JP3714232B2 - High strength steel plate with excellent HIC resistance and method for producing the same - Google Patents
High strength steel plate with excellent HIC resistance and method for producing the same Download PDFInfo
- Publication number
- JP3714232B2 JP3714232B2 JP2001335157A JP2001335157A JP3714232B2 JP 3714232 B2 JP3714232 B2 JP 3714232B2 JP 2001335157 A JP2001335157 A JP 2001335157A JP 2001335157 A JP2001335157 A JP 2001335157A JP 3714232 B2 JP3714232 B2 JP 3714232B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- hic resistance
- cooling
- strength
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、鋼管等の製造に用いるAPI規格X80グレード以上の強度を有する高強度鋼板に関し、特に耐水素誘起割れ性(耐HIC性)に優れた高強度鋼板とその製造方法に関する。
【0002】
【従来の技術】
硫化水素を含む原油や天然ガスの輸送に用いられるラインパイプは、強度、靭性、溶接性の他に、耐水素誘起割れ性(耐HIC性)や耐応力腐食割れ性(耐SCC性)などのいわゆる耐サワー性が必要とされる。鋼材の水素誘起割れ(HIC)は、腐食反応による水素イオンが鋼材表面に吸着し、原子状の水素として鋼内部に侵入、鋼中のMnSなどの非金属介在物や硬い第2相組織のまわりに拡散・集積し、その内圧により割れを生ずるものとされている。
【0003】
このような水素誘起割れを防ぐために、特開昭54−110119号公報には、CaやCeをS量に対して適量添加することにより、針状のMnSの生成を抑制し、応力集中の小さい微細に分散した球状の介在物に形態を変えて割れの発生・伝播を抑制する、耐HIC性の優れたラインパイプ用鋼の製造方法が開示されている。また、特開昭61−60866号公報、特開昭61−165207号公報には、偏析傾向の高い元素(C、Mn、P等)の低減や、スラブ加熱段階での均熱処理、冷却時の変態途中での加速冷却により、中心偏析部での割れの起点となる島状マルテンサイト、割れの伝播経路となるマルテンサイトやベイナイトなどの硬化組織の生成を抑制した、耐HIC性に優れた鋼が開示されている。また、耐HIC性の優れたX80グレードの高強度鋼板に関して、特開平5−9575号公報、特開平5−271766号公報、特開平7−173536号公報等には、低SでCa添加により介在物の形態制御を行いつつ、低C、低Mnとして中央偏析を抑制し、それに伴う強度低下をCr、Mn、Niなどの添加と加速冷却により補う方法が開示されている。
【0004】
しかし、上記の耐HIC性を改善する方法はいずれも中心偏析部が対象である。X80グレード等の高強度鋼板は加速冷却または直接焼入れによって製造される場合が多いため、冷却速度の速い鋼板表面部が内部に比べ硬化し、表面近傍から水素誘起割れが発生する。また、加速冷却によって得られるこれらの高強度鋼板のミクロ組織は、表面のみならず内部までベイナイトまたはアシキュラーフェライトの比較的割れ感受性の高い組織であり、中心偏析部のHICへの対策を施した場合でも、API X80グレード程度の高強度鋼では硫化物系または酸化物系介在物を起点としたHICをなくすことは困難である。従ってこれらの高強度鋼板の耐HIC性を問題にする場合は、鋼板の表面部のHICまたは、硫化物系や酸化物系介在物を起点としたHICの対策が必要である。
【0005】
一方、ミクロ組織が割れ感受性の高いブロック状ベイナイトやマルテンサイトを含まない耐HIC性に優れた高強度鋼として、特開平7−216500号公報には、フェライト−ベイナイト2相組織である、API X80グレードの耐HIC性に優れた高強度鋼材が開示されている。また、特開昭61−227129号公報、特開平7−70697号公報には、ミクロ組織をフェライト単相組織とすることで耐SCC(SSCC)性や耐HIC性を改善し、MoまたはTiの多量添加によって得られる炭化物の析出強化を利用した高強度鋼が開示されている。
【0006】
【発明が解決しようとする課題】
しかし、特開平7−216500号公報に記載の高強度鋼のベイナイト組織は、ブロック状ベイナイトやマルテンサイト程ではないが比較的割れ感受性の高い組織であり、S及びMn量を厳しく制限して、Ca処理を必須として耐HIC性を向上させる必要があるため、製造コストが高い。また、特開平7−216500号公報に記載の圧延・冷却方法を用いてフェライト−ベイナイト2相組織を安定的に得ることは難しい。一方、特開昭61−227129号公報、特開平7−70697号公報に記載のフェライト相は延性に富んだ組織であり、割れ感受性が極めて低いため、ベイナイト組織またはアシキュラーフェライト組織の鋼に比べ耐HIC性が大幅に改善される。しかし、フェライト単相では強度が低いため、特開昭61−227129号公報に記載の鋼はC及びMoを多量に添加した鋼を用いて、炭化物を多量に析出させることによって高強度化し、特開平7−70697号公報の鋼帯ではTi添加鋼を特定の温度で鋼帯に巻き取り、TiCの析出強化を利用して高強度化している。ところが、特開昭61−227129号公報に記載のMo炭化物が分散したフェライト組織を得るためには、焼入れ焼戻しの後に冷間加工を行い、さらに再度焼戻しを行う必要があり、製造コストが上昇するだけでなく、Mo炭化物の粒径が約0.1μmと大きく、強度上昇効果が低いため、C及びMoの含有量を高め、炭化物の量をふやすことによって所定の強度を得る必要がある。また、特開平7−70697号公報に記載の高強度鋼で利用しているTiCはMo炭化物に比べ微細であり、析出強化に有効な炭化物であるが、析出時の温度の影響を受けて粗大化しやすいにもかかわらず、析出物粗大化に対する対策が何らなされていない。そのため析出強化が十分ではなく、API X80グレード以上の強度を安定的に得るためには重量比で0.1%を超えるような多量のTi添加が必要でありコストが高い。
【0007】
したがって本発明の目的は、このような従来技術の課題を解決し、API X80グレード以上の高強度鋼板であって、多量の合金元素を添加することなく、中央偏析部のHIC及び表面近傍や介在物から発生するHICに対して優れた耐HIC性を示す高強度鋼板を提供することにある。
【0008】
【課題を解決するための手段】
このような課題を解決するための本発明の特徴は以下の通りである。
【0009】
(1)質量%で、C:0.02〜0.08%、Si:0.01〜0.50%、Mn:0.5〜1.8%、P:0.01%以下、S:0.002%以下、Mo:0.05〜0.50%、Ti:0.04超〜0.10%、Al:0.01〜0.07%を含有し、残部が実質的にFeからなり、原子%でのC量とMo、Tiの合計量の比であるC/(Mo+Ti)が0.5〜3.0であり、金属組織が実質的にフェライト単相であり、且つTiとMoとを含む粒径 10nm 未満の析出物が分散析出していることを特徴とする、耐HIC特性に優れた高強度鋼板。
【0010】
(2)さらに、質量%で、Nb:0.005〜0.05%および/またはV:0.005〜0.10を含有し、原子%でのC量とMo、Ti、Nb、Vの合計量の比であるC/(Mo+Ti+Nb+V)が0.5〜3.0であることを特徴とする(1)に記載の耐HIC性に優れた高強度鋼板。
【0011】
(3)さらに、質量%で、Cu:0.50%以下、Ni:0.50%以下、Cr:0.50%以下、Ca:0.0005〜0.0025%の中から選ばれる1種又は2種以上を含有することを特徴とする(1)または(2)に記載の耐HIC性に優れた高強度鋼板。
【0012】
(4)(1)ないし(3)のいずれかに記載の成分組成を有する鋼を、加熱温度:1000〜1250℃、圧延終了温度:750℃以上の条件で熱間圧延した後、2℃/s以上の冷却速度で冷却し、次いで575〜700℃の温度で鋼帯に巻き取ることを特徴とする、耐HIC性に優れた高強度鋼板の製造方法。
【0013】
(5)(1)ないし(3)のいずれかに記載の成分組成を有する鋼を、加熱温度:1000〜1250℃、圧延終了温度:750℃以上の条件で熱間圧延した後、2℃/s以上の冷却速度で冷却し、次いで550〜700℃の温度で5分以上の等温保持を行うことを特徴とする、耐HIC性に優れた高強度鋼板の製造方法。
【0014】
(6)(1)ないし(3)のいずれかに記載の成分組成を有する鋼を、加熱温度:1000〜1250℃、圧延終了温度:750℃以上の条件で熱間圧延した後、2℃/s以上の冷却速度で冷却し、次いで550〜700℃の温度から0.1℃/s以下の冷却速度で冷却を行うことを特徴とする、耐HIC性に優れた高強度鋼板の製造方法。
【0015】
【発明の実施の形態】
本発明者らは耐HIC特性向上と高強度の両立のために、鋼材のミクロ組織と鋼板の製造方法を検討した結果、耐HIC特性を向上するためにはミクロ組織をフェライト組織とすることが最も効果的であり、フェライト組織にTi、Moを含む析出物を分散析出させることによって高い強度が得られるという知見を得た。そして、過度の添加によって溶接部靭性の劣化をもたらすTiの添加量を適正な範囲に制限すると共に、Cに対するMo、Tiの添加量を適正化することで、炭化物による析出強化を最大限に活用することができるという知見を得た。また、さらにNbおよび/またはVを複合添加すれば、Ti、Mo、Nbおよび/またはVを含む析出物を分散析出させることによって高い強度が得られること、Cに対するMo、Ti、Nb、Vの添加量を適正化することで、炭化物による析出強化を最大限に活用することができるという知見を得た。
【0016】
上記のようなTi、Moを含む析出物が分散析出したフェライト組織を有する鋼板は、特定温度域で巻取りを行う一般的な熱延プロセスを用いることにより、薄鋼板では容易に製造できる。また、厚鋼板でも、厚鋼板の製造プロセスを用いて一定時間以上の温度保持または徐冷を施すことにより製造できる。このようにして製造した鋼板は、従来の加速冷却等で得られるベイナイトまたはアシキュラーフェライト組織の鋼板のような表層部での硬度上昇がないので、表層部からのHICが生じない。さらにフェライト組織は割れに対する抵抗が極めて高いため、鋼板中心部や介在物からのHICも抑制することが可能となる。
【0017】
以下、本発明の高強度鋼板について詳しく説明する。まず、本発明の高強度鋼板の組織について説明する。
【0018】
本発明の鋼板の金属組織は実質的にフェライト単相とする。フェライト相は延性に富んでおり割れ感受性が極めて低いために、高い耐HIC特性を実現できる。フェライト相にベイナイトやマルテンサイト、またはパーライト等の異なる金属組織が1種または2種以上混在する場合は、異相界面での水素の集積や応力集中によってHICを生じやすくなるため、フェライト相以外の組織分率は少ないほどよい。しかし、フェライト以外の組織の体積分率が低い場合は影響が無視できるため、トータルの体積分率で10%以下の他の金属組織を、すなわちベイナイト、マルテンサイト、パーライト、セメンタイトを、1種または2種以上含有してもよい。
【0019】
次に、本発明において鋼板内に分散析出する析出物について説明する。
本発明における鋼板はフェライト相中にMoとTiとを基本として含有する析出物が分散析出しているものである。この析出物は極めて微細であるので耐HIC特性に対して何ら影響を与えない。Mo及びTiは鋼中で炭化物を形成する元素であり、MoC、TiCの析出により鋼を強化することは従来より行われているが、本発明ではMoとTiを複合添加して、MoとTiとを基本として含有する複合炭化物を鋼中に微細析出させることにより、MoCおよび/またはTiCの析出強化の場合に比べて、より大きな強度向上効果が得られることが特徴である。この従来にない大きな強度向上効果は、MoとTiとを基本として含有する複合炭化物が安定でかつ成長速度が遅いので、粒径が10nm未満の極めて微細な析出物が得られることによるものである。
【0020】
MoとTiとを基本として含有する複合炭化物は、Mo、Ti、Cのみで構成される場合は、MoとTiの合計とCとが原子比で1:1の付近で化合しているものであり、高強度化に非常に効果がある。また、Tiの一部はNbおよび/またはVで置換可能であり、MoとTiに加えて、さらにNbおよび/またはVを添加し、MoとTiと、Nbおよび/またはVとを含んだ複合炭化物を析出させて、同様の析出強化を得ることができる。
【0021】
本発明において鋼板内に分散析出する析出物である、MoとTiとを主体とする複合炭化物は、以下に述べる本発明の成分の鋼材と製造方法とを用いて鋼板を製造することにより、フェライト相中に分散させて得ることができる。本発明の高強度鋼板がMoとTiとを主体とする複合炭化物以外の析出物を含有する場合は、MoとTiの複合炭化物による高強度化の効果を損なわず、耐HIC特性を劣化させない程度とする。
【0022】
次に、本発明の高強度鋼板の化学成分について説明する。
【0023】
C:0.02〜0.08%とする。Cは炭化物として析出強化に寄与する元素であるが、0.02%未満では十分な強度が確保できず、0.08%を超えると靭性や耐HIC性を劣化させるため、C含有量を0.02〜0.08%に規定する。
【0024】
Si:0.01〜0.50%とする。Siは脱酸のため添加するが、0.01%未満では脱酸効果が十分でなく、0.50%を超えると靭性や溶接性を劣化させるため、Si含有量を0.01〜0.50%に規定する。
【0025】
Mn:0.5〜1.8%とする。Mnは強度、靭性のため添加するが、0.5%未満ではその効果が十分でなく、1.8%を超えると溶接性と耐HIC性が劣化するため、Mn含有量を0.5〜1.8%に規定する。
【0026】
P:0.01%以下とする。Pは溶接性と耐HIC性を劣化させる不可避不純物元素であるため、P含有量の上限を0.01%に規定する。
【0027】
S:0.002%以下とする。Sは一般的には鋼中においてはMnS介在物となり耐HIC特性を劣化させるため少ないほどよい。しかし、0.002%以下であれば問題ないため、S含有量の上限を0.002%に規定する。
【0028】
Mo:0.05〜0.50%とする。Moは本発明において重要な元素であり、0.05%以上含有させることで、熱間圧延後冷却時のパーライト変態を抑制しつつ、Tiとの微細な複合析出物を形成し、強度上昇に大きく寄与する。しかし、0.50%を超えて添加するとベイナイトやマルテンサイトなどの硬化相を形成し耐HIC特性が劣化するため、Mo含有量を0.05〜0.50%に規定する。
【0029】
Ti:0.04超〜0.10%とする。TiはMoと同様に本発明において重要な元素である。0.04%を超えて添加することで、Moと複合析出物を形成し、強度上昇に大きく寄与する。しかし、0.10%を超えると鋼板の表面傷の原因となるだけでなく、溶接熱影響部の靭性を著しく劣化させるため、Ti含有量は0.04超〜0.10%に規定する。
【0030】
Al:0.01〜0.07%とする。Alは脱酸剤として添加されるが、0.01%未満では効果がなく、0.07%を超えると鋼の清浄度が低下し、耐HIC性を劣化させるため、Al含有量は0.01〜0.07%に規定する。
【0031】
C量とMo、Tiの合計量の比である、C/(Mo+Ti):0.5〜3.0とする。C/(Mo+Ti)において各元素記号はその成分の原子%の含有量(at%)を示す。本発明鋼板における高強度化はTiとMoを含む複合析出物(炭化物)によるものである。この複合析出物による析出強化を有効に利用するためには、C量と炭化物形成元素であるMo、Ti量の関係が重要であり、これらの元素を適正なバランスのもとで添加する事によって、熱的に安定でかつ非常に微細な複合析出物を得ることができる。このときCの原子%での含有量と、Mo、Tiの原子%での含有量の合計量の比であるC/(Mo+Ti)の値は、0.5〜3.0とする。C/(Mo+Ti)の値が0.5未満または3.0を超える場合はいずれかの元素量が過剰であり、本発明のTiとMoとを含む複合析出物以外の析出物や、ベイナイトなどの硬化組織が過度に形成されて、耐HIC特性の劣化や、靭性の劣化を招くため、C/(Mo+Ti)の値を0.5〜3.0に規定する。なお、質量%の含有量を用いる場合は、以下の式(1)を用いて計算して、その値を0.5〜3.0とする。
【0032】
(C/12.01)/(Mo/95.9+Ti/47.9)・・・(1)
本発明では鋼板の強度をさらに改善する目的で、以下に示すNb、Vの1種又は2種を含有してもよい。
【0033】
Nb:0.005〜0.05%とする。Nbは組織の微細粒化により靭性を向上させるが、Ti及びMoと共に複合析出物を形成し、強度上昇に寄与する。しかし、0.005%未満では効果がなく、0.05%を超えると溶接熱影響部の靭性が劣化するため、Nb含有量は0.005〜0.05%に規定する。
【0034】
V:0.005〜0.10%とする。VもNbと同様にTi及びMoと共に複合析出物を形成し、強度上昇に寄与する。しかし、0.005%未満では効果がなく、0.1%を超えると溶接熱影響部の靭性が劣化するため、V含有量は0.005〜0.1%に規定する。
【0035】
Nbおよび/またはVを含有する場合には、C量とMo、Ti、Nb、Vの合計量の比である、C/(Mo+Ti+Nb+V):0.5〜3.0とする。C/(Mo+Ti+Nb+V)において各元素記号はその成分の原子%の含有量(at%)を示す。本発明鋼板における高強度化はTiとMoと、Nbおよび/またはVを含む複合析出物(炭化物)によるものである。この複合析出物による析出強化を有効に利用するためには、C量と炭化物形成元素であるMo、Ti、Nb、V量の関係が重要であり、これらの元素を適正なバランスのもとで添加する事によって、熱的に安定でかつ非常に微細な複合析出物を得ることができる。このときCの原子%での含有量と、Mo、Ti、Nb、Vの原子%での含有量の合計量の比であるC/(Mo+Ti+Nb+V)の値は、0.5〜3.0とする。C/(Mo+Ti+Nb+V)の値が0.5未満または3.0を超える場合はいずれかの元素量が過剰であり、本発明のTiとMoとを含む複合析出物以外の析出物や、ベイナイトなどの硬化組織が過度に形成されて、耐HIC特性の劣化や、靭性の劣化を招くため、C/(Mo+Ti+Nb+V)の値を0.5〜3.0に規定する。なお、質量%の含有量を用いる場合は、以下の式(2)を用いて計算して、その値を0.5〜3.0とする。
【0036】
(C/12.01)/(Mo/95.9+Nb/92.91+V/50.94+Ti/47.9)・・・(2)
本発明では鋼板の強度や耐HIC特性をさらに改善する目的で、以下に示すCu、Ni、Cr、Caの1種または2種以上を含有してもよい。
【0037】
Cu:0.50%以下とする。Cuは靭性の改善と強度の上昇に有効な元素であるが、多く添加すると溶接性が劣化するため、添加する場合は0.50%を上限とする。
【0038】
Ni:0.50%以下とする。Niは靭性の改善と強度の上昇に有効な元素であるが、多く添加すると耐HIC特性が低下するため、添加する場合は0.50%を上限とする。
【0039】
Cr:0.50%以下とする。CrはMnと同様に低Cでも十分な強度を得るために有効な元素であるが、多く添加すると溶接性を劣化するため、添加する場合は0.50%を上限とする。
【0040】
Ca:0.0005〜0.0025%とする。Caは硫化物系介在物の形態制御による耐HIC特性向上に有効な元素であるが、0.0005%未満ではその効果が十分でなく、0.0025%をこえて添加しても効果が飽和し、むしろ、鋼の清浄度の低下により耐HIC性を劣化させるので、添加する場合はCa含有量を0.0005〜0.0025%に規定する。
【0041】
上記以外の残部は実質的にFeからなる。残部が実質的にFeからなるとは、本発明の作用効果を無くさない限り、不可避不純物をはじめ、他の微量元素を含有するものが本発明の範囲に含まれ得ることを意味する。
【0042】
次に、本発明の高強度鋼板の製造方法について説明する。
【0043】
本発明の高強度鋼板は上記の成分組成を有する鋼を用い、加熱温度:1000〜1250℃、圧延終了温度:750℃以上で熱間圧延を行い、その後2℃/s以上の冷却速度で冷却を行い、次いで550〜700℃の温度で一定時間保持することで、MoとTiとを主体とする微細な複合炭化物を分散析出させて製造できる。550〜700℃の温度で一定時間保持する方法として、575〜700℃の温度で鋼帯に巻き取る(第一の製造方法)、550〜700℃の温度で5分以上の等温保持を行う(第二の製造方法)、550〜700℃の温度から0.1℃/s以下の冷却速度で徐冷を行う(第三の製造方法)、の3つの製造方法がある。以下、各製造方法について詳しく説明する。
【0044】
加熱温度:1000〜1250℃とする。加熱温度が1000℃未満では炭化物の固溶が不十分で必要な強度が得られず、1250℃を超えると靭性が劣化するため、1000〜1250℃とする。
【0045】
圧延終了温度:750℃以上とする。圧延終了温度が低いと、圧延方向に伸展した組織となり耐HIC特性が劣化するため、圧延終了温度を750℃以上とする。また、圧延終了温度の上限は特に規定しなくとも優れた耐HIC特性と強度が得られるが、組織の粗大化による靭性低下を防ぐため、950℃以下の温度で圧延を終了することが好ましい。
【0046】
圧延終了後に2℃/s以上の冷却速度で冷却する。圧延終了後に放冷または徐冷を行うと高温域から析出してしまい、析出物が容易に粗大化し強度が低下する。よって、析出強化に最適な温度まで急冷を行い、高温域からの析出を防止することが本発明における重要な製造条件である。冷却速度が2℃/s未満では高温域での析出防止効果が十分ではなく強度が低下するため、圧延終了後の冷却速度を2℃/s以上に規定する。このときの冷却方法については製造プロセスによって任意の冷却設備を用いることが可能である。
【0047】
2℃/s以上の冷却速度での冷却後、本発明のフェライト組織と微細析出物とを得るためには、高温で一定時間保持することが必要である。第一の製造方法は薄鋼板を製造する場合であり、熱間圧延後、ランアウトテーブルでの水冷等によって冷却した後、鋼帯に巻取る熱延プロセスにおいて、所定の温度で巻取りを行うことにより、鋼帯を等温保持して本発明の析出物を析出させる。
【0048】
また、2℃/s以上で冷却する際の冷却終了温度は、その後の巻取り温度、等温保持温度、または徐冷開始温度よりも高い温度であればよいが、冷却終了温度が高すぎると析出物の粗大化が生じて十分な強度が得られないので、750℃以下とすることが望ましい。
【0049】
第一の製造方法:巻取り温度:575〜700℃とする。熱延プロセスにより鋼帯を製造する場合は、2℃/s以上の冷却速度での冷却後に巻取り温度575〜700℃で巻取りを行う。巻取り温度が575℃未満ではベイナイトが生成するために耐HIC特性が劣化し、また700℃を超えると析出物が粗大化し十分な強度が得られないため、熱延プロセスにおける巻取り温度を575〜700℃に規定する。
【0050】
第二の製造方法及び第三の製造方法は、巻き取りを行わない、厚鋼板等を製造する場合に適する方法であり、厚板ミルにおいて、仕上げ圧延後の水冷設備で冷却した後に、均熱炉等において所定の時間以上等温保持して本発明の析出物を析出させる方法が第二の製造方法である。また第三の製造方法は、水冷後に、カバー徐冷等により徐冷を行うことで高温を維持して本発明の析出物を析出させて、本発明の鋼板を製造するものである。以下にこれらの場合を説明する。
【0051】
第二の製造方法:550〜700℃の温度で5分以上の等温保持する。冷却終了温度は、等温保持の温度以上、750℃以下とすることが好ましい。熱延プロセスのような鋼帯への巻取りを行わない場合は、圧延後の冷却に引き続いて、一定時間以上の等温保持を行うことによって、MoとTiとを含む析出物が分散析出したフェライト単一組織を得ることが可能である。このとき、550℃未満ではベイナイトが生成するために耐HIC特性が劣化し、また700℃を超えると析出物が粗大化し十分な強度が得られないため、保持温度を550〜700℃に規定する。また、保持時間が5分未満ではフェライト変態が完了せず、その後の冷却でベイナイトまたはパーライトを生成するために耐HIC特性が劣化するため、保持時間は5分以上に規定する。なお、等温保持によってフェライト変態が完了していれば、その後の冷却速度は任意の速度で構わない。
【0052】
第三の製造方法:550〜700℃の温度から0.1℃/s以下の冷却速度で徐冷する。冷却終了温度は除冷開始温度以上、750℃以下とすることが好ましい。上記のような等温保持を行わなくとも、圧延後の冷却に引き続いて、所定の温度から徐冷を行うことによっても本発明の鋼板を製造することが可能である。このときの冷却速度が0.1℃/sを超えると、ベイナイトが生成し耐HIC特性が低下するため、冷却速度の上限を0.1℃/sに規定する。また、徐冷を開始する温度は550〜700℃とする。550℃未満ではベイナイト生成により耐HIC特性が劣化し、また700℃を超えると析出物が粗大化し十分な強度が得られないためである。
【0053】
従来の熱延ミルまたは厚板ミルを用いることのできる上記の第一、第二、第三製造方法により製造された本発明の鋼板は、プレスベンド成形、ロール成形、UOE成形等で鋼管に成形して、原油や天然ガスを輸送する鋼管(電縫鋼管、スパイラル鋼管、UOE鋼管)等に利用することができる。
【0054】
【実施例】
表1に示す化学成分の供試鋼(鋼種A〜J)を用いて板厚12、18、26mmの鋼板を製造した。
【0055】
【表1】
【0056】
板厚12mmの熱延鋼帯(No.1〜16)は、圧延後に冷却を行い所定の温度で巻取りを行って製造した。表2に各鋼板のスラブ加熱温度、圧延終了(仕上)温度、圧延後冷却速度、巻取温度を示す。板厚18mm及び26mmの厚鋼板(No.17〜24)は、熱間圧延(厚板プロセス)により鋼種B、Eを用いて表3に示す条件で製造した。表3において、冷却後の処理方法が「温度保持」と記載されているものは、圧延後に加速冷却装置により冷却を行った後、ガス燃焼炉で等温保持(均熱処理)を行った。等温保持を行ったものについては、保持温度と保持時間を表3に併せて示す。また、冷却後の処理方法が「徐冷」と記載されているものは、圧延後に加速冷却装置により冷却を行った後、鋼板を積み重ねることで室温まで徐冷を行った。徐冷を行ったものについては、徐冷開始温度と徐冷開始から300℃までの平均冷却速度を表3に併せて示す。
【0057】
以上のようにして製造した鋼板のミクロ組織を、光学顕微鏡、透過型電子顕微鏡(TEM)により観察した。析出物の成分はエネルギー分散型X線分光法(EDX)により分析した。また各鋼板の引張特性、耐HIC特性、を測定した。測定結果を表2、表3に併せて示す。引張特性は、圧延垂直方向の全厚試験片を引張試験片として引張試験を行い、降伏強度、引張強度を測定した。そして、製造上のばらつきを考慮して、降伏強度600MPa以上、引張強度700MPa以上であるものをAPI X80グレード以上の高強度鋼板として評価した。耐HIC特性はNACE Standard TM-02-84に準じた浸漬時間96時間のHIC試験を行い、割れが認められない場合を耐HIC性良好と判断して○で、割れが発生した場合を×で示した。
【0058】
【表2】
【0059】
【表3】
【0060】
表2において、本発明例であるNo.1〜9はいずれも、化学成分および製造方法が本発明の範囲内であり、引張強度700MPa以上の高強度で、かつ耐HIC性が優れていた。鋼板の組織は、実質的にフェライト単層であり、TiとMoと、一部の鋼板についてはさらにNbおよび/またはVとを含む粒径が10nm未満の微細な炭化物の析出物が分散析出していた。
【0061】
No.10〜13は、化学成分は本発明の範囲内であるが、製造方法が本発明の範囲外であり、金属組織が実質的にフェライト単相ではないことや、TiとMoとを含む析出物が分散析出していないため、十分な強度が得られないか、HIC試験で割れが生じた。
【0062】
No.14〜17は化学成分が本発明の範囲外であり、十分な強度が得られないか、HIC試験で割れが生じた。
【0063】
表3において、本発明例であるNo.18〜21はいずれも、化学成分および製造方法が本発明の範囲内であり、引張強度700MPa以上の高強度を有し、かつ耐HIC性が優れていた。鋼板の組織は、実質的にフェライト単層であり、TiとMoと、一部の鋼板(鋼種Eを用いたもの)についてはさらにNbおよび/またはVとを含む粒径が10nm未満の微細な炭化物の析出物が分散析出していた。
【0064】
No.22〜25は、化学成分は本発明の範囲内であるが、製造方法が本発明の範囲外であり、金属組織が実質的にフェライト単相ではないことや、TiとMoとを含む析出物が分散析出していないため、十分な強度が得られないか、HIC試験で割れが生じた。
【0065】
【発明の効果】
以上述べたように、本発明によれば、API X80グレード以上の高強度を有し、かつ耐HIC性の優れた鋼板が得られる。このため優れた特性を有する電縫鋼管、スパイラル鋼管、UOE鋼管等の鋼管を製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-strength steel sheet having a strength of API standard X80 grade or higher used for the production of steel pipes and the like, and more particularly to a high-strength steel sheet excellent in hydrogen-induced crack resistance (HIC resistance) and a method for producing the same.
[0002]
[Prior art]
Line pipes used to transport crude oil and natural gas containing hydrogen sulfide have strength, toughness and weldability, as well as hydrogen-induced crack resistance (HIC resistance) and stress corrosion crack resistance (SCC resistance). So-called sour resistance is required. In hydrogen induced cracking (HIC) of steel, hydrogen ions from the corrosion reaction are adsorbed on the steel surface and penetrate into the steel as atomic hydrogen, around non-metallic inclusions such as MnS in the steel and hard second phase structure. It diffuses and accumulates on the surface and cracks are caused by its internal pressure.
[0003]
In order to prevent such hydrogen-induced cracking, Japanese Patent Application Laid-Open No. Sho 54-110119 suppresses the formation of acicular MnS and reduces stress concentration by adding an appropriate amount of Ca or Ce to the amount of S. A method for producing steel for line pipes with excellent HIC resistance is disclosed, in which the shape is changed to finely dispersed spherical inclusions to suppress the generation and propagation of cracks. JP-A-61-60866 and JP-A-61-165207 disclose reduction of elements (C, Mn, P, etc.) having a high segregation tendency, soaking in the slab heating stage, and cooling. Steel with excellent HIC resistance that suppresses the formation of hardened structures such as island martensite, which is the starting point of cracks in the center segregation part, martensite, and bainite, which is the propagation path of cracks, due to accelerated cooling during transformation Is disclosed. Further, regarding X80 grade high-strength steel sheets having excellent HIC resistance, JP-A-5-9575, JP-A-5-271766, JP-A-7-173536, etc. intervene by adding Ca at low S. There is disclosed a method of controlling central segregation as low C and low Mn while controlling the form of an object, and compensating for the accompanying strength reduction by adding Cr, Mn, Ni, etc. and accelerated cooling.
[0004]
However, all the methods for improving the above-mentioned HIC resistance are for the center segregation part. Since high-strength steel sheets such as X80 grades are often manufactured by accelerated cooling or direct quenching, the steel sheet surface portion having a high cooling rate is hardened compared to the inside, and hydrogen-induced cracking occurs from the vicinity of the surface. Moreover, the microstructure of these high-strength steel sheets obtained by accelerated cooling is a relatively high cracking susceptibility of bainite or acicular ferrite not only to the surface but also to the inside. Even in this case, it is difficult to eliminate HIC starting from sulfide-based or oxide-based inclusions in high-strength steel of about API X80 grade. Therefore, when the HIC resistance of these high-strength steel plates is a problem, it is necessary to take measures against HIC on the surface portion of the steel plate or HIC starting from sulfide or oxide inclusions.
[0005]
On the other hand, as a high-strength steel excellent in HIC resistance that does not contain block bainite or martensite whose microstructure is highly susceptible to cracking, Japanese Patent Application Laid-Open No. 7-216500 discloses API X80, which is a ferrite-bainite two-phase structure. A high-strength steel material having excellent grade HIC resistance is disclosed. JP-A-61-227129 and JP-A-7-70697 disclose that the microstructure is a ferrite single-phase structure to improve the SCC (SSCC) resistance and the HIC resistance. A high-strength steel using precipitation strengthening of carbide obtained by adding a large amount is disclosed.
[0006]
[Problems to be solved by the invention]
However, the high-strength steel bainite structure described in JP-A-7-216500 is a structure that is relatively not susceptible to block bainite and martensite but is relatively high in cracking sensitivity, and strictly restricts the amount of S and Mn. Since it is necessary to improve the HIC resistance by requiring Ca treatment, the production cost is high. Moreover, it is difficult to stably obtain a ferrite-bainite two-phase structure using the rolling / cooling method described in JP-A-7-216500. On the other hand, the ferrite phase described in JP-A-61-227129 and JP-A-7-70697 is a structure rich in ductility and has extremely low cracking susceptibility, so that it is compared with steel having a bainite structure or an acicular ferrite structure. HIC resistance is greatly improved. However, since the strength of the ferrite single phase is low, the steel described in Japanese Patent Application Laid-Open No. 61-227129 is strengthened by using a steel to which a large amount of C and Mo is added and by precipitating a large amount of carbides. In the steel strip of Kaihei 7-70697, Ti-added steel is wound around the steel strip at a specific temperature and strengthened using TiC precipitation strengthening. However, in order to obtain a ferrite structure in which Mo carbide is dispersed as described in JP-A-61-227129, it is necessary to perform cold working after quenching and tempering, and then tempering again, resulting in an increase in manufacturing cost. In addition, since the particle size of Mo carbide is as large as about 0.1 μm and the effect of increasing strength is low, it is necessary to obtain a predetermined strength by increasing the content of C and Mo and increasing the amount of carbide. Further, TiC used in the high-strength steel described in JP-A-7-70697 is finer than Mo carbide and is effective in precipitation strengthening, but is coarse due to the influence of temperature during precipitation. Despite being easy to form, no countermeasures against coarsening of precipitates have been taken. For this reason, precipitation strengthening is not sufficient, and in order to obtain a strength of API X80 grade or higher stably, a large amount of Ti addition exceeding 0.1% by weight is necessary and the cost is high.
[0007]
Therefore, the object of the present invention is to solve such problems of the prior art, and is a high strength steel plate of API X80 grade or higher, without adding a large amount of alloying elements, the HIC of the central segregation part, the vicinity of the surface and intervening An object of the present invention is to provide a high-strength steel sheet exhibiting excellent HIC resistance against HIC generated from a product.
[0008]
[Means for Solving the Problems]
The features of the present invention for solving such problems are as follows.
[0009]
(1) By mass%, C: 0.02 to 0.08%, Si: 0.01 to 0.50%, Mn: 0.5 to 1.8%, P: 0.01% or less, S: 0.002% or less, Mo: 0.05 to 0.50%, Ti: 0.04 Super-0.10%, Al: 0.01-0.07% is contained, the balance is substantially made of Fe, and C / (Mo + Ti), which is the ratio of the amount of C in atomic% to the total amount of Mo and Ti, is 0.5. ~ 3.0, the metal structure is substantially a ferrite single phase, and contains Ti and MoParticle size 10nm Less thanA high-strength steel sheet with excellent HIC resistance, characterized in that precipitates are dispersed and precipitated.
[0010]
(2) Further, in mass%, Nb: 0.005 to 0.05% and / or V: 0.005 to 0.10, and the ratio of the amount of C in atomic% and the total amount of Mo, Ti, Nb, V is C / (Mo + Ti + Nb + V) is 0.5 to 3.0, the high strength steel sheet having excellent HIC resistance according to (1).
[0011]
(3) Furthermore, it is characterized by containing one or more selected from Cu: 0.50% or less, Ni: 0.50% or less, Cr: 0.50% or less, Ca: 0.0005 to 0.0025% by mass%. A high-strength steel sheet having excellent HIC resistance according to (1) or (2).
[0012]
(4) After hot rolling the steel having the component composition according to any one of (1) to (3) under the conditions of heating temperature: 1000 to 1250 ° C. and rolling end temperature: 750 ° C. or higher, 2 ° C. / cooling at a cooling rate of s or more, then575A method for producing a high-strength steel sheet having excellent HIC resistance, wherein the steel sheet is wound on a steel strip at a temperature of ˜700 ° C.
[0013]
(5) After hot-rolling the steel having the component composition according to any one of (1) to (3) at a heating temperature of 1000 to 1250 ° C. and a rolling end temperature of 750 ° C. or higher, 2 ° C. / A method for producing a high-strength steel sheet excellent in HIC resistance, characterized by performing cooling at a cooling rate of s or more and then performing isothermal holding at a temperature of 550 to 700 ° C. for 5 minutes or more.
[0014]
(6) After hot rolling the steel having the component composition according to any one of (1) to (3) under the conditions of heating temperature: 1000 to 1250 ° C. and rolling end temperature: 750 ° C. or higher, 2 ° C. / A method for producing a high-strength steel sheet having excellent HIC resistance, characterized by cooling at a cooling rate of s or more and then cooling at a cooling rate of 0.1 ° C./s or less from a temperature of 550 to 700 ° C.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
In order to improve both the HIC resistance and high strength, the present inventors have studied the microstructure of the steel material and the manufacturing method of the steel sheet. As a result, in order to improve the HIC resistance, the microstructure may be a ferrite structure. It was the most effective, and it was found that high strength can be obtained by dispersing precipitates containing Ti and Mo in the ferrite structure. In addition to limiting the addition amount of Ti, which causes deterioration of weld toughness due to excessive addition, to an appropriate range, optimizing the addition amount of Mo and Ti to C, the maximum use of precipitation strengthening by carbide I got the knowledge that I can do it. Further, if Nb and / or V are added in combination, high strength can be obtained by dispersing and precipitating the precipitate containing Ti, Mo, Nb and / or V, and Mo, Ti, Nb and V with respect to C can be obtained. The knowledge that the precipitation strengthening by carbide can be utilized to the maximum by optimizing the addition amount was obtained.
[0016]
A steel sheet having a ferrite structure in which precipitates containing Ti and Mo as described above are dispersed and precipitated can be easily manufactured as a thin steel sheet by using a general hot rolling process in which winding is performed in a specific temperature range. Further, even a thick steel plate can be manufactured by maintaining the temperature for a certain period of time or gradually cooling using a manufacturing process of the thick steel plate. The steel plate produced in this way has no increase in hardness at the surface layer portion unlike a bainite or acicular ferrite structure steel plate obtained by conventional accelerated cooling or the like, so that HIC from the surface layer portion does not occur. Furthermore, since the ferrite structure has extremely high resistance to cracking, it is possible to suppress HIC from the central part of the steel sheet and inclusions.
[0017]
Hereinafter, the high-strength steel sheet of the present invention will be described in detail. First, the structure of the high-strength steel sheet of the present invention will be described.
[0018]
The metal structure of the steel sheet of the present invention is substantially a ferrite single phase. Since the ferrite phase is rich in ductility and has extremely low cracking susceptibility, it can realize high HIC resistance. When one or more different metal structures such as bainite, martensite, or pearlite are mixed in the ferrite phase, HIC is likely to occur due to hydrogen accumulation and stress concentration at the heterogeneous interface. The smaller the fraction, the better. However, if the volume fraction of the structure other than ferrite is low, the influence can be ignored, so other metal structures of 10% or less in total volume fraction, that is, bainite, martensite, pearlite, cementite, You may contain 2 or more types.
[0019]
Next, the precipitate that is dispersed and precipitated in the steel sheet in the present invention will be described.
In the steel sheet according to the present invention, precipitates containing Mo and Ti as a basis are dispersed and precipitated in the ferrite phase. Since this precipitate is extremely fine, it has no influence on the HIC resistance. Mo and Ti are elements that form carbides in the steel, and strengthening the steel by precipitation of MoC and TiC has been conventionally performed. However, in the present invention, Mo and Ti are added in combination to form Mo and Ti. It is a feature that a larger strength improvement effect can be obtained by finely precipitating a composite carbide containing the above in steel as compared with the case of precipitation strengthening of MoC and / or TiC. This unprecedented strength improvement effect is due to the fact that composite carbides containing Mo and Ti as a basis are stable and have a slow growth rate, so that extremely fine precipitates having a particle size of less than 10 nm can be obtained. .
[0020]
When the composite carbide containing Mo and Ti as a base is composed of only Mo, Ti, and C, the sum of Mo and Ti and C are combined in an atomic ratio of about 1: 1. Yes, it is very effective for increasing strength. Moreover, a part of Ti can be replaced by Nb and / or V, and in addition to Mo and Ti, Nb and / or V is further added, and a composite containing Mo, Ti and Nb and / or V The same precipitation strengthening can be obtained by precipitating carbides.
[0021]
In the present invention, composite carbides mainly composed of Mo and Ti, which are precipitates dispersed and precipitated in the steel sheet, are produced by manufacturing a steel sheet using the steel material and manufacturing method of the components of the present invention described below. It can be obtained dispersed in the phase. When the high-strength steel sheet of the present invention contains precipitates other than composite carbides mainly composed of Mo and Ti, the effect of increasing strength by composite carbides of Mo and Ti is not impaired, and the HIC resistance is not deteriorated. And
[0022]
Next, chemical components of the high-strength steel sheet of the present invention will be described.
[0023]
C: 0.02 to 0.08%. C is an element that contributes to precipitation strengthening as a carbide, but if it is less than 0.02%, sufficient strength cannot be secured, and if it exceeds 0.08%, toughness and HIC resistance are deteriorated, so the C content is made 0.02 to 0.08% Stipulate.
[0024]
Si: 0.01 to 0.50%. Si is added for deoxidation, but if it is less than 0.01%, the deoxidation effect is not sufficient, and if it exceeds 0.50%, the toughness and weldability are deteriorated, so the Si content is specified to be 0.01 to 0.50%.
[0025]
Mn: 0.5 to 1.8%. Mn is added for strength and toughness, but if it is less than 0.5%, its effect is not sufficient, and if it exceeds 1.8%, the weldability and HIC resistance deteriorate, so the Mn content is specified to be 0.5 to 1.8%.
[0026]
P: 0.01% or less. Since P is an inevitable impurity element that deteriorates weldability and HIC resistance, the upper limit of the P content is specified to be 0.01%.
[0027]
S: 0.002% or less. S is generally better in the steel because it becomes MnS inclusions in steel and deteriorates the HIC resistance. However, since there is no problem if it is 0.002% or less, the upper limit of the S content is defined as 0.002%.
[0028]
Mo: 0.05 to 0.50%. Mo is an important element in the present invention, and by containing 0.05% or more, fine composite precipitates with Ti are formed while suppressing pearlite transformation during cooling after hot rolling, greatly contributing to strength increase. To do. However, if added over 0.50%, a hardened phase such as bainite and martensite is formed and the HIC resistance deteriorates, so the Mo content is specified to be 0.05 to 0.50%.
[0029]
Ti: Over 0.04 to 0.10%. Ti, like Mo, is an important element in the present invention. By adding over 0.04%, it forms a composite precipitate with Mo, which greatly contributes to strength increase. However, if it exceeds 0.10%, it not only causes surface scratches on the steel sheet, but also significantly deteriorates the toughness of the weld heat affected zone, so the Ti content is specified to be more than 0.04 to 0.10%.
[0030]
Al: 0.01 to 0.07%. Al is added as a deoxidizer, but if it is less than 0.01%, there is no effect, and if it exceeds 0.07%, the cleanliness of the steel is lowered and the HIC resistance is deteriorated, so the Al content is defined as 0.01 to 0.07% To do.
[0031]
C / (Mo + Ti): 0.5 to 3.0, which is the ratio of the amount of C and the total amount of Mo and Ti. In C / (Mo + Ti), each element symbol indicates an atomic% content (at%) of the component. Strengthening in the steel sheet of the present invention is due to composite precipitates (carbides) containing Ti and Mo. In order to effectively use the precipitation strengthening by this composite precipitate, the relationship between the amount of C and the amounts of Mo and Ti that are carbide forming elements is important. By adding these elements in an appropriate balance, Thermally stable and very fine composite precipitates can be obtained. At this time, the value of C / (Mo + Ti), which is the ratio of the content of C in atomic% and the total content of Mo and Ti in atomic%, is set to 0.5 to 3.0. When the value of C / (Mo + Ti) is less than 0.5 or more than 3.0, the amount of any element is excessive, precipitation other than the composite precipitate containing Ti and Mo of the present invention, hardening of bainite, etc. Since the structure is excessively formed, resulting in deterioration of HIC resistance and toughness, the value of C / (Mo + Ti) is specified to be 0.5 to 3.0. In addition, when using content of the mass%, it calculates using the following formula | equation (1) and makes the value 0.5-3.0.
[0032]
(C / 12.01) / (Mo / 95.9 + Ti / 47.9) ... (1)
In the present invention, for the purpose of further improving the strength of the steel sheet, one or two of Nb and V shown below may be contained.
[0033]
Nb: 0.005 to 0.05%. Nb improves toughness by refining the structure, but forms a composite precipitate with Ti and Mo, contributing to an increase in strength. However, if it is less than 0.005%, there is no effect, and if it exceeds 0.05%, the toughness of the weld heat affected zone deteriorates, so the Nb content is specified to be 0.005 to 0.05%.
[0034]
V: Set to 0.005 to 0.10%. V, like Nb, forms a composite precipitate with Ti and Mo and contributes to an increase in strength. However, if it is less than 0.005%, there is no effect, and if it exceeds 0.1%, the toughness of the weld heat affected zone deteriorates, so the V content is specified to be 0.005 to 0.1%.
[0035]
When Nb and / or V are contained, C / (Mo + Ti + Nb + V): 0.5 to 3.0, which is the ratio of the amount of C and the total amount of Mo, Ti, Nb, and V. In C / (Mo + Ti + Nb + V), each element symbol indicates an atomic% content (at%) of the component. Strengthening in the steel sheet of the present invention is due to composite precipitates (carbides) containing Ti, Mo, and Nb and / or V. In order to effectively use the precipitation strengthening by this composite precipitate, the relationship between the amount of C and the amounts of carbide-forming elements Mo, Ti, Nb, and V is important. By adding, a thermally stable and very fine composite precipitate can be obtained. At this time, the value of C / (Mo + Ti + Nb + V), which is the ratio of the content of C in atomic% and the total content of Mo, Ti, Nb, V in atomic%, is 0.5 to 3.0. When the value of C / (Mo + Ti + Nb + V) is less than 0.5 or more than 3.0, the amount of any element is excessive, precipitate other than the composite precipitate containing Ti and Mo of the present invention, Since a hardened structure such as bainite is excessively formed, leading to deterioration of the HIC resistance and toughness, the value of C / (Mo + Ti + Nb + V) is specified to 0.5 to 3.0. In addition, when using content of the mass%, it calculates using the following formula | equation (2) and makes the value 0.5-3.0.
[0036]
(C / 12.01) / (Mo / 95.9 + Nb / 92.91 + V / 50.94 + Ti / 47.9) (2)
In the present invention, for the purpose of further improving the strength and HIC resistance of the steel sheet, one or more of Cu, Ni, Cr and Ca shown below may be contained.
[0037]
Cu: 0.50% or less. Cu is an element effective for improving toughness and increasing strength, but if added in large quantities, weldability deteriorates, so when added, the upper limit is 0.50%.
[0038]
Ni: 0.50% or less. Ni is an element effective for improving toughness and increasing strength. However, when added in a large amount, the HIC resistance is lowered, so when added, the upper limit is 0.50%.
[0039]
Cr: 0.50% or less. Like Mn, Cr is an effective element for obtaining sufficient strength even at low C. However, if added in a large amount, the weldability deteriorates, so when added, the upper limit is 0.50%.
[0040]
Ca: 0.0005 to 0.0025%. Ca is an element effective in improving the HIC resistance by controlling the form of sulfide inclusions, but if it is less than 0.0005%, the effect is not sufficient, and even if added over 0.0025%, the effect is saturated, rather, Since the HIC resistance is deteriorated due to a decrease in the cleanliness of the steel, the Ca content is specified to be 0.0005 to 0.0025% when added.
[0041]
The remainder other than the above consists essentially of Fe. The balance substantially consisting of Fe means that an element containing an inevitable impurity and other trace elements can be included in the scope of the present invention unless the effects of the present invention are lost.
[0042]
Next, the manufacturing method of the high strength steel plate of this invention is demonstrated.
[0043]
The high-strength steel sheet of the present invention uses steel having the above-mentioned composition, and is hot-rolled at a heating temperature of 1000 to 1250 ° C. and a rolling end temperature of 750 ° C. or higher, and then cooled at a cooling rate of 2 ° C./s or higher Then, by holding at a temperature of 550 to 700 ° C. for a certain period of time, fine composite carbides mainly composed of Mo and Ti can be dispersed and precipitated. As a method of holding at a temperature of 550-700 ° C for a certain time,575It is wound on a steel strip at a temperature of ˜700 ° C. (first production method), isotherm maintained at a temperature of 550 to 700 ° C. for 5 minutes or more (second production method), and is adjusted from a temperature of 550 to 700 ° C. to 0.1 There are three production methods of performing slow cooling at a cooling rate of not more than ° C./s (third production method). Hereinafter, each manufacturing method will be described in detail.
[0044]
Heating temperature: 1000-1250 ° C. If the heating temperature is less than 1000 ° C., the solid solution of the carbide is insufficient and the required strength cannot be obtained, and if it exceeds 1250 ° C., the toughness deteriorates, so the temperature is set to 1000 to 1250 ° C.
[0045]
Rolling end temperature: 750 ° C. or higher. When the rolling end temperature is low, the structure extends in the rolling direction and the HIC resistance is deteriorated, so the rolling end temperature is set to 750 ° C. or higher. Further, although the upper limit of the rolling end temperature is not particularly specified, excellent HIC resistance and strength can be obtained, but it is preferable to end the rolling at a temperature of 950 ° C. or lower in order to prevent toughness deterioration due to coarsening of the structure.
[0046]
Cool after cooling at a cooling rate of 2 ° C / s or higher. When it is allowed to cool or gradually cool after the rolling is completed, it precipitates from the high temperature region, and the precipitate easily becomes coarse and the strength is lowered. Therefore, it is an important manufacturing condition in the present invention to perform rapid cooling to a temperature optimum for precipitation strengthening and prevent precipitation from a high temperature range. If the cooling rate is less than 2 ° C./s, the effect of preventing precipitation in a high temperature range is not sufficient and the strength is lowered. Therefore, the cooling rate after rolling is specified to be 2 ° C./s or more. About the cooling method at this time, it is possible to use arbitrary cooling equipment by a manufacturing process.
[0047]
In order to obtain the ferrite structure and fine precipitates of the present invention after cooling at a cooling rate of 2 ° C./s or more, it is necessary to hold at a high temperature for a certain period of time. The first manufacturing method is to manufacture a thin steel sheet, and after hot rolling, after cooling by water cooling or the like on a run-out table, winding in a steel strip at a predetermined temperature Thus, the steel strip is kept isothermally to precipitate the precipitate of the present invention.
[0048]
In addition, the cooling end temperature when cooling at 2 ° C./s or higher may be higher than the subsequent coiling temperature, isothermal holding temperature, or annealing start temperature, but if the cooling end temperature is too high, precipitation occurs. Since coarsening of the product occurs and sufficient strength cannot be obtained, it is desirable that the temperature be 750 ° C. or lower.
[0049]
First manufacturing method: winding temperature:575Set to ~ 700 ° C. When steel strip is manufactured by hot-rolling process, the coiling temperature after cooling at a cooling rate of 2 ℃ / s or more575Take up at ~ 700 ° C. Winding temperature is575If the temperature is lower than ℃, bainite is formed and the HIC resistance is deteriorated. If the temperature is higher than 700 ° C, the precipitate becomes coarse and sufficient strength cannot be obtained.575Specified at ~ 700 ° C.
[0050]
The second production method and the third production method are methods suitable for producing thick steel plates and the like that do not wind, and in a thick plate mill, after cooling with water cooling equipment after finish rolling, soaking is performed. The second production method is a method in which the precipitate of the present invention is deposited by isothermal holding for a predetermined time or more in a furnace or the like. In the third production method, the steel sheet of the present invention is produced by maintaining the high temperature by performing slow cooling with a cover or the like after water cooling to precipitate the precipitate of the present invention. These cases will be described below.
[0051]
Second production method: isothermal holding for 5 minutes or more at a temperature of 550 to 700 ° C. The cooling end temperature is preferably not lower than the isothermal holding temperature and not higher than 750 ° C. When the steel strip is not wound as in the hot rolling process, the ferrite containing the precipitates containing Mo and Ti is dispersed and precipitated by holding it isothermally for a certain period of time following cooling after rolling. It is possible to obtain a single tissue. At this time, if the temperature is lower than 550 ° C., bainite is generated and the HIC resistance is deteriorated. If the temperature exceeds 700 ° C., the precipitate becomes coarse and sufficient strength cannot be obtained, so the holding temperature is specified to be 550 to 700 ° C. . Further, if the holding time is less than 5 minutes, the ferrite transformation is not completed, and the HIC resistance deteriorates because bainite or pearlite is generated by subsequent cooling, so the holding time is specified to be 5 minutes or more. As long as the ferrite transformation is completed by the isothermal holding, the subsequent cooling rate may be any rate.
[0052]
Third production method: Slow cooling from a temperature of 550 to 700 ° C. at a cooling rate of 0.1 ° C./s or less. The cooling end temperature is preferably not less than the cooling start temperature and not more than 750 ° C. Even if the isothermal holding as described above is not performed, the steel sheet of the present invention can also be manufactured by performing slow cooling from a predetermined temperature following cooling after rolling. If the cooling rate at this time exceeds 0.1 ° C./s, bainite is generated and the HIC resistance is lowered, so the upper limit of the cooling rate is defined as 0.1 ° C./s. Moreover, the temperature which starts slow cooling shall be 550-700 degreeC. When the temperature is lower than 550 ° C., the HIC resistance is deteriorated due to the formation of bainite. When the temperature is higher than 700 ° C., the precipitate becomes coarse and sufficient strength cannot be obtained.
[0053]
The steel sheet of the present invention manufactured by the above first, second and third manufacturing methods that can use a conventional hot rolling mill or thick plate mill is formed into a steel pipe by press bend forming, roll forming, UOE forming, etc. Thus, it can be used for steel pipes (ERW pipes, spiral steel pipes, UOE steel pipes) for transporting crude oil and natural gas.
[0054]
【Example】
Steel sheets having a thickness of 12, 18, and 26 mm were manufactured using test steels (steel types A to J) having chemical components shown in Table 1.
[0055]
[Table 1]
[0056]
Hot rolled steel strips (No. 1 to 16) having a thickness of 12 mm were manufactured by cooling after rolling and winding at a predetermined temperature. Table 2 shows the slab heating temperature, rolling end (finishing) temperature, post-rolling cooling rate, and coiling temperature of each steel plate. Thick steel plates (Nos. 17 to 24) having a thickness of 18 mm and 26 mm were manufactured under the conditions shown in Table 3 using steel types B and E by hot rolling (thick plate process). In Table 3, when the treatment method after cooling was described as “temperature maintenance”, after cooling by an accelerated cooling device after rolling, isothermal holding (soaking) was performed in a gas combustion furnace. Table 3 shows the holding temperature and holding time for those that were held isothermally. Moreover, what was described as the "slow cooling" as the processing method after cooling cooled gradually to room temperature by stacking steel plates, after cooling with an accelerated cooling device after rolling. For those subjected to slow cooling, Table 3 also shows the slow cooling start temperature and the average cooling rate from the slow cooling start to 300 ° C.
[0057]
The microstructure of the steel sheet produced as described above was observed with an optical microscope and a transmission electron microscope (TEM). The components of the precipitate were analyzed by energy dispersive X-ray spectroscopy (EDX). In addition, tensile properties and HIC resistance of each steel plate were measured. The measurement results are also shown in Tables 2 and 3. Tensile properties were measured by performing a tensile test using a full thickness test piece in the rolling vertical direction as a tensile test piece, and measuring yield strength and tensile strength. In consideration of manufacturing variations, a steel having a yield strength of 600 MPa or more and a tensile strength of 700 MPa or more was evaluated as a high strength steel plate of API X80 grade or more. The HIC resistance is determined by performing an HIC test with an immersion time of 96 hours in accordance with NACE Standard TM-02-84. If no cracks are observed, the HIC resistance is judged as good. Indicated.
[0058]
[Table 2]
[0059]
[Table 3]
[0060]
In Table 2, all of Nos. 1 to 9, which are examples of the present invention, had chemical components and production methods within the scope of the present invention, had high tensile strength of 700 MPa or more, and excellent HIC resistance. The structure of the steel sheet is essentially a ferrite single layer, and fine carbide precipitates with a particle size of less than 10 nm containing Ti and Mo, and for some steel sheets, Nb and / or V are dispersed and precipitated. It was.
[0061]
In Nos. 10 to 13, the chemical components are within the scope of the present invention, but the production method is outside the scope of the present invention, and the metal structure is not substantially a ferrite single phase, and includes Ti and Mo. Since the precipitates were not dispersed and precipitated, sufficient strength could not be obtained, or cracks occurred in the HIC test.
[0062]
Nos. 14 to 17 had chemical components outside the scope of the present invention, and sufficient strength could not be obtained, or cracks occurred in the HIC test.
[0063]
In Table 3, Nos. 18 to 21, which are examples of the present invention, all have chemical components and production methods within the scope of the present invention, have a high strength of 700 MPa or higher, and have excellent HIC resistance. It was. The structure of the steel sheet is substantially a ferrite single layer, and for Ti and Mo, and some steel sheets (using steel type E), the grain size containing Nb and / or V is fine and less than 10 nm. Carbide precipitates were dispersed and precipitated.
[0064]
In Nos. 22 to 25, the chemical components are within the scope of the present invention, but the production method is outside the scope of the present invention, and the metal structure is not substantially a ferrite single phase, and includes Ti and Mo. Since the precipitates were not dispersed and precipitated, sufficient strength could not be obtained, or cracks occurred in the HIC test.
[0065]
【The invention's effect】
As described above, according to the present invention, a steel plate having high strength of API X80 grade or higher and excellent HIC resistance can be obtained. For this reason, steel pipes, such as an ERW steel pipe, a spiral steel pipe, and a UOE steel pipe, having excellent characteristics can be manufactured.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001335157A JP3714232B2 (en) | 2001-10-31 | 2001-10-31 | High strength steel plate with excellent HIC resistance and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001335157A JP3714232B2 (en) | 2001-10-31 | 2001-10-31 | High strength steel plate with excellent HIC resistance and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003138341A JP2003138341A (en) | 2003-05-14 |
JP3714232B2 true JP3714232B2 (en) | 2005-11-09 |
Family
ID=19150177
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001335157A Expired - Fee Related JP3714232B2 (en) | 2001-10-31 | 2001-10-31 | High strength steel plate with excellent HIC resistance and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3714232B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111286672A (en) * | 2020-03-25 | 2020-06-16 | 江苏省沙钢钢铁研究院有限公司 | A kind of acicular ferrite type X60 grade HIC resistant pipeline steel and rolling method thereof |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6682785B2 (en) * | 2015-09-15 | 2020-04-15 | 日本製鉄株式会社 | Steel plate having excellent sour resistance and method of manufacturing the same |
CN107164701A (en) * | 2016-03-07 | 2017-09-15 | 宝鸡石油钢管有限责任公司 | A kind of big wall thickness X80 spiral submerged welded pipes of Large Diameter Pipeline and its manufacture method |
CN110438398A (en) * | 2019-08-21 | 2019-11-12 | 洛阳双瑞特种装备有限公司 | A kind of marine environment high-intensity fasteners steel |
-
2001
- 2001-10-31 JP JP2001335157A patent/JP3714232B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111286672A (en) * | 2020-03-25 | 2020-06-16 | 江苏省沙钢钢铁研究院有限公司 | A kind of acicular ferrite type X60 grade HIC resistant pipeline steel and rolling method thereof |
CN111286672B (en) * | 2020-03-25 | 2022-03-29 | 江苏省沙钢钢铁研究院有限公司 | Needle-shaped ferrite type X60-grade HIC-resistant pipeline steel and rolling method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2003138341A (en) | 2003-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5098256B2 (en) | Steel sheet for high-strength line pipe with low yield stress reduction due to the Bauschinger effect with excellent hydrogen-induced cracking resistance and method for producing the same | |
US8147626B2 (en) | Method for manufacturing high strength steel plate | |
JP4940886B2 (en) | High strength steel plate for line pipe with excellent HIC resistance and method for producing the same | |
JP5679114B2 (en) | Low yield ratio high strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same | |
CN101657555B (en) | Steel material excellent in high temperature strength and toughness and manufacturing method thereof | |
EP2612945B1 (en) | High-strength steel plate and method for producing same | |
KR20140041929A (en) | Heavy gauge, high tensile strength, hot rolled steel sheet with excellent hic resistance and manufacturing method therefor | |
KR20070035952A (en) | 490MPa-resistance-ratio cold-formed steel pipe with excellent weldability and manufacturing method | |
CN104937125B (en) | The effective hot rolled steel plate of high-strength line-pipe steel | |
JP4254551B2 (en) | High strength steel plate for line pipe with excellent HIC resistance and method for producing the same | |
JP4419744B2 (en) | High strength steel plate for line pipes with excellent HIC resistance and weld heat affected zone toughness and method for producing the same | |
JP4314873B2 (en) | High strength steel plate for line pipe with excellent HIC resistance and method for producing the same | |
JP4273826B2 (en) | High strength steel plate for line pipe with excellent HIC resistance and method for producing the same | |
JP3714232B2 (en) | High strength steel plate with excellent HIC resistance and method for producing the same | |
JP4089455B2 (en) | High strength steel with excellent HIC resistance | |
JP3780956B2 (en) | High strength steel plate with excellent SR resistance and method for producing the same | |
JP4201310B2 (en) | High strength steel plate with excellent SR resistance and method for producing the same | |
CN118374749A (en) | Hot rolled steel sheet for continuous pipe | |
JP3896915B2 (en) | High strength steel plate with excellent HIC resistance and method for producing the same | |
JP2003226922A (en) | Manufacturing method for high strength steel sheet having excellent hic resistance | |
JP2003321730A (en) | High strength steel sheet for line pipe having excellent hic resisting property and production method thereof | |
JP2020132914A (en) | Wear-resistant thick steel plate | |
JP2003313638A (en) | High-strength steel sheet superior in hic resistance and manufacturing method therefor | |
JP3952922B2 (en) | Manufacturing method of high strength steel plate with excellent HIC resistance | |
JPH01116031A (en) | Manufacturing method for high-Si, high-carbon hot-rolled steel sheet with excellent toughness |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040308 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040316 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040517 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050802 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050815 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080902 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090902 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090902 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100902 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100902 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110902 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110902 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120902 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120902 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130902 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |