメントと結合させるため
の熱処理の温度では消滅しないので、接続部のフィラメ
ント中にもピンニングセンターが残り、超電導特性の低
下がきわめて少なくなる。By doing so, the NbTi-based alloy filament in the connecting portion is covered with the stabilizing metal, and the electromagnetic stability of the connecting portion is enhanced. Further, since the artificial pinning center introduced into the NbTi alloy filament does not disappear at the temperature of the heat treatment for binding the stabilizing metal to the NbTi alloy filament, the pinning center remains in the filament of the connecting portion, and the superconducting characteristic The decrease is extremely small.
【0009】[0009]
【実施例】以下、本発明の実施例を図面を参照して詳細
に説明する。図1は接続すべき2本のNbTi系合金超
電導線1の端部を示す。各々の超電導線1は多数のNb
Ti系合金フィラメント2をCuマトリクス3の中に埋
め込んだものである。また個々のフィラメント2は人工
ピンニングセンターとしてTaを導入したもので、従来
の析出型ピンニングセンターであるα−Tiは存在しな
い。超電導線1の外径は0.5mm、フィラメント2の外
径は5μm 、フィラメント2の本数は6270本であ
る。Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 shows the ends of two NbTi-based alloy superconducting wires 1 to be connected. Each superconducting wire 1 has a large number of Nb
The Ti-based alloy filament 2 is embedded in a Cu matrix 3. Further, each filament 2 is introduced with Ta as an artificial pinning center, and α-Ti which is a conventional precipitation type pinning center does not exist. The superconducting wire 1 has an outer diameter of 0.5 mm, the filament 2 has an outer diameter of 5 μm, and the number of filaments 2 is 6,270.
【0010】接続に際し、まず図1に示すように超電導
線1の端部のマトリクス3をエッチングにより溶去し、
フィラメント2を露出させる。次に図2に示すように超
電導線1の端部に露出したフィラメント2を撚り合わせ
る。その後、図3に示すようにフィラメント2の撚り合
わせ部からCuマトリクス3の端部にかけてCu管4を
被せ、その中にCu粉(rrr=200)5を充填す
る。これによりフィラメント2はCu粉5の中に埋まっ
た状態となる。次にこれを真空中で外周から圧縮し、8
00℃に加熱して、フィラメント2とCu粉5とCu管
4を金属結合させて一体化する。これにより図4に示す
ようにフィラメント2がCu安定化材6の中に埋め込ま
れた接続部7を得ることができる。At the time of connection, first, as shown in FIG. 1, the matrix 3 at the end of the superconducting wire 1 is removed by etching,
The filament 2 is exposed. Next, as shown in FIG. 2, the filaments 2 exposed at the ends of the superconducting wire 1 are twisted together. After that, as shown in FIG. 3, a Cu tube 4 is covered from the twisted portion of the filament 2 to the end of the Cu matrix 3, and Cu powder (rrr = 200) 5 is filled therein. As a result, the filament 2 is embedded in the Cu powder 5. Next, compress it from the outer circumference in a vacuum,
The filament 2, the Cu powder 5, and the Cu tube 4 are metal-bonded and integrated by heating to 00 ° C. Thereby, as shown in FIG. 4, it is possible to obtain the connecting portion 7 in which the filament 2 is embedded in the Cu stabilizing material 6.
【0011】以上のようにして得た接続部7を含む超電
導線1を図5に示すように液体ヘリウム(4.2K)に
浸漬し、電流を流し、接続部7の両側の超電導線1に電
圧タップ8をとって、電圧−電流特性を調べた。比較の
ため同じ方法で、接続部のない超電導線と、従来の半田
接続部を有する超電導線の電圧−電流特性を調べた。そ
の結果を図6に示す。これによると、半田接続による従
来品は何等かの擾乱による磁束跳躍が引金となってクエ
ンチが発生しているが、本実施例品はフィラメントの接
触接合による微小抵抗で電圧は発生するが、磁束跳躍が
抑えられ、安定した電流が流れていることが分かる。The superconducting wire 1 including the connecting portion 7 obtained as described above is immersed in liquid helium (4.2 K) as shown in FIG. 5 and an electric current is applied to the superconducting wire 1 on both sides of the connecting portion 7. The voltage tap 8 was taken to examine the voltage-current characteristics. For comparison, the same method was used to examine the voltage-current characteristics of the superconducting wire having no connection part and the conventional superconducting wire having a solder connection part. The result is shown in FIG. According to this, in the conventional product by solder connection, quenching occurs due to magnetic flux jump due to some disturbance, but in the product of this example, voltage is generated due to minute resistance due to contact bonding of filaments, It can be seen that the magnetic flux jump is suppressed and a stable current is flowing.
【0012】次に上記実施例の接続部を含む超電導線で
0.3μHのワンターンコイルを作り、4.2Kに冷却
して、永久電流の減衰を測定した。比較のため、従来の
半田接続部を有する超電導線でも同じコイルを作り、同
じ測定をした。その結果を図7に示す。これによると、
半田接続による従来品では磁束跳躍で起きる常電導転移
後の抵抗が存在するため、ある時点(外的擾乱の起こっ
た時点)で電流が急激に減衰するが、本実施例品では永
久電流の減衰はフィラメント接触に基づく微小抵抗によ
る減衰のみであり、磁束跳躍、常電導転移に基づく急激
な抵抗発生による減衰は起こらないことが分かる。Next, a one-turn coil of 0.3 μH was made from the superconducting wire including the connecting portion of the above-mentioned embodiment, cooled to 4.2 K, and the decay of the persistent current was measured. For comparison, the same coil was made with the conventional superconducting wire having the solder connection portion, and the same measurement was performed. The result is shown in FIG. 7. according to this,
In the conventional product with solder connection, there is a resistance after the normal conduction transition that occurs due to the magnetic flux jump, so the current is abruptly attenuated at a certain point (the point when an external disturbance occurs). It is understood that is only the attenuation due to the minute resistance due to the filament contact, and does not occur due to the magnetic flux jump and the rapid resistance generation due to the normal conduction transition.
【0013】[0013]
【発明の効果】以上説明したように本発明によれば、接
続部のNbTi系合金フィラメントが安定化金属で覆わ
れ、しかも安定化金属をNbTi系合金フィラメントと
結合させるときの熱処理でNbTi系合金フィラメント
中のピンニングセンターが消滅することがないので、接
続部の超電導特性が安定した接続部入り超電導線を得る
ことができる。As described above, according to the present invention, the NbTi-based alloy filament in the connection portion is covered with the stabilizing metal, and the NbTi-based alloy is heat-treated when the stabilizing metal is combined with the NbTi-based alloy filament. Since the pinning center in the filament does not disappear, it is possible to obtain a superconducting wire with a connecting portion in which the superconducting characteristics of the connecting portion are stable.
【図1】 本発明の一実施例に係る接続部入りNbTi
系合金超電導線を製造する第一段階を示す平面図。FIG. 1 is an NbTi with a connecting portion according to an embodiment of the present invention.
The top view which shows the 1st step which manufactures a system type alloy superconducting wire.
【図2】 図1の次の段階を示す平面図。FIG. 2 is a plan view showing the next step of FIG.
【図3】 図2の次の段階を示す平面図。FIG. 3 is a plan view showing the next step of FIG.
【図4】 図1ないし図3の方法で製造された本発明の
一実施例に係る接続部入りNbTi系合金超電導線を示
す断面図。FIG. 4 is a cross-sectional view showing a NbTi-based alloy superconducting wire with a connecting portion according to an embodiment of the present invention manufactured by the method of FIGS. 1 to 3.
【図5】 接続部入りNbTi系合金超電導線の試験方
法を示す説明図。FIG. 5 is an explanatory view showing a test method of a NbTi-based alloy superconducting wire containing a connection part.
【図6】 本発明の実施例品および他の比較品の超電導
状態における電圧−電流特性を示すグラフ。FIG. 6 is a graph showing voltage-current characteristics of the example product of the present invention and other comparative products in a superconducting state.
【図7】 本発明の実施例品および従来品の永久電流減
衰特性を示すグラフ。FIG. 7 is a graph showing permanent current attenuation characteristics of an example product of the present invention and a conventional product.
1:NbTi系合金超電導線 2:NbTi系合金フィラメント 3:Cuマトリクス 4:Cu管 5:Cu粉 6:Cu安定化材 7:接続部 1: NbTi-based alloy superconducting wire 2: NbTi-based alloy filament 3: Cu matrix 4: Cu pipe 5: Cu powder 6: Cu stabilizing material 7: Connection part
Claims (1)
む連続したNbTi系合金超電導線であって、前記超電
導線はNbTi系合金フィラメント中に人工ピンニング
センターを含むものからなり、前記接続部は接続すべき
NbTi系合金超電導線の端部に露出させたフィラメン
トを集合し、その部分を金属管で覆い、その金属管内に
安定化金属の粉末を充填し、全体を圧縮、熱処理して一
体化したものからなることを特徴とする接続部入りNb
Ti系合金超電導線。1. A continuous NbTi-based alloy superconducting wire including a connecting portion between NbTi-based alloy superconducting wires, wherein the superconducting wire comprises an artificial pinning center in an NbTi-based alloy filament. The filaments exposed at the end of the NbTi-based alloy superconducting wire to be connected are gathered, the portion is covered with a metal tube, and the metal tube is filled with powder of stabilizing metal, and the whole is compressed and heat treated to be integrated. Nb with connection part characterized by comprising
Ti-based alloy superconducting wire.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4321465A JPH06150993A (en) | 1992-11-06 | 1992-11-06 | Nbti alloy superconducting wire with connection section |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4321465A JPH06150993A (en) | 1992-11-06 | 1992-11-06 | Nbti alloy superconducting wire with connection section |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06150993A true JPH06150993A (en) | 1994-05-31 |
Family
ID=18132872
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4321465A Pending JPH06150993A (en) | 1992-11-06 | 1992-11-06 | Nbti alloy superconducting wire with connection section |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06150993A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100473622B1 (en) * | 2001-12-24 | 2005-03-08 | 한국전기연구원 | Superconductive joint method with Superconductor Powder |
US7152302B2 (en) | 2001-07-10 | 2006-12-26 | Hitachi, Ltd. | Superconductor connection structure |
JP2009158234A (en) * | 2007-12-26 | 2009-07-16 | Hitachi Ltd | Superconductive connecting part connecting superconductive wire rod, and its formation method |
JP2011029557A (en) * | 2009-07-29 | 2011-02-10 | Hitachi Ltd | Superconducting circuit, production method of superconducting joints, superconducting magnet, and production method of superconducting magnet |
CN104319058A (en) * | 2014-11-17 | 2015-01-28 | 中国科学院电工研究所 | Superconductive connector cooling device |
JP2022046126A (en) * | 2020-09-10 | 2022-03-23 | 株式会社東芝 | Connection method of superconducting wire rods and superconducting magnet device |
-
1992
- 1992-11-06 JP JP4321465A patent/JPH06150993A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7152302B2 (en) | 2001-07-10 | 2006-12-26 | Hitachi, Ltd. | Superconductor connection structure |
KR100473622B1 (en) * | 2001-12-24 | 2005-03-08 | 한국전기연구원 | Superconductive joint method with Superconductor Powder |
JP2009158234A (en) * | 2007-12-26 | 2009-07-16 | Hitachi Ltd | Superconductive connecting part connecting superconductive wire rod, and its formation method |
JP2011029557A (en) * | 2009-07-29 | 2011-02-10 | Hitachi Ltd | Superconducting circuit, production method of superconducting joints, superconducting magnet, and production method of superconducting magnet |
EP2284916A3 (en) * | 2009-07-29 | 2011-04-27 | Hitachi, Ltd. | Superconducting circuit, production method of superconducting joints, superconducting magnet, and production method of superconducting magnet |
EP2418703A3 (en) * | 2009-07-29 | 2013-03-06 | Hitachi, Ltd. | Superconducting circuit, production method of superconducting joints, superconducting magnet, and production method of superconducting magnet |
US8513527B2 (en) | 2009-07-29 | 2013-08-20 | Hitachi, Ltd. | Superconducting circuit, production method of superconducting joints, superconducting magnet, and production method of superconducting magnet |
CN104319058A (en) * | 2014-11-17 | 2015-01-28 | 中国科学院电工研究所 | Superconductive connector cooling device |
JP2022046126A (en) * | 2020-09-10 | 2022-03-23 | 株式会社東芝 | Connection method of superconducting wire rods and superconducting magnet device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4058920B2 (en) | Superconducting connection structure | |
US8385994B2 (en) | Superconducting joint and method for manufacturing same | |
JPS6039705A (en) | Aluminum stabilized superconducting conductor | |
JPH06150993A (en) | Nbti alloy superconducting wire with connection section | |
JP3447990B2 (en) | Superconducting connection method and superconducting connection structure for superconducting wires | |
JP3866926B2 (en) | Powder method Nb (3) Superconducting connection structure manufacturing method using Sn superconducting wire | |
JP3783518B2 (en) | Superconducting wire connection structure | |
US3187229A (en) | Superconducting magnet utilizing superconductive shielding at lead junctions | |
JPH03156809A (en) | How to use oxide superconducting conductors | |
JP3272017B2 (en) | AC superconducting wire and method of manufacturing the same | |
CN118248401B (en) | Superconducting wire, superconducting coil, superconducting magnet, and magnetic flux jump suppression method | |
JP7614991B2 (en) | Superconducting wire connection structure and connection method | |
JP2763508B2 (en) | High temperature superconducting current limiter | |
JPH01260776A (en) | Method for connecting super conductive wire | |
JPH06224037A (en) | Superconducting coil | |
JP3065429B2 (en) | Permanent current switch | |
JP3154711B2 (en) | Superconducting wire and superconducting coil using the same | |
JP2004093293A (en) | Superconducting coil system | |
JP3043831B2 (en) | Method of manufacturing permanent current superconducting magnet | |
JP2003234027A (en) | Connection method and use for superconductor | |
US8307534B2 (en) | Method of forming a coupled coil arrangement | |
JPH06295754A (en) | Connecting structure for superconductor | |
JPH05217433A (en) | Superconductor | |
JP2013089416A (en) | Superconducting wire rod, connection part of superconducting wire rod, permanent current switch, superconducting magnet system, and method of connecting superconducting wire rod | |
JP2002203714A (en) | Operation method of superconducting coil |