JPH06150811A - Method for manufacturing impregnated cathode and electron tube - Google Patents
Method for manufacturing impregnated cathode and electron tubeInfo
- Publication number
- JPH06150811A JPH06150811A JP30078092A JP30078092A JPH06150811A JP H06150811 A JPH06150811 A JP H06150811A JP 30078092 A JP30078092 A JP 30078092A JP 30078092 A JP30078092 A JP 30078092A JP H06150811 A JPH06150811 A JP H06150811A
- Authority
- JP
- Japan
- Prior art keywords
- cathode
- protective film
- impregnated cathode
- impregnated
- electron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 27
- 238000000034 method Methods 0.000 title abstract description 23
- 230000001681 protective effect Effects 0.000 claims abstract description 52
- 239000011248 coating agent Substances 0.000 claims abstract description 31
- 238000000576 coating method Methods 0.000 claims abstract description 31
- 229910052788 barium Inorganic materials 0.000 claims abstract description 15
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims abstract description 15
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 13
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000001301 oxygen Substances 0.000 claims abstract description 12
- 238000003303 reheating Methods 0.000 claims description 10
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 10
- 239000010937 tungsten Substances 0.000 claims description 9
- 229910052721 tungsten Inorganic materials 0.000 claims description 9
- 229910052706 scandium Inorganic materials 0.000 claims description 6
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 claims description 6
- 239000011521 glass Substances 0.000 claims description 5
- 239000000758 substrate Substances 0.000 claims description 4
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 claims description 2
- HYXGAEYDKFCVMU-UHFFFAOYSA-N scandium oxide Chemical compound O=[Sc]O[Sc]=O HYXGAEYDKFCVMU-UHFFFAOYSA-N 0.000 claims description 2
- PBYZMCDFOULPGH-UHFFFAOYSA-N tungstate Chemical compound [O-][W]([O-])(=O)=O PBYZMCDFOULPGH-UHFFFAOYSA-N 0.000 claims description 2
- 229910001930 tungsten oxide Inorganic materials 0.000 claims description 2
- 238000005538 encapsulation Methods 0.000 abstract description 19
- 230000003647 oxidation Effects 0.000 abstract description 13
- 238000007254 oxidation reaction Methods 0.000 abstract description 13
- 239000012298 atmosphere Substances 0.000 abstract description 10
- 238000010438 heat treatment Methods 0.000 abstract description 7
- 230000000694 effects Effects 0.000 abstract description 3
- 239000010408 film Substances 0.000 description 82
- 230000006866 deterioration Effects 0.000 description 9
- 238000001994 activation Methods 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 239000012299 nitrogen atmosphere Substances 0.000 description 5
- 229910052762 osmium Inorganic materials 0.000 description 5
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 5
- 230000004913 activation Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- -1 BaO Chemical compound 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Chemical compound [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000010943 off-gassing Methods 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000007420 reactivation Effects 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000005477 sputtering target Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Abstract
(57)【要約】
【目的】陰極封入工程での被覆膜酸化に起因する電子放
出特性の劣化を受けないSc被覆型含浸形陰極およびそ
れを用いた電子管を提供する。
【構成】Sc被覆型含浸形陰極の被覆膜の上面に、同陰
極の予備加熱処理の後、バリウム及び酸素を含む保護膜
層を形成し、さらにこれを電子管へ封入して、真空排気
の後に再加熱を行う。
【効果】保護膜層は、封入工程での大気中400℃の加
熱において被覆膜を保護する。そして、保護膜は電子管
を真空排気した後、陰極を1050℃から1250℃に加熱
すれば消失する。
(57) [Summary] [Object] To provide a Sc-coated impregnated cathode and an electron tube using the same, which are not deteriorated in electron emission characteristics due to oxidation of the coating film in the cathode encapsulation process. [Structure] A protective film layer containing barium and oxygen is formed on the upper surface of a coating film of a Sc-coated impregnated cathode after preheating the cathode, and the protective film layer containing barium and oxygen is further sealed in an electron tube and vacuum exhausted. It is reheated later. [Effect] The protective film layer protects the coating film by heating at 400 ° C. in the atmosphere during the encapsulation process. Then, the protective film disappears if the cathode is heated from 1050 ° C. to 1250 ° C. after the electron tube is evacuated.
Description
【0001】[0001]
【産業上の利用分野】本発明はブラウン管,撮像管等の
電子管に好適な含浸形陰極、特に良好な電子放出特性を
発現させるためのスカンジウムを含む表面被覆膜層を有
する含浸形陰極に係り、被覆膜の熱酸化防止保護膜を有
する含浸形陰極およびその製造方法ならびにこれを用い
る電子管の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an impregnated cathode suitable for electron tubes such as cathode ray tubes and image pickup tubes, and more particularly to an impregnated cathode having a surface coating film layer containing scandium for exhibiting good electron emission characteristics. The present invention relates to an impregnated cathode having a thermal oxidation protection film for a coating film, a method for manufacturing the same, and a method for manufacturing an electron tube using the same.
【0002】[0002]
【従来の技術】含浸形陰極は高電流密度動作が可能な陰
極であり、電子管の高出力化、特に、ブラウン管では高
輝度化,高精細化のために欠くことのできない陰極であ
る。2. Description of the Related Art An impregnated cathode is a cathode capable of high current density operation, and is an essential cathode for achieving high output of electron tubes, especially for cathode ray tubes to achieve high brightness and high definition.
【0003】含浸形陰極の基本構成は、タングステンか
らなる耐熱多孔質基体に、BaOを主体に、他にAl2
O3やCaOを水素雰囲気中で加熱溶融し、含浸させた
ものである。この溶融含浸した物質を、一般に含浸剤と
称する。The impregnated cathode is basically composed of a heat-resistant porous substrate made of tungsten, mainly BaO, and Al 2
O 3 or CaO is heat-melted in a hydrogen atmosphere and impregnated. This melt impregnated material is commonly referred to as the impregnant.
【0004】含浸形陰極は動作時に、常に1000℃程
度に加熱されており、耐熱多孔質基体と含浸剤は反応
し、バリウムを遊離する。バリウムは拡散により陰極表
面に供給され、同様に陰極内部または電子管内部雰囲気
中から供給された酸素と共に、陰極表面、つまり、タン
グステン基体上に吸着する。このように、金属表面にバ
リウムと酸素から成る吸着層が形成されると、金属表面
の仕事関数が実質的に引き下げられ、電子放出が容易と
なる。これが、含浸形陰極の動作原理であり、これに対
する考察は、例えば、ジャーナル・オブ・フィジックス
D:アプライド・フィジックス,第15巻(1982
年)第1519頁から第1529頁(J.Phys. D: App
l. Phys.,15(1982)1519−1529)に記載
されている。含浸形陰極は電子放出部分が基本的に金属
であるため電気的な抵抗が小さい。そのため含浸形陰極
は、アルカリ土類金属炭酸塩を原材料とする電気的に高
抵抗な酸化物陰極のような、ジュール発熱による陰極材
料自体の分解に起因する陰極劣化は生じない。従って、
含浸形陰極は、酸化物陰極に比較し高電流密度動作が可
能である。During operation, the impregnated cathode is constantly heated to about 1000 ° C., and the heat-resistant porous substrate and the impregnating agent react with each other to release barium. Barium is supplied to the surface of the cathode by diffusion, and is adsorbed on the surface of the cathode, that is, the tungsten substrate together with oxygen supplied from the atmosphere inside the cathode or the atmosphere inside the electron tube. Thus, when the adsorption layer composed of barium and oxygen is formed on the metal surface, the work function of the metal surface is substantially lowered, and the electron emission becomes easy. This is the principle of operation of the impregnated cathode, and a consideration for this is, for example, Journal of Physics D: Applied Physics, Volume 15 (1982).
Year) 1519 to 1529 (J.Phys. D: App
I. Phys., 15 (1982) 1519-1529). The impregnated cathode has a low electric resistance because the electron emission portion is basically a metal. Therefore, the impregnated cathode does not undergo cathode deterioration due to decomposition of the cathode material itself due to Joule heat generation, unlike an oxide cathode having an electrically high resistance using an alkaline earth metal carbonate as a raw material. Therefore,
The impregnated cathode can operate at a higher current density than an oxide cathode.
【0005】しかし、含浸形陰極は、高電流密度動作が
可能な反面、動作温度が酸化物陰極のおよそ750℃に
比較して、より高温で動作させる必要がある。前述の基
本構成の含浸形陰極の場合、10A/cm2 の電流密度を
得るにはおよそ1100℃に加熱する必要がある。However, while the impregnated cathode can operate at high current density, it needs to be operated at a higher temperature than the operating temperature of about 750 ° C. for oxide cathodes. In the case of the impregnated cathode having the above-mentioned basic structure, heating to about 1100 ° C. is required to obtain a current density of 10 A / cm 2 .
【0006】このため、含浸形陰極の改良は、この動作
温度を低下させることを目的に行われている。例えば、
前述の基本構成の含浸形陰極の表面にオスミウムを被覆
した含浸形陰極が開発され、その動作温度はおよそ10
00℃に低下した。さらに、タングステンを主体に酸化
スカンジウムやタングステン酸スカンジウムを含む薄膜
を被覆した含浸形陰極は900℃で前述の電流密度動作
が可能である。本文中では以後、これらをOs被覆型含
浸形陰極,Sc被覆型含浸形陰極と記述するが、これら
に関しては、アイイーイー・プロシーディング,第12
8巻,パート1,ナンバー1(1981年)第19頁から
第32頁(IEE Proc.,128,Pt1,No.1(1981)
19−32)ならびに、ジャパニーズ・ジャーナル・オ
ブ・アプライド・フィジックス,第27巻,ナンバー8
(1988年)第1411頁から第1414頁(Jpn. J.
Appl. Phys.28,No.8(1988)1411−141
4)に記載されている。Therefore, the impregnated cathode has been improved for the purpose of reducing the operating temperature. For example,
An impregnated cathode in which osmium is coated on the surface of the impregnated cathode having the above-mentioned basic structure has been developed, and its operating temperature is about 10
It dropped to 00 ° C. Furthermore, the impregnated cathode having a thin film containing scandium oxide or scandium tungstate mainly containing tungsten is capable of the above-mentioned current density operation at 900 ° C. Hereinafter, these will be referred to as an Os-coated impregnated cathode and a Sc-coated impregnated cathode, respectively. Regarding these, IEE Proceeding, No. 12
Volume 8, Part 1, Number 1 (1981), pages 19 to 32 (IEE Proc., 128, Pt1, No. 1 (1981)
19-32) and Japanese Journal of Applied Physics, Vol. 27, No. 8
(1988) pp. 1411 to 1414 (Jpn. J.
Appl. Phys. 28, No. 8 (1988) 1411-141.
4).
【0007】ところで、陰極は、ガラス製チューブの電
子管内に他の電極と共に封入される製造工程において、
大気雰囲気中で約400℃またはこれ以上の温度で加熱
される。これは、ガラス製チューブの電子管製造におい
ては避けられない工程である。By the way, in the manufacturing process in which the cathode is enclosed together with other electrodes in the electron tube of the glass tube,
It is heated at a temperature of about 400 ° C. or higher in the air atmosphere. This is an unavoidable process in electron tube manufacturing of glass tubes.
【0008】その結果、Os被覆型含浸形陰極では、オ
スミウム被覆膜は酸化され、有害でかつ揮発性を有する
OsO4 を生じ、かつ電子放出特性が劣化する。このた
め、被覆膜としてオスミウム単独でなくルテミウムとの
合金膜を用いるOs/Ru被覆型含浸形陰極が一般的に
用いられている。As a result, in the Os-coated impregnated cathode, the osmium-coated film is oxidized to produce harmful and volatile OsO 4 , and the electron emission characteristics are deteriorated. For this reason, an Os / Ru-coated impregnated cathode that uses an alloy film with lutemium instead of osmium alone as a coating film is generally used.
【0009】同様に、Sc被覆型含浸形陰極において
も、封入工程を経ることにより電子放出特性の劣化がお
きる。この原因は明らかでないが、被覆膜中のタングス
テンが酸化された結果、酸化タングステンと陰極内部か
ら供給されたバリウムが反応し、BaWO4 が形成さ
れ、これが電子放出に寄与しないためと推定される。と
ころで、含浸形陰極はブラウン管内でのガス放出を抑制
するため、または、ブラウン管製造工程内の陰極活性化
時間を短縮するために、あらかじめ封入前に900℃以
上で真空容器中で予備加熱処理を行うことがある。しか
し、予備加熱処理を行ったSc被覆型含浸形陰極は、封
入工程による被覆膜酸化により著しく電子放出特性が劣
化する。陰極の被覆膜の酸化を防ぐには、封入工程を窒
素雰囲気中で行えばよいが、製造コストの上昇をまねき
量産には不適である。Similarly, in the Sc-covered impregnated cathode, the electron emission characteristic is deteriorated by the encapsulation process. The cause of this is not clear, but it is presumed that as a result of the oxidation of tungsten in the coating film, tungsten oxide reacts with barium supplied from the inside of the cathode to form BaWO 4 , which does not contribute to electron emission. . By the way, the impregnated cathode is preheated in a vacuum vessel at 900 ° C. or higher before encapsulation in order to suppress the gas release in the cathode ray tube or to shorten the cathode activation time in the cathode ray tube manufacturing process. I have something to do. However, the Sc-coated impregnated cathode that has been subjected to the preheating treatment has a significantly deteriorated electron emission characteristic due to oxidation of the coating film in the encapsulation process. In order to prevent the coating film of the cathode from being oxidized, the encapsulation step may be performed in a nitrogen atmosphere, but this is not suitable for mass production because it causes an increase in manufacturing cost.
【0010】[0010]
【発明が解決しようとする課題】上述したように、含浸
形陰極の動作温度を低下させる目的で被覆された、オス
ミウム膜や、スカンジウムを含むタングステン膜は、電
子管への封入の工程において酸化され、電子放出特性の
劣化を生じる。Os被覆型の場合、オスミウム膜にルテ
ニウムを加えることによりこれを防ぐ事ができる。しか
し、Sc被覆型では、封入を窒素雰囲気中で行い酸化を
抑制する以外にはこれまで対策がなかった。しかも、窒
素雰囲気中で封入を行う事は製造コストの上昇をまね
き、量産に不適であった。As described above, the osmium film and the tungsten film containing scandium, which are coated for the purpose of lowering the operating temperature of the impregnated cathode, are oxidized in the step of enclosing in the electron tube, This causes deterioration of electron emission characteristics. In the case of the Os coating type, this can be prevented by adding ruthenium to the osmium film. However, in the case of the Sc-covered type, there has been no countermeasure until now, except for encapsulation in a nitrogen atmosphere to suppress oxidation. Moreover, encapsulation in a nitrogen atmosphere increases the manufacturing cost and is not suitable for mass production.
【0011】本発明の目的は、Sc被覆型含浸形陰極を
用いた電子管において、その製造の封入工程における被
覆膜酸化を防止することにある。また、それに用いる優
れた耐酸化特性を有するSc被覆型含浸形陰極およびそ
れを用いた電子管を提供することにある。It is an object of the present invention to prevent oxidation of a coating film in an encapsulation process in the manufacture of an electron tube using a Sc coating type impregnated cathode. Another object of the present invention is to provide a Sc-coated impregnated cathode having excellent oxidation resistance and an electron tube using the same.
【0012】[0012]
【課題を解決するための手段】上記技術的課題は、以下
の解決手段により達成することができる。すなわち、本
発明のSc被覆型含浸形陰極は、900℃以上の予備加
熱処理の後、被覆膜表面にバリウム及び酸素を含む保護
膜を形成することを特徴とする。ここで、バリウム及び
酸素を含む保護膜はスパッタ法や蒸着法などの一般的な
成膜方法により容易に形成することができる。The above technical problems can be achieved by the following means. That is, the Sc-coated impregnated cathode of the present invention is characterized by forming a protective film containing barium and oxygen on the surface of the coating film after preheating at 900 ° C. or higher. Here, the protective film containing barium and oxygen can be easily formed by a general film forming method such as a sputtering method or a vapor deposition method.
【0013】[0013]
【作用】前述した通り、陰極は電子管の製造工程である
封入において、大気中で約400℃またはこれ以上の温度
で加熱される。この時、バリウム及び酸素を含む保護膜
は、既にほとんど酸化物であるため、酸化による破損は
生じず、本来の被覆膜表面の酸化を防ぐ。封入後、電子
管は真空排気され、陰極活性化のために1150℃程度
で加熱される。この工程において、バリウム及び酸素を
含む保護膜は蒸発し、本来のScを含む被覆膜が陰極表
面に現われる。As described above, the cathode is heated in the atmosphere at a temperature of about 400 ° C. or higher in the encapsulation which is a manufacturing process of the electron tube. At this time, since the protective film containing barium and oxygen is almost an oxide, the damage due to oxidation does not occur and the original oxidation of the surface of the coating film is prevented. After encapsulation, the electron tube is evacuated and heated at about 1150 ° C. to activate the cathode. In this step, the protective film containing barium and oxygen is evaporated, and the original coating film containing Sc appears on the cathode surface.
【0014】ところで、保護膜は陰極表面全面を均一に
覆い、塗布膜下の被覆膜の酸化を十分に防ぐ必要があ
る。さらに、陰極の活性化時に容易に短期間に消失する
ことが必要である。このためには、20nm以上,20
0nm以下であることが必要である。By the way, it is necessary that the protective film uniformly covers the entire surface of the cathode to sufficiently prevent the coating film under the coating film from being oxidized. Furthermore, it is necessary that the cathode easily disappears in a short period when the cathode is activated. For this, 20 nm or more, 20
It must be 0 nm or less.
【0015】したがって、Sc被覆型含浸形陰極の表面
に、保護膜を形成することにより、電子管の製造工程に
おける被覆膜の酸化を防ぐことができる。Therefore, by forming a protective film on the surface of the Sc-coated impregnated cathode, it is possible to prevent the coating film from being oxidized in the manufacturing process of the electron tube.
【0016】[0016]
〈実施例1〉図1に、本発明の含浸形陰極の作製の実施
例をブロック図に示す。同図において、破線で囲んだ部
分が従来と異なる。<Example 1> FIG. 1 is a block diagram showing an example of the production of the impregnated cathode of the present invention. In the figure, the part surrounded by the broken line is different from the conventional one.
【0017】含浸形陰極の基本構成は、タングステン粉
末をプレス,焼結したのち、含浸剤を含浸したものであ
る。これを基本型含浸形陰極と呼ぶ。本実施例では、含
浸剤として、BaO,CaO,Al2O3を4:1:1に
混合したものを用いた。そして、この含浸剤を、水素雰
囲気中で1900℃に加熱溶融し、タングステンの焼結体つ
まり多孔質体に含浸した。本実施例で用いた基本型含浸
形陰極の大きさ及び形状は、直径1.2mm,厚さ0.4mm
の円筒状のペレットである。The impregnated cathode has a basic structure in which tungsten powder is pressed and sintered, and then impregnated with an impregnating agent. This is called a basic type impregnated cathode. In this embodiment, as the impregnating agent, a mixture of BaO, CaO and Al 2 O 3 in a ratio of 4: 1: 1 was used. Then, this impregnating agent was heated and melted at 1900 ° C. in a hydrogen atmosphere to impregnate a tungsten sintered body, that is, a porous body. The size and shape of the basic type impregnated cathode used in this example are 1.2 mm in diameter and 0.4 mm in thickness.
Is a cylindrical pellet of.
【0018】Sc被覆型含浸形陰極は、基本型含浸形陰
極の上面に、Wを主体としScを含む膜をスパッタ成膜
法を用いて被覆して作製した。このときスパッタターゲ
ットは、タングステンとSc2W3O12の複合ターゲット
を用いた。被覆膜の組成はSc/Wの元素比で0.10
から0.15に調整し、膜厚は300nmとした。バリ
ウム及び酸素を含む保護膜はスパッタ成膜法により形成
した。このとき、スパッタターゲットとして炭酸バリウ
ムを用いた。成膜された保護膜は、主としてBaOであ
ると推定されるが、BaO2やBaCO3またはBa,
C,Oの各元素が混在している可能性がある。また、さ
らには成膜後、保存雰囲気によってはBa(OH)2 が生
成されることもある。この保護膜の形成は、陰極の予備
加熱処理の後に行う必要がある。本実施例では、予備加
熱処理として、真空容器中で1150℃で4時間の加熱
(活性化)を行った後、上述のバリウム及び酸素を含む
保護膜を形成した。これを、封入工程での電子放出特性
劣化を防止する効果を模擬的に確認するために、大気中
で400℃,5分の加熱を行った。そして、真空容器中
で再び1150℃加熱による再活性化を行い放出電流お
よびその加熱変化を測定した。The Sc-covered impregnated cathode was produced by coating the upper surface of the basic impregnated cathode with a film containing W as a main component and containing Sc by a sputter deposition method. At this time, a composite target of tungsten and Sc 2 W 3 O 12 was used as the sputtering target. The composition of the coating film is 0.10 in terms of Sc / W element ratio.
To 0.15 and the film thickness was 300 nm. The protective film containing barium and oxygen was formed by a sputtering film forming method. At this time, barium carbonate was used as the sputter target. The formed protective film is presumed to be mainly BaO, but BaO 2 , BaCO 3 or Ba,
It is possible that each element of C and O is mixed. Further, after film formation, Ba (OH) 2 may be generated depending on the storage atmosphere. The formation of this protective film must be performed after the preheating treatment of the cathode. In this example, as preheating treatment, heating (activation) was performed at 1150 ° C. for 4 hours in a vacuum container, and then the protective film containing barium and oxygen was formed. This was heated in air at 400 ° C. for 5 minutes in order to confirm the effect of preventing the deterioration of the electron emission characteristics in the encapsulation process. Then, reactivation by heating at 1150 ° C. was performed again in a vacuum container, and the emission current and its heating change were measured.
【0019】図2に、本実施例の含浸形陰極の電子放出
特性を、保護膜の無い従来例と比較して示す。横軸は真
空容器中での1150℃での再加熱(再活性)時間であ
り、縦軸は900℃での陰極放出電流量である。ただ
し、放出電流量は予備加熱処理後の値を1.0 として規
格化して表している。測定は、陽極を陰極から7mm離し
て配置し、陽極に4kVの電圧を印加して行った。保護
膜厚が10nmから300nmの結果を、保護膜無しの
従来例1と比較して示している。FIG. 2 shows the electron emission characteristics of the impregnated cathode of this example in comparison with the conventional example having no protective film. The horizontal axis is the reheating (reactivating) time at 1150 ° C. in the vacuum vessel, and the vertical axis is the cathode emission current amount at 900 ° C. However, the emission current amount is standardized and expressed with the value after preheating being 1.0. The measurement was performed by disposing the anode at a distance of 7 mm from the cathode and applying a voltage of 4 kV to the anode. The results of the protective film thickness of 10 nm to 300 nm are shown in comparison with the conventional example 1 without the protective film.
【0020】図2より、20nmから120nmの保護
膜を有する陰極3,4,5は、大気酸化後に、真空中で
再加熱すれば放出電流量は大気酸化前の値に回復するこ
とが分かる。ここで、保護膜厚120nmの陰極5の、
再加熱後の陰極表面をSEM及びEDXで観察したとこ
ろ、Baまたはその酸化物の薄膜は残存せず、含浸形陰
極本来の表面が露出していた。保護膜厚が20nmより
薄い陰極2の場合、保護膜は陰極表面を覆いきれず、ス
カンジウムを含む被覆膜が酸化を受け電子放出の劣化は
回復不能である。また、保護膜が200nmの陰極6お
よび300nmの陰極7では、保護膜の蒸発に時間を要
し放出電流が回復をするまえに陰極本来の劣化が始まる
ものと考えられる。It can be seen from FIG. 2 that the cathodes 3, 4, and 5 having the protective film of 20 nm to 120 nm have the emission current amount restored to the value before the atmospheric oxidation if they are reheated in vacuum after the atmospheric oxidation. Here, of the cathode 5 having a protective film thickness of 120 nm,
When the cathode surface after reheating was observed with SEM and EDX, a thin film of Ba or its oxide did not remain, and the original surface of the impregnated cathode was exposed. In the case of the cathode 2 having a protective film thickness of less than 20 nm, the protective film cannot cover the surface of the cathode, and the coating film containing scandium is oxidized and the deterioration of electron emission cannot be recovered. Further, in the cathode 6 having a protective film of 200 nm and the cathode 7 having a thickness of 300 nm, it is considered that the evaporation of the protective film takes time and the original deterioration of the cathode begins before the emission current is recovered.
【0021】〈実施例2〉実施例1では、予備加熱を、
陰極からのガス放出処理と陰極の活性化処理を兼ねて1
150℃で行ったが、これはガス放出処理だけを目的と
する場合、900℃の加熱で充分である。このとき、1
150℃で再加熱した場合の、放出電流の立ち上りを図
3に示す。横軸は真空容器中での1150℃での再加熱
(活性)時間であり、縦軸は900℃での陰極放出電流
量である。ただし、上述の模擬的な封入試験を行ってい
ない陰極9の放出電流の最大値を1.0 として規格化し
て表している。測定は、陽極を陰極から7mm離して配置
し、陽極に4kVの電圧を印加して行った。保護膜厚が
10nm,200nm,300nmの陰極11,12,
13の結果を、保護膜無しの従来例10と比較して示し
ている。<Embodiment 2> In Embodiment 1, preheating is performed.
Combines gas discharge process from cathode and cathode activation process 1
Although performed at 150 ° C., heating at 900 ° C. is sufficient if this is only for outgassing treatment. At this time, 1
The rise of the emission current when reheated at 150 ° C. is shown in FIG. The horizontal axis is the reheating (activation) time at 1150 ° C. in the vacuum vessel, and the vertical axis is the cathode emission current amount at 900 ° C. However, the maximum value of the emission current of the cathode 9 which is not subjected to the above-mentioned simulated encapsulation test is standardized and expressed as 1.0. The measurement was performed by disposing the anode at a distance of 7 mm from the cathode and applying a voltage of 4 kV to the anode. Protective film thickness 10nm, 200nm, 300nm cathode 11,12,
The results of No. 13 are shown in comparison with Conventional Example 10 without a protective film.
【0022】図3に示されるように、900℃で1時間
の予備加熱を行った場合、保護膜無しの陰極10では、
封入試験により放出電流が本来の80%以下に劣化す
る。これに対し、保護膜を200nm被覆した陰極12
では、封入試験を行わない陰極9とほぼ同等の放出電流
が得られた。実施例1で示した図2の保護膜厚200n
mの陰極6では十分な放出電流が得られていないが、こ
れは、本実施例では予備加熱で陰極活性化を行っていな
いためである。つまり、本実施例では陰極本来の劣化が
始まる再加熱時間が、実施例1より相対的に長く、劣化
前に保護膜が蒸発したと推定できる。As shown in FIG. 3, when preheating was performed at 900 ° C. for 1 hour, in the cathode 10 without the protective film,
The emission test deteriorates the emission current to 80% or less of the original value. On the other hand, a cathode 12 having a protective film coated to 200 nm
In, the emission current almost equal to that of the cathode 9 not subjected to the enclosure test was obtained. The protective film thickness of 200 n shown in FIG.
Sufficient emission current was not obtained with the cathode 6 of m, but this is because the cathode activation was not performed by preheating in this embodiment. In other words, in this example, the reheating time at which the cathode originally starts to deteriorate is relatively longer than that in Example 1, and it can be estimated that the protective film has evaporated before the deterioration.
【0023】従って、保護膜厚の上限は予備加熱の温度
と時間に依存する。しかし、本実施例でも、保護膜が3
00nmの陰極13では、保護膜が蒸発して十分な放出
電流の立上りが得られる前に、陰極本来の劣化が始ま
る。また、保護膜厚が10nmの陰極11では、保護膜
が被覆膜を覆いきれず十分な放出電流は得られない。さ
らに、図3には示していないが、20nm以上、200
nm未満の保護膜を持つ陰極の放出電流は、保護膜厚2
00nmの陰極12と同等かそれよりも高い放出電流が
得られる。従って、保護膜厚は概略20nmから200
nmが適当である。Therefore, the upper limit of the protective film thickness depends on the preheating temperature and time. However, even in the present embodiment, the protective film is 3
At the cathode 13 of 00 nm, the original deterioration of the cathode begins before the protective film evaporates and a sufficient rise of the emission current is obtained. Further, with the cathode 11 having a protective film thickness of 10 nm, the protective film cannot cover the coating film, and a sufficient emission current cannot be obtained. Further, although not shown in FIG.
The emission current of the cathode having a protective film of less than nm is 2
An emission current equal to or higher than that of the cathode 12 of 00 nm is obtained. Therefore, the protective film thickness is approximately 20 nm to 200
nm is suitable.
【0024】実施例1および実施例2では、含浸剤とし
て、BaO,CaO,Al2O3を4:1:1に混合した
ものを用いたが、これは5:3:2や他の組成のもので
も同様の効果を示すことは容易に類推される。さらに、
本実施例の保護膜の作製法はスパッタ成膜法を用いた
が、これは蒸着法など他の成膜方法でもよいことは明白
である。また、実施例1および実施例2では再加熱を1
150℃で行ったが、再加熱温度は保護膜が消失する時
間との兼ね合いで決まる。再加熱温度が高いほど早く消
失するが、1250℃より高温での加熱は本来のScを
含む被覆膜の劣化が著しいため好ましくない。また、1
050℃より低温では保護膜の消失に要する時間が長
く、実用的でない。In Examples 1 and 2, as the impregnating agent, a mixture of BaO, CaO, and Al 2 O 3 in a ratio of 4: 1: 1 was used, which is 5: 3: 2 or another composition. It is easily inferred that the same effect will be exhibited even with the above. further,
Although the sputtering film formation method was used as the method for forming the protective film in this embodiment, it is obvious that this may be another film formation method such as a vapor deposition method. Further, in Examples 1 and 2, reheating is 1
Although it was performed at 150 ° C., the reheating temperature is determined in consideration of the time for the protective film to disappear. The higher the reheating temperature, the faster it disappears. However, heating above 1250 ° C. is not preferable because the original coating film containing Sc is significantly deteriorated. Also, 1
If the temperature is lower than 050 ° C, it takes a long time for the protective film to disappear, which is not practical.
【0025】〈実施例3〉図4に本発明の含浸形陰極を
実装した電子管の実施例として、ブラウン管の構成を示
す。ブラウン管では、ヒータ14で加熱される陰極15
から放出した電子を、幾枚かの電極で構成される電子銃
で蛍光面20に収束させる。電子銃は、陰極の前面に配
置される第1電極16およびその次の第2電極17から
なる電子引出部と、主として電子ビームを収束する主レ
ンズ部からなる。主レンズ部18は一般に、2枚から4
枚の電極から構成される。また、電子ビームは偏向コイ
ル19で蛍光面全面に走査される。ところで、ブラウン
管の製造工程では、陰極は電子銃に組み込まれた後、ガ
ラスで金属端子が固定配置された電流導入端子に取り付
けられる。そして、これをガスバーナを用いて蛍光面を
有するガラスチューブと一体化する。この封入工程で、
陰極は大気中で数分間ではあるが約400℃またはこれ
以上の加熱を受ける。このとき従来のSc被覆型含浸形
陰極では被覆膜の酸化が生じ、陰極本来の電子放出特性
を発揮できない。この被覆膜酸化による、電子放出劣化
は特に予備加熱処理を行った陰極で著しい。本来の特性
を発揮させるには、窒素雰囲気中で封入するように特別
な封入方法を行う必要がある。しかし、本発明の含浸形
陰極を通常の方法で電子管に封入、真空排気した後、1
050〜1250℃で再加熱を行えば十分な電子放出特
性を発揮する。<Embodiment 3> FIG. 4 shows the structure of a cathode ray tube as an embodiment of an electron tube on which the impregnated cathode of the present invention is mounted. In the cathode ray tube, the cathode 15 heated by the heater 14
The electrons emitted from are focused on the fluorescent screen 20 by an electron gun composed of several electrodes. The electron gun is composed of an electron extracting portion formed of a first electrode 16 and a second electrode 17 arranged next to the front surface of the cathode, and a main lens portion that mainly focuses an electron beam. The main lens portion 18 is generally 2 to 4
It consists of a sheet of electrodes. The electron beam is scanned by the deflection coil 19 over the entire fluorescent screen. By the way, in the manufacturing process of a cathode ray tube, the cathode is incorporated into an electron gun and then attached to a current introducing terminal to which a metal terminal is fixedly arranged by glass. Then, this is integrated with a glass tube having a fluorescent screen by using a gas burner. In this encapsulation process,
The cathode is heated to about 400 ° C. or more in air for a few minutes. At this time, in the conventional Sc-coated impregnated cathode, the coating film is oxidized and the electron emission characteristics inherent in the cathode cannot be exhibited. The deterioration of electron emission due to the oxidation of the coating film is particularly remarkable in the cathode subjected to the preheating treatment. In order to exhibit the original characteristics, it is necessary to perform a special encapsulation method such as encapsulation in a nitrogen atmosphere. However, after impregnating the impregnated cathode of the present invention in an electron tube by a usual method and evacuating,
Sufficient electron emission characteristics are exhibited by reheating at 050 to 1250 ° C.
【0026】[0026]
【発明の効果】本発明の含浸形陰極の製造方法を用いれ
ば、あらかじめ予備加熱処理を行ったSc被覆型含浸形
陰極の、電子管製造工程での被覆膜酸化を避けることが
でき、電子放出の劣化を防止することができる。このと
き保護膜の厚さは、20nm以上,200nm以下で電
子放出特性の劣化を防止できる。また、本発明の製造方
法に従う電子管では、その製造工程において、Sc被覆
型含浸形陰極では必須である窒素雰囲気中での封入を必
要としない。According to the method for producing an impregnated cathode of the present invention, it is possible to avoid the oxidation of the coating film of the Sc-coated impregnated cathode which has been preheated in advance in the electron tube manufacturing process, and to prevent electron emission. Can be prevented from deteriorating. At this time, if the thickness of the protective film is 20 nm or more and 200 nm or less, deterioration of electron emission characteristics can be prevented. Further, in the electron tube according to the manufacturing method of the present invention, in the manufacturing process, encapsulation in the nitrogen atmosphere, which is essential in the Sc-covered impregnated cathode, is not required.
【図1】本発明の含浸形陰極の実施例における製造工程
を説明するブロック図。FIG. 1 is a block diagram illustrating a manufacturing process in an embodiment of an impregnated cathode of the present invention.
【図2】1150℃で予備加熱処理を行い、大気中加熱
を行った陰極の、放出電流の保護膜厚依存性の説明図。FIG. 2 is an explanatory diagram of a protective film thickness dependency of an emission current of a cathode which is preheated at 1150 ° C. and heated in the atmosphere.
【図3】900℃で予備加熱処理を行い、大気中加熱を
行った陰極の、放出電流の保護膜厚依存性の説明図。FIG. 3 is an explanatory diagram of a protective film thickness dependency of an emission current of a cathode which is preheated at 900 ° C. and heated in the atmosphere.
【図4】本発明の電子管の製造方法を用いて作製したブ
ラウン管を説明する断面図。FIG. 4 is a cross-sectional view illustrating a Braun tube manufactured by the method for manufacturing an electron tube according to the present invention.
1…保護膜無しの陰極における放出電流、2…保護膜1
0nmの陰極における放出電流、3…保護膜20nmの
陰極における放出電流、4…保護膜50nmの陰極にお
ける放出電流、5…保護膜120nmの陰極における放
出電流、6…保護膜200nmの陰極における放出電
流、7…保護膜300nmの陰極における放出電流、8
…1150℃で予備加熱処理後、封入試験を行う前の放
出電流、9…封入試験を行わない陰極における放出電
流、10…保護膜無しの陰極における放出電流、11…
保護膜10nmの陰極における放出電流、12…保護膜
200nmの陰極における放出電流、13…保護膜30
0nmの陰極における放出電流、14…ヒータ、15…
陰極、16…第1電極、17…第2電極、18…主レン
ズ部、19…偏向コイル、20…蛍光面。1 ... Emission current in cathode without protective film, 2 ... Protective film 1
0 nm emission current at the cathode, 3 ... Emission current at the protection film 20 nm cathode, 4 ... Emission current at the protection film 50 nm cathode, 5 ... Emission current at the protection film 120 nm cathode, 6 ... Emission current at the protection film 200 nm cathode , 7 ... Emission current at cathode of protective film 300 nm, 8
… Emission current before pre-encapsulation test after preheating at 1150 ° C., 9 ... Emission current in cathode without encapsulation test, 10 ... Emission current in cathode without protective film, 11 ...
Emission current at cathode of protective film 10 nm, 12 ... Emission current at cathode of protective film 200 nm, 13 ... Protective film 30
Emission current at 0 nm cathode, 14 ... Heater, 15 ...
Cathode, 16 ... First electrode, 17 ... Second electrode, 18 ... Main lens part, 19 ... Deflection coil, 20 ... Phosphor screen.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 絵実子 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 成清 正 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 田口 貞憲 千葉県茂原市早野3300番地 株式会社日立 製作所茂原工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Emiko Yamada 1-280 Higashi Koikekubo, Kokubunji City, Tokyo Inside Central Research Laboratory, Hitachi, Ltd. (72) Tadashi Narusei, 1-280 Higashi Koikekubo, Kokubunji City, Tokyo Hitachi Ltd. (72) Inventor Sadanori Taguchi, 3300 Hayano, Mobara-shi, Chiba Hitachi, Ltd. Mobara factory
Claims (6)
酸化物を含浸させた含浸形陰極の電子放出面に、タング
ステンと、少なくともスカンジウム,酸化スカンジウ
ム,タングステン酸スカンジウムのいずれか一つ又は複
数を含む被覆膜、または前記被覆膜にさらに酸化タング
ステンを含む被覆膜を形成した被覆型含浸形陰極におい
て、前記被覆型含浸陰極を真空中で予備加熱した後、前
記被覆膜の上面に、さらに少なくともバリウム及び酸素
を含む保護膜を形成したことを特徴とする含浸形陰極製
造方法。1. An electron-emitting surface of an impregnated cathode in which a porous tungsten substrate is impregnated with an oxide containing barium, and a coating containing tungsten and at least one of scandium, scandium oxide, and scandium tungstate. A coating film, or a coating-type impregnated cathode in which a coating film further containing tungsten oxide is formed on the coating film, after preheating the coating-type impregnated cathode in a vacuum, further on the upper surface of the coating film, A method of manufacturing an impregnated cathode, comprising forming a protective film containing at least barium and oxygen.
む前記保護膜が、BaO,BaO2,Ba(OH)2および
BaCO3から選ばれた一つまたは複数を含む含浸形陰
極の製造方法。2. The method for producing an impregnated cathode according to claim 1, wherein the protective film containing barium and oxygen contains one or more selected from BaO, BaO 2 , Ba (OH) 2 and BaCO 3 .
の厚さを、20nm以上,200nm以下とした含浸形
陰極の製造方法。3. The method for producing an impregnated cathode according to claim 1, wherein the protective film layer has a thickness of 20 nm or more and 200 nm or less.
加熱の温度が900℃以上である含浸形陰極の製造方
法。4. The method for producing an impregnated cathode according to claim 1, 2, or 3, wherein the preheating temperature is 900 ° C. or higher.
含浸形陰極を含む電極を、ガラスチューブに封入および
真空排気したのち、再加熱を行う電子管の製造方法。5. The method of manufacturing an electron tube according to claim 1, 2, 3 or 4, wherein the electrode containing the impregnated cathode is sealed in a glass tube and evacuated, and then reheated.
050℃以上,1250℃以下である電子管の製造方
法。6. The reheating temperature according to claim 5, wherein the reheating temperature is 1.
A method of manufacturing an electron tube having a temperature of 050 ° C or higher and 1250 ° C or lower.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30078092A JPH06150811A (en) | 1992-11-11 | 1992-11-11 | Method for manufacturing impregnated cathode and electron tube |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30078092A JPH06150811A (en) | 1992-11-11 | 1992-11-11 | Method for manufacturing impregnated cathode and electron tube |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06150811A true JPH06150811A (en) | 1994-05-31 |
Family
ID=17889010
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30078092A Pending JPH06150811A (en) | 1992-11-11 | 1992-11-11 | Method for manufacturing impregnated cathode and electron tube |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06150811A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103700561A (en) * | 2013-12-27 | 2014-04-02 | 安徽华东光电技术研究所 | Active composition for barium-tungsten cathode, preparation method thereof and preparation method of barium-tungsten cathode |
-
1992
- 1992-11-11 JP JP30078092A patent/JPH06150811A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103700561A (en) * | 2013-12-27 | 2014-04-02 | 安徽华东光电技术研究所 | Active composition for barium-tungsten cathode, preparation method thereof and preparation method of barium-tungsten cathode |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6791251B2 (en) | Metal cathode and indirectly heated cathode assembly having the same | |
US3846006A (en) | Method of manufacturing of x-ray tube having thoriated tungsten filament | |
US3121182A (en) | Cathode ray tube, getter, and method of gettering | |
JPH06150811A (en) | Method for manufacturing impregnated cathode and electron tube | |
US6600257B2 (en) | Cathode ray tube comprising a doped oxide cathode | |
JPH06124647A (en) | Impregnated cathode, manufacturing method thereof, and manufacturing method of electron tube | |
JP2835023B2 (en) | Manufacturing method of cathode for electron tube | |
KR100249208B1 (en) | Impregnated cathode | |
KR920008786B1 (en) | Cathode | |
JPH026185B2 (en) | ||
KR970009775B1 (en) | Manufacture of impregnated type cathode | |
JP3715790B2 (en) | Method for producing impregnated cathode for discharge tube | |
KR100235995B1 (en) | Impregnation treatment type cathode | |
JPH04220924A (en) | Cathode for electron tube | |
JPH1027538A (en) | Impregnated cathode and cathode ray tube using the same | |
JPH08138536A (en) | Impregnated cathode, method of manufacturing the same, and cathode ray tube using the same | |
KR100198573B1 (en) | Method of manufacturing cathode ray tube applied impregnation type cathode | |
JPH04106831A (en) | Impregnated cathode | |
JPH09198996A (en) | Impregnated cathode and cathode ray tube using the same | |
JPH04280029A (en) | Impregnation type cathode | |
JPH04115437A (en) | Oxide cathode | |
KR20030005513A (en) | cathod of type for cathode ray tube and method manufacture of cathod ray tube used of cathod impregnate type | |
JPH08236008A (en) | Impregnated cathode and electron tube using the same | |
JPS63221527A (en) | Impregnated cathode | |
JPH11213859A (en) | Negative electrode structure, electron gun structure and electron tube |