JPH06145797A - Manufacturing method of electromagnetic thick plate for magnetic shield structure - Google Patents
Manufacturing method of electromagnetic thick plate for magnetic shield structureInfo
- Publication number
- JPH06145797A JPH06145797A JP4291836A JP29183692A JPH06145797A JP H06145797 A JPH06145797 A JP H06145797A JP 4291836 A JP4291836 A JP 4291836A JP 29183692 A JP29183692 A JP 29183692A JP H06145797 A JPH06145797 A JP H06145797A
- Authority
- JP
- Japan
- Prior art keywords
- less
- rolling
- steel
- magnetic shield
- electromagnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Abstract
(57)【要約】
【目的】 本発明は磁気シールド構造用電磁厚板の製造
法を提供する。
【構成】 Siを0.2%以上1.5%未満、Alを
0.1%以上1.5%未満のいずれか一方あるいは両方
を含み、かつ重量%でSi+Alが1.5%未満とし、
強度に応じてMnを1.0%以下含み、Pを0.02%
を超え、0.1%以下、Bを0.0003%以上、0.
005%以下を含み、C,S,N,O,Hの上限を限定
する成分系で、950〜1100℃に加熱し、800℃
以上で圧延形状比0.6以上の圧延と700〜900℃
で圧下率35〜70%の圧延を行ない、900〜105
0℃で熱処理する。
【効果】 強磁場磁気シールド性に優れ、強度、低温靭
性、切削加工性および切削仕上面精度にも優れる構造用
電磁厚板が得られる。
(57) [Summary] [Object] The present invention provides a method for manufacturing an electromagnetic plank for a magnetic shield structure. [Constitution] Si contains 0.2% or more and less than 1.5%, Al contains 0.1% or more and less than 1.5%, or both, and Si + Al is less than 1.5% by weight.
Containing 1.0% or less of Mn and 0.02% of P according to strength
0.1% or less, B 0.003% or more, 0.
It is a component system containing 005% or less and limiting the upper limits of C, S, N, O and H, and is heated to 950 to 1100 ° C., and 800 ° C.
Rolling with a rolling shape ratio of 0.6 or more and 700 to 900 ° C.
Rolling at a rolling reduction of 35 to 70% at 900 to 105
Heat treatment at 0 ° C. [Effect] It is possible to obtain a structural electromagnetic thick plate which is excellent in strong magnetic field magnetic shielding property, strength, low temperature toughness, machinability, and cutting surface accuracy.
Description
【0001】[0001]
【産業上の利用分野】本発明は磁気シールド構造用電磁
厚板の製造法を提供するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention provides a method for manufacturing an electromagnetic thick plate for a magnetic shield structure.
【0002】[0002]
【従来の技術】近年、超電導による強磁場を利用した素
粒子研究や発電、電力貯蔵等の技術開発が活発に行なわ
れている。それらの装置には強磁場を遮蔽するために磁
気シールドが不可欠であり、鉄系材料は比較的安価な磁
気シールド用材料として広く用いられている。超電導装
置のような強磁場を効果的にシールドするためには、高
磁場から比較的低磁場までの広い範囲で磁気特性が優れ
ること、即ち高い飽和磁束密度と磁化力1Oe(80A/
m)程度の低磁場領域での高い磁束密度を有することが
求められる。また装置が大型化すれば磁気シールドに大
量の鋼材が必要となるため、建屋自体を磁気シールド効
果を有する鋼材で設計することが有利となり、構造部材
としての強度、靭性を兼ね備えた材料が最近特に必要性
を増している。なかでも超電導装置は低温で用いられる
ことが多いので低温靭性が重要になる。さらに切削の容
易さ即ち切削加工性と、切削仕上面精度も重要な要件で
ある。鋼を構造物とする際、溶接部は磁気特性が大きく
低下するためボルト等で組み立てられることが多いが、
継ぎ合わせ部にわずかな隙間があっても磁界に漏れが生
じて磁気シールド効果が大きく低下するので、仕上面精
度がより重要になる。即ち、強磁場に対する磁気シール
ド特性、強度、低温靭性、さらに優れた切削加工性、切
削仕上面精度のすべてを具備する材料が要求されてい
る。2. Description of the Related Art In recent years, researches on elementary particles using a strong magnetic field by superconductivity and technological developments such as power generation and power storage have been actively conducted. A magnetic shield is indispensable for shielding a strong magnetic field in these devices, and iron-based materials are widely used as relatively inexpensive magnetic shield materials. In order to effectively shield a strong magnetic field such as a superconducting device, magnetic properties are excellent in a wide range from a high magnetic field to a relatively low magnetic field, that is, a high saturation magnetic flux density and a magnetizing force of 10 Oe (80 A /
m) It is required to have a high magnetic flux density in a low magnetic field region. In addition, as the size of the equipment increases, a large amount of steel material is required for the magnetic shield, so it is advantageous to design the building itself with steel material that has a magnetic shield effect, and a material that has both strength and toughness as a structural member has recently become particularly popular. There is an increasing need. Of these, superconducting devices are often used at low temperatures, so low temperature toughness is important. Further, easiness of cutting, that is, machinability and accuracy of finished surface of cutting are important requirements. When steel is used as a structure, the welded parts are often assembled with bolts etc. because their magnetic properties are greatly reduced.
Even if there is a slight gap in the seam, leakage of the magnetic field will occur and the magnetic shield effect will be greatly reduced, so the precision of the finished surface becomes more important. That is, there is a demand for a material having all of magnetic shielding characteristics against a strong magnetic field, strength, low temperature toughness, excellent machinability, and cutting surface finish accuracy.
【0003】これまで高強度の電磁厚板としては特開昭
60−208418号公報や特開平3−271325号
公報があるが、これは切削性が全く考慮されていない。
一方切削性の優れた電磁厚板には特開平1−10831
5号公報があるが、これは純鉄に近い成分であるので強
度が低い。さらに、切削性の優れたものとして本発明者
等が特願平3−57044号、特願平3−57045
号、特願平3−57046号で提案した発明があり、な
かでも特願平3−57046号の発明は強磁場磁気シー
ルド性に優れるものである。これは、切削性を向上させ
るためにPを多量に添加することを特徴としているが、
高Pでは切削加工面精度が低下する難点があり、さらに
低温での靭性も低くなる。特願平3−57046号では
この切削仕上面精度と低温靭性については考慮しておら
ず、構造材として用いられる新しい用途には適さない。
従って、強磁場に対する磁気シールド特性、強度、低温
靭性、切削加工性、切削仕上面精度のすべてを具備する
材料はこれまで得られていない。Up to now, Japanese Patent Laid-Open Nos. 60-208418 and 3-271325 have been known as high-strength electromagnetic thick plates, but the machinability is not considered at all.
On the other hand, JP-A-1-10831 discloses an electromagnetic thick plate having excellent machinability.
Although there is Japanese Patent Publication No. 5, the strength is low because it is a component close to pure iron. Furthermore, the inventors of the present invention have found that they have excellent machinability, as disclosed in Japanese Patent Application Nos. 3-57044 and 3-57045.
There is an invention proposed in Japanese Patent Application No. 3-57046, and in particular, the invention of Japanese Patent Application No. 3-57046 is excellent in strong magnetic field magnetic shielding property. This is characterized by adding a large amount of P to improve the machinability.
If the P content is high, there is a problem that the precision of the machined surface decreases, and the toughness at low temperatures also decreases. Japanese Patent Application No. 3-57046 does not take into consideration the precision of cutting surface finish and the low temperature toughness, and is not suitable for a new use as a structural material.
Therefore, a material having all of magnetic shield characteristics against a strong magnetic field, strength, low temperature toughness, machinability, and cutting surface finish accuracy has not been obtained so far.
【0004】[0004]
【発明が解決しようとする課題】本発明は以上の点を鑑
みなされたもので、強磁場磁気シールド性に優れる磁気
特性、即ち高い飽和磁束密度と磁化力1Oe(80A/
m)程度の低磁場領域での高い磁束密度を有し、かつ用
途に応じた高強度、低温での高靭性、切削加工性と切削
仕上面精度のすべてを満足する、磁気シールド構造用電
磁厚板の製造法を提供することを目的とするものであ
る。SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and has magnetic properties excellent in strong magnetic field magnetic shielding property, that is, high saturation magnetic flux density and magnetizing force of 10 Oe (80 A /
Electromagnetic thickness for magnetic shield structure that has a high magnetic flux density in a low magnetic field region of about m) and that satisfies all of the high strength according to the application, high toughness at low temperature, machinability and cutting surface accuracy. It is intended to provide a method for manufacturing a plate.
【0005】[0005]
【課題を解決するための手段】上記の目的を達成するた
めに本発明は、(1)重量%で、C :0.008%以
下、Si:0.20%以上、1.5%未満およびAl:
0.10%以上、1.5%未満のいずれか一方あるいは
両方を含み、かつSi+Alが1.5%未満、Mn:
0.2%を超え、1.0%以下、P :0.02%を超
え、0.10%以下、S :0.005%以下、N :
0.004%以下、O :0.006%以下、H :
0.0002%以下、B :0.0003%以上、0.
005%以下、残部鉄および不可避不純物からなる鋼組
成の鋼片または鋳片を950〜1100℃に加熱し、8
00℃以上で下式で規定する圧延形状比Aが0.6以上
となる圧延パスを1回以上とする圧延を行ない、引き続
き700℃以上900℃以下の温度範囲で累積圧下率を
35%超70%以下とする圧延を行なって、板厚50mm
以上とした厚板については600〜750℃の脱水素処
理を行なった後、900〜1050℃で焼鈍あるいは焼
準をし、板厚50mm未満については、900〜1050
℃で焼鈍あるいは焼準することを特徴とする磁気シール
ド構造用電磁厚板の製造法。In order to achieve the above object, the present invention provides (1)% by weight, C: 0.008% or less, Si: 0.20% or more, less than 1.5%, and Al:
One or both of 0.10% or more and less than 1.5%, and Si + Al less than 1.5%, Mn:
More than 0.2%, 1.0% or less, P: more than 0.02%, 0.10% or less, S: 0.005% or less, N:
0.004% or less, O 2: 0.006% or less, H 2:
0.0002% or less, B: 0.0003% or more, 0.
A steel slab or slab having a steel composition of 005% or less and the balance iron and unavoidable impurities is heated to 950 to 1100 ° C.,
Rolling is performed at least once in a rolling pass at a rolling shape ratio A of 0.6 or more specified by the following formula at 00 ° C or more, and then a cumulative rolling reduction is over 35% in a temperature range of 700 ° C or more and 900 ° C or less. After rolling to 70% or less, plate thickness 50 mm
The above thick plates are subjected to a dehydrogenation treatment at 600 to 750 ° C. and then annealed or standardized at 900 to 1050 ° C. For the plate thicknesses less than 50 mm, 900 to 1050 ° C.
A method for manufacturing an electromagnetic thick plate for a magnetic shield structure, which comprises annealing or normalizing at ℃.
【数5】 [Equation 5]
【0006】(2)重量%で、C :0.008%以
下、Si:0.20%以上、1.5%未満およびAl:
0.10%以上、1.5%未満のいずれか一方あるいは
両方を含み、かつSi+Alが1.5%未満、Mn:
0.2%以下、P :0.02%を超え、0.10%以
下、S :0.01%以下、N :0.004%以下、
O :0.006%以下、H :0.0002%以下、
B :0.0003%以上、0.005%以下、残部鉄
および不可避不純物からなる鋼組成の鋼片または鋳片を
950〜1100℃に加熱し、800℃以上で下式に規
定する圧延形状比Aが0.6以上となる圧延パスを1回
以上とする圧延を行ない、引き続き700℃以上900
℃以下の温度範囲で累積圧下率を35%超70%以下と
する圧延を行なって、板厚50mm以上とした厚板につい
ては、600〜750℃の脱水素熱処理を行なった後、
900〜1050℃で焼鈍あるいは焼準し、板厚50mm
未満については900〜1050℃で焼鈍するか焼準す
ることを特徴とする磁気シールド構造用電磁厚板の製造
法。(2) In wt%, C: 0.008% or less, Si: 0.20% or more, less than 1.5% and Al:
One or both of 0.10% or more and less than 1.5%, and Si + Al less than 1.5%, Mn:
0.2% or less, P: more than 0.02%, 0.10% or less, S: 0.01% or less, N: 0.004% or less,
O: 0.006% or less, H: 0.0002% or less,
B: 0.0003% or more and 0.005% or less, a steel slab or a slab having a steel composition consisting of the balance iron and unavoidable impurities is heated to 950 to 1100 ° C, and a rolling shape ratio defined by the following formula at 800 ° C or more. Rolling is performed with one or more rolling passes for A of 0.6 or more, and then 700 ° C or more and 900 or more.
With respect to a thick plate having a plate thickness of 50 mm or more, which is subjected to rolling with a cumulative rolling reduction of more than 35% and 70% or less in a temperature range of ℃ or less, after performing dehydrogenation heat treatment at 600 to 750 ° C,
Annealing or normalizing at 900 to 1050 ℃, plate thickness 50mm
The method for manufacturing an electromagnetic thick plate for a magnetic shield structure is characterized by annealing or normalizing at less than 900 to 1050 ° C.
【数6】 [Equation 6]
【0007】[0007]
【作用】前述のように、切削加工性と、磁気シールド性
を有する鋼としては本発明者等が提案した特願平3−5
7046号に示された、SiあるいはAlとともにPを
添加した鋼があるが、それを構造用鋼として用いる場合
の問題点は、低温靭性と切削仕上面精度および強度であ
る。本発明者等はさらに多くの成分、製造条件を検討し
た結果、この優れた磁気特性と切削加工性を維持しなが
ら、低温での高靭性と切削仕上面精度を得るための手段
として、Bを添加することが極めて有効であることを知
見した。As described above, Japanese Patent Application No. 3-5 proposed by the present inventors as a steel having machinability and magnetic shielding properties.
There is a steel shown in No. 7046 to which P is added together with Si or Al, but problems when using it as structural steel are low temperature toughness, cutting surface finish accuracy and strength. As a result of studying more components and manufacturing conditions, the present inventors have decided to use B as a means for obtaining high toughness at low temperature and cutting surface accuracy while maintaining the excellent magnetic properties and machinability. It was found that the addition is extremely effective.
【0008】Pが低温靭性と切削仕上面精度を悪くする
理由は、結晶粒界を著しく脆弱化することにある。電磁
厚板は極低CであるのでP量が多いと極めて粒界破壊を
起こしやすくなり低温靭性は大きく低下する。切削仕上
面精度に関しては、Pは切削抵抗を軽減するのである程
度の添加量までは改善の方向に働く。しかし、多量に添
加して粒界破壊を起こしやすくなると、結晶粒が熱処理
によって非常に粗大になっていることとあいまって、粒
界破壊による破壊の単位が大きく、仕上面に凹凸を生じ
させる原因となるので仕上面精度を低下させる。これに
対して、Bの効果は主として、固溶BがPとは逆に粒界
を強化して粒界破壊を抑制することにあり、それによっ
て低温靭性および切削仕上面精度を改善する。さらに固
溶Bは材料を硬化させて切削加工性も改善するので、P
添加量を抑制することが可能であり、この面からも低温
靭性、切削仕上面精度の改善に有利に作用する。The reason why P deteriorates the low temperature toughness and the accuracy of the finished surface for cutting is that the grain boundaries are significantly weakened. Since the electromagnetic thick plate has an extremely low C, if the amount of P is large, grain boundary fracture is extremely likely to occur and the low temperature toughness is greatly reduced. Regarding the accuracy of the finished surface, P reduces the cutting resistance, so it works in the direction of improvement up to a certain amount of addition. However, if a large amount is added to cause grain boundary fracture, the grain size becomes very coarse due to the heat treatment, and the unit of fracture due to grain boundary fracture is large, which causes unevenness on the finished surface. Therefore, the accuracy of the finished surface is reduced. On the other hand, the effect of B is mainly that the solid solution B strengthens the grain boundary to suppress grain boundary fracture contrary to P, thereby improving the low temperature toughness and cutting surface finish accuracy. Further, solid solution B hardens the material and improves the machinability, so P
It is possible to suppress the amount of addition, and this aspect also has an advantageous effect on improving the low temperature toughness and the accuracy of the cut surface.
【0009】図1は、0.003%C−0.7%Si−
0.4%Mn−0.2%Alをベース成分としてBとP
を変化させた成分を有する種々のスラブを、1050℃
に加熱した後900℃で圧延形状比Aが0.7の圧延パ
スを1回とり、引き続き700〜900℃の範囲で累積
圧下率60%の圧延により厚さ20mmとした鋼板につい
て、切削仕上面精度の指標として、表面あらさを測定し
た結果である。10点の平均表面あらさRzが10μm
以下を極めて良好(◎)、20μm以下を良好(○)、
20μmを超えるものを不良(△)として評価した。P
量0.06%までは改善傾向にあるが、それを超えると
逆に悪くなり、結局P単独添加では良好な切削仕上面精
度は得られていない。これに対してB添加により切削仕
上面精度は大きく改善され、P量0.02%以上、0.
12%以下であれば良好な切削仕上面精度が得られてい
る。FIG. 1 shows 0.003% C-0.7% Si-
B and P using 0.4% Mn-0.2% Al as a base component
Various slabs with different composition of 1050 ℃
After heating to 900 ° C., a rolling pass with a rolling shape ratio A of 0.7 was taken once at 900 ° C., and subsequently, a steel plate with a thickness of 20 mm was obtained by rolling with a cumulative reduction of 60% in the range of 700 to 900 ° C. It is the result of measuring the surface roughness as an index of accuracy. The average surface roughness Rz of 10 points is 10 μm.
The following are extremely good (⊚), 20 μm or less are good (∘),
Those having a thickness of more than 20 μm were evaluated as defective (Δ). P
The amount tends to improve up to 0.06%, but if the amount exceeds 0.06%, it worsens, and after all, the addition of P alone does not provide a good cutting surface finish accuracy. On the other hand, the addition of B greatly improves the accuracy of the cutting surface, and the P amount is 0.02% or more, and the P.
If it is 12% or less, good cutting surface accuracy is obtained.
【0010】図2は、図1と同じ種々の鋼において、切
削性の評価指標として、ドリル加工時のドリル逃げ面摩
耗幅に対するBおよびPの影響を測定したものである。
即ち、ハイス鋼製ドリルによって回転数700rpm 、送
り速度150mm/minの条件で深さ30mmの穴を40個開
けた場合のドリル逃げ面の摩耗幅とB量の関係であり、
摩耗幅が0.2mm以下を切削加工性が特によい(◎で示
す)、0.2〜0.3mmを切削加工性がよい(○で示
す)、0.3mm以上を切削性が普通である(△で示す)
と定義している。B添加により切削加工性が改善してお
り、P単独添加では0.04%を超える量が必要だが、
B添加だと0.02%を超える量添加すればよい。即
ち、Bを添加し、さらにPを0.02%以上0.12%
以下添加することにより、切削加工性と切削仕上面精度
がともに優れる鋼が得られる。FIG. 2 shows the effects of B and P on the flank wear width during drilling as an evaluation index of machinability in the same various steels as in FIG.
That is, it is the relationship between the wear width of the drill flank and the amount of B when 40 holes with a depth of 30 mm are opened under the conditions of a rotational speed of 700 rpm and a feed rate of 150 mm / min with a high-speed steel drill,
The machinability is particularly good when the wear width is 0.2 mm or less (shown by ⊚), the machinability is good by 0.2 to 0.3 mm (shown by ◯), and the machinability is normal when 0.3 mm or more. (Indicated by △)
Is defined as The machinability is improved by adding B, and the amount of more than 0.04% is required when P is added alone.
If B is added, it may be added in an amount exceeding 0.02%. That is, B is added, and P is 0.02% or more and 0.12%.
Addition below makes it possible to obtain steel having excellent machinability and cutting surface accuracy.
【0011】低温靭性は、寒冷地の屋外での使用を考え
た場合、−40℃において40J以上程度のシャルピー
靭性を有することが必要である。図3は低温(−40
℃)靭性へのBとPの影響である。Pが0.04%を超
えると低温靭性が劣るが、B添加による靭性向上でP
0.1%程度でも40J以上の靭性値を有している。The low temperature toughness is required to have a Charpy toughness of about 40 J or more at -40 ° C. in consideration of outdoor use in cold regions. Figure 3 shows low temperature (-40
C.) The effect of B and P on toughness. When P exceeds 0.04%, the low temperature toughness is poor, but the addition of B improves the toughness and P
It has a toughness value of 40 J or more even at about 0.1%.
【0012】Bには磁気特性も向上させる効果がある。
Bは、BNを形成してNをトラップし、結晶粒の粗大化
を妨げるAlNの形成を防ぐことによって粗粒化効果が
あり、これによって磁気特性向上に寄与する。さらにB
は硬化元素として材料の強度も上昇させる。B has the effect of improving the magnetic characteristics.
B forms a BN, traps N, and prevents the formation of AlN, which hinders the coarsening of crystal grains, thereby having a coarsening effect, which contributes to the improvement of magnetic characteristics. Furthermore B
Also increases the strength of the material as a hardening element.
【0013】発明者等は製造プロセス条件に関する種々
の検討を重ね、こうした諸目的に合致させるためには、
熱処理条件が非常に重要であることを知見した。即ち、
強度、切削性、切削仕上面精度、低温靭性、および磁気
特性のいずれにも有利に働くためには適量の固溶Bが存
在することが必要で、そのためには熱処理条件をある範
囲に限定することが必須となる。即ち圧延加熱温度を9
50〜1100℃とすることと、圧延後の熱処理温度を
900〜1050℃とすることが必要である。圧延条件
については、まず圧延前加熱温度を1100℃以下にす
るのは、AlNを完全に固溶させるとBNを過剰に形成
して固溶Bの効果を阻害するためである。ただし加熱温
度が950℃未満となると圧延の変形抵抗が大きくな
り、以下に述べる空隙性欠陥をなくすための形状比の高
い圧延の圧延負荷が大きくなるため、950℃を下限と
する。圧延後の熱処理温度については、十分粗粒化させ
るには900℃以上での熱処理が必要である。しかし1
050℃以上ではBの効果が著しく低下してしまうた
め、焼鈍あるいは焼準温度は900〜1050℃に限定
することが必要である。The inventors have made various studies on the manufacturing process conditions, and in order to meet these various purposes,
We have found that heat treatment conditions are very important. That is,
In order to exert advantageous effects on all of strength, machinability, cutting surface accuracy, low temperature toughness, and magnetic properties, it is necessary that a suitable amount of solid solution B be present, and for that purpose heat treatment conditions are limited to a certain range. Is essential. That is, the rolling heating temperature is 9
It is necessary to set the temperature to 50 to 1100 ° C and the heat treatment temperature after rolling to 900 to 1050 ° C. Regarding the rolling conditions, first, the heating temperature before rolling is set to 1100 ° C. or less because when AlN is completely solid-dissolved, BN is excessively formed and the effect of solid solution B is hindered. However, if the heating temperature is lower than 950 ° C, the deformation resistance of rolling increases, and the rolling load of rolling having a high shape ratio for eliminating void defects described below increases, so 950 ° C is set as the lower limit. Regarding the heat treatment temperature after rolling, it is necessary to perform heat treatment at 900 ° C. or higher in order to sufficiently coarsen the grains. But 1
If the temperature is 050 ° C. or higher, the effect of B will be significantly reduced, so it is necessary to limit the annealing or normalizing temperature to 900 to 1050 ° C.
【0014】Bの有効利用には、N量も重要であり、N
が多いと固溶Bが減少するため、0.004%以下とす
ることが必須である。このようにBは、熱処理条件等を
適切に選べば、強度、低温靭性、切削加工性、切削仕上
面精度および磁気特性のいずれに対しても有効に作用
し、構造材として用いられる磁気シールド電磁厚板の提
供を目的とする本発明において、最も重要な元素であ
る。The amount of N is also important for the effective use of B.
If the content is large, the amount of solid solution B decreases, so 0.004% or less is essential. As described above, B properly acts on any of strength, low temperature toughness, machinability, cutting surface finish accuracy, and magnetic properties, if heat treatment conditions and the like are properly selected, and B is used as a magnetic shield electromagnetic material as a structural material. It is the most important element in the present invention for the purpose of providing a thick plate.
【0015】優れた磁気特性を得るためには、製造面で
さらにいくつかの必要条件がある。まず、1Oe程度の比
較的低磁場での高い磁束密度を得るためには、結晶粒の
粗大化を図るとともに、結晶粒の磁化容易〔100〕方
位が圧延面に平行に揃っていることが重要である。本発
明成分鋼において、熱間圧延条件として、700℃から
900℃の温度範囲において35%超70%以下の累積
圧下率をとれば、Bの粗粒化効果も加えてフェライト粒
度番号が0番から−2番程度の大きな結晶粒を板厚全体
にわたって安定的に得ると同時に、〔100〕の結晶方
位が圧延方向に平行な集合組織を得ることができる。There are some additional manufacturing requirements to obtain good magnetic properties. First, in order to obtain a high magnetic flux density in a relatively low magnetic field of about 1 Oe, it is important that the crystal grains are coarsened and the easy-magnetization [100] orientations of the crystal grains are aligned parallel to the rolling surface. Is. In the composition steel of the present invention, if a cumulative rolling reduction of more than 35% and 70% or less is taken as a hot rolling condition in the temperature range of 700 ° C. to 900 ° C., the grain size number of ferrite is 0 in addition to the effect of coarsening B. It is possible to stably obtain a large crystal grain of about −2 through the entire thickness of the plate, and at the same time, to obtain a texture in which the [100] crystal orientation is parallel to the rolling direction.
【0016】さらに低磁場での高磁束密度を得るために
は、100μ以上の空隙性欠陥をなくすことも重要であ
り、そのためには800℃以上の温度範囲での下式で求
めた圧延形状比Aが0.6以上となることが必要であ
る。In order to obtain a high magnetic flux density in a lower magnetic field, it is also important to eliminate void defects of 100 μ or more. For that purpose, the rolling shape ratio obtained by the following formula in the temperature range of 800 ° C. or more is used. It is necessary that A be 0.6 or more.
【数7】 [Equation 7]
【0017】さらに、鋼中の水素の存在も有害で、脱水
素熱処理を行なうことによって磁気特性が大幅に向上す
る。高形状比圧延により空隙性欠陥のサイズを100μ
以下にし、かつ板厚に応じて脱水素熱処理により鋼中水
素を減少することで低磁場での磁束密度が大幅に上昇す
る。Further, the presence of hydrogen in the steel is also harmful, and the dehydrogenation heat treatment significantly improves the magnetic properties. High form ratio rolling reduces the size of void defects to 100μ
By reducing the hydrogen content in the steel by dehydrogenation heat treatment depending on the plate thickness below, the magnetic flux density in a low magnetic field is significantly increased.
【0018】次に成分限定理由を述べる。Cは鋼中の内
部応力を高め、磁気特性、特に低磁場での磁束密度を最
も下げる元素であり、極力下げることが低磁場での磁束
密度を低下させないことに寄与する。また、靭性確保の
点から低いほどよい。このようなことから、0.01%
以下に限定する。Next, the reasons for limiting the components will be described. C is an element that increases the internal stress in steel and lowers the magnetic properties, especially the magnetic flux density in a low magnetic field, and reducing it as much as possible contributes to not lowering the magnetic flux density in a low magnetic field. Further, the lower the better, the better the toughness. From this, 0.01%
Limited to:
【0019】Si,Alは低磁場での磁束密度の点から
添加した方が有利な元素である。Siでは0.2%以
上、Alでは0.1%以上の範囲で低磁場において高磁
束密度となるので、Si,Alのいずれか一方、あるい
は両方をこの範囲で添加する。しかしSi,Alとも過
剰に添加すると靭性低下の原因となり、また飽和磁束密
度の低下も招くのでそれぞれ上限を1.5%未満とし、
かつSiとAlの重量%の和を1.5%未満に限定す
る。磁気特性の点からは、Siは0.6%以上、Alは
0.3%以上添加するのが望ましい。Si and Al are elements that are more advantageous to add from the viewpoint of magnetic flux density in a low magnetic field. Since Si has a high magnetic flux density in a low magnetic field in the range of 0.2% or more and Al in the range of 0.1% or more, either or both of Si and Al are added in this range. However, if both Si and Al are added excessively, it causes toughness deterioration and also causes a decrease in saturation magnetic flux density.
Moreover, the sum of the weight percentages of Si and Al is limited to less than 1.5%. From the viewpoint of magnetic properties, it is desirable to add Si by 0.6% or more and Al by 0.3% or more.
【0020】Mnは強度を上げる元素として有効であ
り、要求強度に応じて添加する。しかし、Mn量が多い
とMnSを形成し、結晶粒を微細にして磁束密度を低下
させるため、Mn量を0.2%を超えて添加する場合は
Sを0.005%以下に低減してMnSの形成を抑える
必要がある。Mnが0.2%以下であればSは0.01
%以下程度とすればよい。また、Mnを多量に添加する
と飽和磁束密度の低下を招くので、上限は1%とする。Mn is effective as an element for increasing the strength, and is added according to the required strength. However, when the Mn amount is large, MnS is formed, and the crystal grains are made fine to reduce the magnetic flux density. Therefore, when the Mn amount is added in excess of 0.2%, S is reduced to 0.005% or less. It is necessary to suppress the formation of MnS. If Mn is 0.2% or less, S is 0.01
It may be about less than or equal to%. Further, addition of a large amount of Mn causes a decrease in saturation magnetic flux density, so the upper limit is made 1%.
【0021】Pは、図1および図2に示すようにBと併
用して切削仕上面精度および切削加工性をよくするため
には0.02%以上添加することが必要である。しかし
図1,図3に示すようにPは過剰に添加すると切削仕上
面精度や低温靭性を却って悪くするので、これらを考慮
して、上限は0.10%とする。As shown in FIGS. 1 and 2, P is required to be added in an amount of 0.02% or more in order to improve the accuracy of the cut surface and the machinability in combination with B as shown in FIGS. However, as shown in FIGS. 1 and 3, if P is excessively added, the cutting surface accuracy and the low temperature toughness are rather deteriorated. Therefore, considering these, the upper limit is made 0.10%.
【0022】Oは鋼中において非金属介在物を形成し、
結晶粒の粗大化を妨げる害を及ぼし含有量が多くなるに
従って磁束密度の低下が見られ、磁気特性を低下させる
ので少ない程よい。このため、0.006%以下とす
る。O forms non-metallic inclusions in steel,
The smaller the content, the better because the magnetic flux density decreases as the content increases, which has an adverse effect on coarsening of crystal grains. Therefore, it is set to 0.006% or less.
【0023】Nは内部応力を高め、かつAlNにより結
晶粒微細化作用により低磁場での磁束密度を低下させ、
さらにBNとなってBの効果を阻害するので上限は0.
004%とすることが必要である。N increases the internal stress, and AlN reduces the magnetic flux density in a low magnetic field due to the grain refinement action.
Furthermore, since it becomes BN and inhibits the effect of B, the upper limit is 0.
It is necessary to set it to 004%.
【0024】Hは磁気特性を低下させ、かつ、空隙性欠
陥の減少を妨げるので0.0002%以下とする。H reduces the magnetic properties and hinders the reduction of void defects, so it is made 0.0002% or less.
【0025】Bは先に述べたBの効果を発揮するには、
B量0.0003%以上の添加が必要であるが、過剰に
添加しても効果は変わらないので上限は0.005%と
する。In order for B to exert the effect of B mentioned above,
It is necessary to add B in an amount of 0.0003% or more, but the effect does not change even if added in excess, so the upper limit is made 0.005%.
【0026】次に製造法について述べる。圧延条件につ
いては、まず圧延前加熱温度を1100℃以下にするの
は、AlNを完全に固溶させるとBNを形成してBの効
果を阻害するためである。ただし加熱温度が950℃未
満となると圧延の変形抵抗が大きくなり、以下に述べる
空隙性欠陥をなくすための形状比の高い圧延の圧延負荷
が大きくなるため、950℃を下限とする。Next, the manufacturing method will be described. Regarding the rolling condition, first, the heating temperature before rolling is set to 1100 ° C. or lower because when AlN is completely dissolved, BN is formed and the effect of B is impaired. However, if the heating temperature is lower than 950 ° C, the deformation resistance of rolling increases, and the rolling load of rolling having a high shape ratio for eliminating void defects described below increases, so 950 ° C is set as the lower limit.
【0027】熱間圧延にあたり前述の空隙性欠陥は鋼の
凝固過程で大小はあるが必ず発生するものであり、これ
をなくす手段は圧延によらなければならないので熱間圧
延の役目は重要である。即ち、熱間圧延1回当たりの変
形量を大きくし板厚中心部にまで変形が及ぶ熱間圧延が
有効である。具体的には800℃以上で圧延形状比Aが
0.6以上の圧延パス1回以上を含む高形状比圧延を行
ない、空隙性欠陥のサイズを100μ以下にすることが
磁気特性によい。圧延中にこの高形状比圧延により空隙
性欠陥をなくすことで、後で行なう脱水素熱処理におけ
る脱水素効率が飛躍的に上昇するのである。ここに80
0℃以上で高形状比圧延を行なう理由は800℃未満の
低温では変形抵抗が大きく通常の圧延では圧下が困難と
なるからである。In hot rolling, the above-mentioned void defects are always generated in the solidification process of steel, although they are large and small, and the means for eliminating them must be done by rolling, so the role of hot rolling is important. . That is, it is effective to increase the amount of deformation per hot rolling so that the deformation reaches the center of the plate thickness. Specifically, it is preferable for the magnetic properties to perform a high shape ratio rolling including one or more rolling passes with a rolling shape ratio A of 0.6 or more at 800 ° C. or more to make the size of void defects 100 μm or less. By eliminating the void defects by the high shape ratio rolling during rolling, the dehydrogenation efficiency in the dehydrogenation heat treatment to be performed later is dramatically increased. 80 here
The reason why the high shape ratio rolling is performed at 0 ° C. or higher is that the deformation resistance is large at a low temperature of less than 800 ° C. and the reduction is difficult in ordinary rolling.
【0028】次に700℃以上900℃以下の温度範囲
において累積圧下率35%超にすることにより結晶粒を
微細化するとともに歪みを導入し、これに続く熱処理時
の再結晶を促進させる。さらにこの圧延により、〔10
0〕の結晶方位が圧延面に平行に揃った集合組織を得
る。ただし70%超の圧下率になると、熱処理後結晶粒
度が板厚方向に不均一になり、磁束密度のばらつきを大
きくする。従って板厚方向に均一な比較的粗大な粒を得
るために、圧下率を35%超70%以下とする。Next, in the temperature range of 700 ° C. or more and 900 ° C. or less, the cumulative rolling reduction is made more than 35% to make the crystal grains finer and introduce a strain, and promote recrystallization during the subsequent heat treatment. Furthermore, by this rolling, [10
0] to obtain a texture in which the crystal orientation is aligned parallel to the rolled surface. However, if the rolling reduction exceeds 70%, the crystal grain size after heat treatment becomes non-uniform in the plate thickness direction, increasing the variation in magnetic flux density. Therefore, in order to obtain relatively coarse grains that are uniform in the plate thickness direction, the rolling reduction is set to more than 35% and 70% or less.
【0029】次に熱間圧延に引き続き結晶粒粗大化、内
部歪除去および板厚50mm以上の厚手材については脱水
素熱処理を施す。板厚50mm以上では水素の拡散がしに
くく、これが空隙性欠陥の原因となり、かつ、水素自身
の作用と合わさって低磁場での磁束密度を低下させる。
このため、脱水素熱処理を行なうが、その際600℃未
満では脱水素効率が悪く750℃超では変態が一部開始
するので600〜750℃の温度範囲で行なう。脱水素
時間としては種々検討の結果〔0.6(t−50)+
6〕時間(t:板厚)が適当である。Next, following hot rolling, grain coarsening, internal strain removal, and dehydrogenation heat treatment are applied to thick materials having a plate thickness of 50 mm or more. When the plate thickness is 50 mm or more, hydrogen is difficult to diffuse, which causes void defects and also reduces the magnetic flux density in a low magnetic field in combination with the action of hydrogen itself.
For this reason, dehydrogenation heat treatment is performed, but at that time, if the temperature is lower than 600 ° C., the dehydrogenation efficiency is poor, and if it exceeds 750 ° C., a part of the transformation starts, so the temperature is 600 to 750 ° C. As the dehydrogenation time, various examination results [0.6 (t-50) +
6] Time (t: plate thickness) is appropriate.
【0030】結晶粒粗大化とBの効果を有効に利用する
ために熱処理温度の管理は重要な要素である。結晶粒を
フェライト粒度番号0番から−2番程度にまで粗粒化さ
せるには900℃以上での熱処理が必要である。しかし
1050℃以上ではBの効果が著しく低下してしまうた
め、焼鈍あるいは焼準温度は900〜1050℃に限定
する。板厚50mm未満のものは水素の拡散が容易なた
め、脱水素熱処理は不要で前述の焼鈍または焼準するの
みでよい。The control of the heat treatment temperature is an important factor for effectively utilizing the grain coarsening and the effect of B. Heat treatment at 900 ° C. or higher is necessary to coarsen the crystal grains from the ferrite grain size number 0 to the number −2. However, if the temperature is 1050 ° C or higher, the effect of B is significantly reduced, so the annealing or normalizing temperature is limited to 900 to 1050 ° C. Hydrogen having a plate thickness of less than 50 mm easily diffuses hydrogen, and thus dehydrogenation heat treatment is not necessary and only the above-mentioned annealing or normalization is required.
【0031】[0031]
【実施例】次に本発明の実施例を比較例とともに説明す
る。表1に本発明の鋼成分を、表2に比較例の鋼成分を
示し、表3(本発明)および表4(比較例)に電磁厚板
の製造条件とフェライト粒径、低磁場(磁化力80A/
m)での磁束密度、飽和磁束密度を反映するものとして
高磁場(磁化力30000A/m)での磁束密度、引張
強さ、低温靭性、および切削加工性と切削仕上面精度の
評価を示す。EXAMPLES Next, examples of the present invention will be described together with comparative examples. Table 1 shows the steel composition of the present invention, Table 2 shows the steel composition of the comparative example, and Table 3 (invention) and Table 4 (comparative example) show the manufacturing conditions of the electromagnetic thick plate, the ferrite grain size, and the low magnetic field (magnetization). Power 80A /
The evaluation of the magnetic flux density in a high magnetic field (magnetizing force of 30,000 A / m), the tensile strength, the low temperature toughness, and the machinability and the finish accuracy of the cutting surface is shown as a reflection of the magnetic flux density in m) and the saturation magnetic flux density.
【0032】[0032]
【表1】 [Table 1]
【0033】[0033]
【表2】 [Table 2]
【0034】[0034]
【表3】 [Table 3]
【0035】[0035]
【表4】 [Table 4]
【0036】試料No.1〜11は本発明の実施例であ
り、No.12〜26は比較例である。実施例では板厚1
0〜100mmに仕上げたものを示しており、いずれも低
磁場および高磁場で高磁束密度であり、−40℃でのシ
ャルピー吸収エネルギー値40J以上、かつ切削加工
性、切削仕上面精度も非常に良好である。これに対して
No.12はCが高いため低磁場の磁束密度が低く、低温
靭性も低い。No.13はSi,Alとも低いため磁束密
度が低くなっている。No.14はSiとAlの重量%の
和が1.5%を超えているため低温靭性が低くなってい
る。No.15はPが低いので切削加工性、切削仕上面精
度が悪い。No.16はPが上限を超えているため低温靭
性、切削仕上面精度が悪い。No.17は高Mnであるの
にSが高いため磁束密度が低い。No.18はNが高いた
め磁束密度が低い。No.19,No.20はいずれもBが
添加されていないため、それぞれ低温靭性、切削仕上面
精度が悪い。No.21はHが上限を超えているため磁束
密度が低く、低温靭性も低い。No.22は加熱温度が上
限を超え磁束密度、低温靭性が低い。No.23は700
〜900℃の累積圧下率が下限をはずれ磁束密度が低
い。No.24は最大形状比が下限をはずれ、No.25は
熱処理温度が下限をはずれているため磁束密度が低い。
No.26は熱処理温度が上限をはずれ、低温靭性、切削
仕上面精度が悪い。Sample No. Nos. 1 to 11 are examples of the present invention. 12 to 26 are comparative examples. In the example, the plate thickness is 1
It shows the one finished to 0 to 100 mm, all have high magnetic flux density in low magnetic field and high magnetic field, Charpy absorbed energy value of 40 J or more at -40 ° C, and machinability and cutting surface accuracy are also very high. It is good. On the contrary
No. Since No. 12 has a high C, the magnetic flux density in a low magnetic field is low, and the low temperature toughness is also low. No. 13 has a low magnetic flux density because both Si and Al are low. No. No. 14 has a low-temperature toughness because the sum of Si and Al weight% exceeds 1.5%. No. Since No. 15 has a low P, the machinability and the accuracy of the finished surface are poor. No. In No. 16, since P exceeds the upper limit, low-temperature toughness and cutting surface accuracy are poor. No. No. 17 has a high Mn but a high S, and thus has a low magnetic flux density. No. In No. 18, since N is high, the magnetic flux density is low. No. 19, No. No B is added to any of Nos. 20 and, therefore, low temperature toughness and cutting surface accuracy are poor. No. In No. 21, since H exceeds the upper limit, the magnetic flux density is low and the low temperature toughness is also low. No. In No. 22, the heating temperature exceeds the upper limit and the magnetic flux density and the low temperature toughness are low. No. 23 is 700
The cumulative rolling reduction at ˜900 ° C. falls below the lower limit, and the magnetic flux density is low. No. No. 24, the maximum shape ratio is below the lower limit, and No. In No. 25, the heat treatment temperature is out of the lower limit, so that the magnetic flux density is low.
No. In No. 26, the heat treatment temperature deviates from the upper limit, and the low temperature toughness and cutting surface finish accuracy are poor.
【0037】[0037]
【発明の効果】以上詳細に述べたごとく、本発明によれ
ば適切な成分限定と製造法により、構造材としての必要
強度と、低温靭性、切削加工性と切削仕上面精度を兼ね
備え、高い磁気シールド性を有する構造物用鋼材を経済
的に製造する方法を提供するもので産業上多大な効果を
奏するものである。As described in detail above, according to the present invention, the strength required for a structural material, the low temperature toughness, the machinability and the finishing accuracy of the cutting surface are combined by a suitable component limitation and a manufacturing method, and a high magnetic property is obtained. The present invention provides a method for economically manufacturing a structural steel material having a shielding property, and has a great industrial effect.
【図1】切削仕上面精度に及ぼすBおよびP量の影響を
示すグラフ。FIG. 1 is a graph showing the influence of B and P amounts on the accuracy of a finished surface.
【図2】切削加工性に及ぼすBおよびP量の影響を示す
グラフ。FIG. 2 is a graph showing the effects of B and P amounts on machinability.
【図3】低温靭性に及ぼすBおよびP量の影響を示すグ
ラフ。FIG. 3 is a graph showing the effects of B and P contents on low temperature toughness.
Claims (4)
10%以上、1.5%未満のいずれか一方あるいは両方
を含み、かつSi+Alが1.5%未満、 Mn:0.2%を超え、1.0%以下、 P :0.02%を超え、0.10%以下、 S :0.005%以下、 N :0.004%以下、 O :0.006%以下、 H :0.0002%以下、 B :0.0003%以上、0.005%以下、 残部鉄および不可避不純物からなる鋼組成の鋼片または
鋳片を950〜1100℃に加熱し、800℃以上で下
式で規定する圧延形状比Aが0.6以上となる圧延パス
を1回以上とする圧延を行ない、引き続き700℃以上
900℃以下の温度範囲で累積圧下率を35%超70%
以下とする圧延を行なって、板厚50mm未満とし、次い
で900〜1050℃で焼鈍あるいは焼準することを特
徴とする磁気シールド構造用電磁厚板の製造法。 【数1】 1. C .: 0.008% or less, Si: 0.20% or more, less than 1.5%, and Al: 0.
Includes one or both of 10% or more and less than 1.5%, and Si + Al is less than 1.5%, Mn: more than 0.2%, 1.0% or less, P: more than 0.02%. , 0.10% or less, S: 0.005% or less, N: 0.004% or less, O: 0.006% or less, H: 0.0002% or less, B: 0.0003% or more, 0.005 % Or less, a steel slab or a slab having a steel composition consisting of the balance iron and unavoidable impurities is heated to 950 to 1100 ° C., and a rolling pass at which the rolling shape ratio A defined by the following formula becomes 0.6 or more at 800 ° C. or more. Rolling is performed once or more, and then the cumulative rolling reduction is more than 35% and 70% in the temperature range of 700 ° C to 900 ° C.
A method for producing an electromagnetic thick plate for a magnetic shield structure, which comprises performing the following rolling to reduce the plate thickness to less than 50 mm, and then annealing or normalizing at 900 to 1050 ° C. [Equation 1]
10%以上、1.5%未満のいずれか一方あるいは両方
を含み、かつSi+Alが1.5%未満、 Mn:0.2%を超え、1.0%以下、 P :0.02%を超え、0.10%以下、 S :0.005%以下、 N :0.004%以下、 O :0.006%以下、 H :0.0002%以下、 B :0.0003%以上、0.005%以下、 残部鉄および不可避不純物からなる鋼組成の鋼片または
鋳片を950〜1100℃に加熱し、800℃以上で下
式に規定する圧延形状比Aが0.6以上となる圧延パス
を1回以上とする圧延を行ない、引き続き700℃以上
900℃以下の温度範囲で累積圧下率を35%超70%
以下とする圧延を行なって、板厚50mm以上の厚板に
し、次いで600〜750℃の脱水素熱処理を行なった
後、900〜1050℃で焼鈍あるいは焼準することを
特徴とする磁気シールド構造用電磁厚板の製造法。 【数2】 2. In% by weight, C: 0.008% or less, Si: 0.20% or more, less than 1.5%, and Al: 0.
Includes one or both of 10% or more and less than 1.5%, and Si + Al is less than 1.5%, Mn: more than 0.2%, 1.0% or less, P: more than 0.02%. , 0.10% or less, S: 0.005% or less, N: 0.004% or less, O: 0.006% or less, H: 0.0002% or less, B: 0.0003% or more, 0.005 % Or less, a steel piece or a steel slab having a steel composition consisting of the balance iron and unavoidable impurities is heated to 950 to 1100 ° C., and a rolling pass at which the rolling shape ratio A defined in the following formula is 0.6 or more at 800 ° C. or more. Rolling is performed once or more, and then the cumulative rolling reduction is more than 35% and 70% in the temperature range of 700 ° C to 900 ° C.
For a magnetic shield structure characterized by performing the following rolling to make a thick plate having a thickness of 50 mm or more, then performing a dehydrogenation heat treatment at 600 to 750 ° C., and then annealing or normalizing at 900 to 1050 ° C. Manufacturing method of electromagnetic plate. [Equation 2]
10%以上、1.5%未満のいずれか一方あるいは両方
を含み、かつSi+Alが1.5%未満、 Mn:0.2%以下、 P :0.02%を超え、0.10%以下、 S :0.01%以下、 N :0.004%以下、 O :0.006%以下、 H :0.0002%以下、 B :0.0003%以上、0.005%以下、 残部鉄および不可避不純物からなる鋼組成の鋼片または
鋳片を950〜1100℃に加熱し、800℃以上で下
式で規定する圧延形状比Aが0.6以上となる圧延パス
を1回以上とする圧延を行ない、引き続き700℃以上
900℃以下の温度範囲で累積圧下率を35%超70%
以下とする圧延を行なって、板厚50mm未満とし、次い
で900〜1050℃で焼鈍あるいは焼準することを特
徴とする磁気シールド構造用電磁厚板の製造法。 【数3】 3. In% by weight, C: 0.008% or less, Si: 0.20% or more, less than 1.5%, and Al: 0.
One or both of 10% or more and less than 1.5% and Si + Al less than 1.5%, Mn: 0.2% or less, P: more than 0.02% and 0.10% or less, S: 0.01% or less, N: 0.004% or less, O: 0.006% or less, H: 0.0002% or less, B: 0.0003% or more, 0.005% or less, residual iron and unavoidable A steel slab or a slab having a steel composition containing impurities is heated to 950 to 1100 ° C., and rolling is performed at 800 ° C. or more at least one rolling pass at which the rolling shape ratio A defined by the following formula is 0.6 or more. Conducted continuously, and in the temperature range of 700 ° C to 900 ° C, the cumulative rolling reduction is more than 35% and 70%.
A method for producing an electromagnetic thick plate for a magnetic shield structure, which comprises performing the following rolling to reduce the plate thickness to less than 50 mm, and then annealing or normalizing at 900 to 1050 ° C. [Equation 3]
10%以上、1.5%未満のいずれか一方あるいは両方
を含み、かつSi+Alが1.5%未満、 Mn:0.2%以下、 P :0.02%を超え、0.10%以下、 S :0.01%以下、 N :0.004%以下、 O :0.006%以下、 H :0.0002%以下、 B :0.0003%以上、0.005%以下、 残部鉄および不可避不純物からなる鋼組成の鋼片または
鋳片を950〜1100℃に加熱し、800℃以上で下
式に規定する圧延形状比Aが0.6以上となる圧延パス
を1回以上とする圧延を行ない、引き続き700℃以上
900℃以下の温度範囲で累積圧下率を35%超70%
以下とする圧延を行なって、板厚50mm以上の厚板と
し、次いで600〜750℃の脱水素熱処理を行なった
後、900〜1050℃で焼鈍あるいは焼準することを
特徴とする磁気シールド構造用電磁厚板の製造法。 【数4】 4. In% by weight, C: 0.008% or less, Si: 0.20% or more, less than 1.5%, and Al: 0.
One or both of 10% or more and less than 1.5% and Si + Al less than 1.5%, Mn: 0.2% or less, P: more than 0.02% and 0.10% or less, S: 0.01% or less, N: 0.004% or less, O: 0.006% or less, H: 0.0002% or less, B: 0.0003% or more, 0.005% or less, residual iron and unavoidable A steel slab or a slab having a steel composition made of impurities is heated to 950 to 1100 ° C., and rolling is performed at 800 ° C. or more at least one rolling pass at which the rolling shape ratio A defined by the following formula is 0.6 or more. Conducted continuously, and in the temperature range of 700 ° C to 900 ° C, the cumulative rolling reduction is more than 35% and 70%.
For a magnetic shield structure characterized by performing the following rolling to make a thick plate having a thickness of 50 mm or more, then performing dehydrogenation heat treatment at 600 to 750 ° C., and then annealing or normalizing at 900 to 1050 ° C. Manufacturing method of electromagnetic plate. [Equation 4]
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4291836A JPH06145797A (en) | 1992-10-29 | 1992-10-29 | Manufacturing method of electromagnetic thick plate for magnetic shield structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4291836A JPH06145797A (en) | 1992-10-29 | 1992-10-29 | Manufacturing method of electromagnetic thick plate for magnetic shield structure |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06145797A true JPH06145797A (en) | 1994-05-27 |
Family
ID=17774054
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4291836A Withdrawn JPH06145797A (en) | 1992-10-29 | 1992-10-29 | Manufacturing method of electromagnetic thick plate for magnetic shield structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06145797A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4834009A (en) * | 1985-05-31 | 1989-05-30 | Union Special Corporation | Sleeve backtack |
WO1997011204A1 (en) * | 1995-09-19 | 1997-03-27 | Toyo Kohan Co., Ltd. | Magnetic shield material, production method thereof and color image tube assembling the material |
WO2002002838A1 (en) * | 2000-06-30 | 2002-01-10 | Nkk Corporation | Steel sheet for heat shrink band |
KR100584739B1 (en) * | 2001-12-13 | 2006-05-30 | 주식회사 포스코 | Manufacturing method of high strength cold rolled steel sheet for CRT shrink band |
-
1992
- 1992-10-29 JP JP4291836A patent/JPH06145797A/en not_active Withdrawn
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4834009A (en) * | 1985-05-31 | 1989-05-30 | Union Special Corporation | Sleeve backtack |
WO1997011204A1 (en) * | 1995-09-19 | 1997-03-27 | Toyo Kohan Co., Ltd. | Magnetic shield material, production method thereof and color image tube assembling the material |
US6025673A (en) * | 1995-09-19 | 2000-02-15 | Toyo Kohan Co., Ltd. | Magnetic shield material, production method thereof and color image tube assembling the material |
WO2002002838A1 (en) * | 2000-06-30 | 2002-01-10 | Nkk Corporation | Steel sheet for heat shrink band |
KR100584739B1 (en) * | 2001-12-13 | 2006-05-30 | 주식회사 포스코 | Manufacturing method of high strength cold rolled steel sheet for CRT shrink band |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2832879A1 (en) | High-strength steel pipe for line pipe having excellent hydrogen-induced cracking resistance, high-strength steel pipe for line pipe using same, and method for manufacturing same | |
JP4897126B2 (en) | Thick steel plate manufacturing method | |
CN101652495A (en) | Steel material excellent in high-temperature characteristics and toughness, and manufacturing method thereof | |
EP3395986B1 (en) | Thick steel plate for high heat input welding and having great heat-affected area toughness and manufacturing method therefor | |
JP7010418B1 (en) | High-strength hot-rolled steel sheet and its manufacturing method | |
JP4254551B2 (en) | High strength steel plate for line pipe with excellent HIC resistance and method for producing the same | |
WO2017017961A1 (en) | Cold rolled steel sheet, plated steel sheet and methods for producing same | |
JP2004156095A (en) | Steel sheet excellent in toughness of base metal and weld heat affected zone and method of manufacturing the same | |
JP4001116B2 (en) | High-tensile hot-rolled steel sheet with excellent precision punchability and red scale resistance | |
JPH06145797A (en) | Manufacturing method of electromagnetic thick plate for magnetic shield structure | |
JPS621456B2 (en) | ||
EP4527967A1 (en) | 490-mpa-grade thick steel plate with high core fatigue strength and manufacturing method therefor | |
JP4267559B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
JP3548358B2 (en) | High-strength and high-toughness damped steel sheet and method for producing the same | |
JP2005105340A (en) | Thick hot rolled steel plate having excellent workability and ductility, and its production method | |
JPS6345442B2 (en) | ||
JP2005290396A (en) | High strength hot rolled steel sheet having excellent elongation property, stretch flange property, tensile fatigue property and impact resistance, and its production method | |
JP2825827B2 (en) | Method for producing steel with excellent arrest characteristics | |
JP3368309B2 (en) | High-strength pearlitic rail with excellent toughness and ductility, and method for producing the same | |
JPH06145796A (en) | Manufacturing method of structural electromagnetic thick plate with excellent workability | |
JP3714232B2 (en) | High strength steel plate with excellent HIC resistance and method for producing the same | |
JPH079040B2 (en) | Manufacturing method of good electromagnetic thick plate with good machinability and uniform magnetic properties in the plate thickness direction | |
JP3541504B2 (en) | Manufacturing method of high tensile strength hot rolled steel sheet with excellent precision punching workability | |
JP3896915B2 (en) | High strength steel plate with excellent HIC resistance and method for producing the same | |
JP7633565B2 (en) | Hot rolled steel plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20000104 |