[go: up one dir, main page]

JPH0614281B2 - プログラマブル制御装置用の入力/出力回路 - Google Patents

プログラマブル制御装置用の入力/出力回路

Info

Publication number
JPH0614281B2
JPH0614281B2 JP60119911A JP11991185A JPH0614281B2 JP H0614281 B2 JPH0614281 B2 JP H0614281B2 JP 60119911 A JP60119911 A JP 60119911A JP 11991185 A JP11991185 A JP 11991185A JP H0614281 B2 JPH0614281 B2 JP H0614281B2
Authority
JP
Japan
Prior art keywords
signal
input
load current
load
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60119911A
Other languages
English (en)
Other versions
JPS6111802A (ja
Inventor
ロナルド・エリツク・ガーリス
マーク・ジヨン・コツカー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JPS6111802A publication Critical patent/JPS6111802A/ja
Publication of JPH0614281B2 publication Critical patent/JPH0614281B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/05Programmable logic controllers, e.g. simulating logic interconnections of signals according to ladder diagrams or function charts
    • G05B19/058Safety, monitoring
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/34Director, elements to supervisory
    • G05B2219/34178Simulated pulse for better resolution

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Programmable Controllers (AREA)
  • Small-Scale Networks (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Safety Devices In Control Systems (AREA)

Description

【発明の詳細な説明】 この発明は全般的にプログラマブル制御装置に用いる装
置及び方法、特にインテリジェント(intelligent)入
力/出力装置に関する。
発明の背景 プログラマブル制御装置を用いたプロセス制御は、プロ
セスの種々のセンサからの入力信号を収集して、プロセ
スの被制御要素に対する出力信号を発生する。こうして
プロセスが内蔵プログラムと、センサから報告されたプ
ロセスの状態との関数として制御される。勿論、数多く
の多種多様なプロセスにこういう制御が用いられ、例え
ば工業的なプロセス、コンベヤ・システム、化学、石油
及び治金の各プロセスの逐次的な動作を何れもプログラ
マブル制御装置によって有利に制御することが出来る。
プログラマブル制御装置は比較的最近開発されたもので
ある。従来のプログラマブル制御装置は、広義に云え
ば、内蔵プログラムを実行するデータ処理装置と、プロ
グラム並びに入力及び出力の状態に関係するデータを記
憶するのに十分な規模の記憶装置と、1つ又は更に多く
の電源とで構成された中央処理装置(CPU)を有す
る。更に、入力/出力(I/O)装置が中央処理装置
と、入力装置並びに制御されるプロセスの被制御要素と
の間のインターフェイスになる。
入力/出力(I/O)装置はプログラマブル制御装置の
開発以来、比較的変わらないまヽであり、最も改良を必
要とするものである。I/O装置に幾分の進歩が見られ
るが、その改良は一般的に従来の線上にある。例えば米
国特許第429392号に記載されるI/O装置では、
インターフェイスの密度が増加されている。米国特許第
4247882号に記載された別の方式は、入力/出力
装置に対するハウジングを改良することに力を注いでい
る。制御を必要とするプロセスが複雑になり、プロセス
と中央処理装置の間の情報交換量を一層多くすることが
必要になるにつれ、I/O装置に関するこの他の改良方
式が必要になって来た。
従来のI/O装置は多数の個別のI/O点で構成されて
おり、その各々が入力装置例えばリミット・スイッチ、
圧力スイッチ等)からの信号を受取るか、或いは出力装
置(例えばソレノイド、モータ起動装置等)に制御信号
を供給するかの一方に専用になっており、そのどちらか
になるかは、特定のI/O点の回路をどういう構成にす
るかによって決まる。即ち、I/O点は入力点であるか
出力点であるか、その何れか一方に専用であり、一方の
用途から他方の用途に容易に変換することが出来ない。
従来のI/O装置(特に複雑なプロセスに用いた時)の
1つの問題は、設備費が高いことである。典型的には、
I/Oモジュール又は回路カードが、カード・ラック又
はケージ内に収容されている。大規模な又は複雑なプロ
セスを制御する為、各々のラック又はケージに非常に多
数のI/O点を設けなければならない。全ての入力及び
出力装置からの配線をI/Oラックに持って来なければ
ならないので、この為必然的に相当量の配線経費(手間
と材料)が要る。
大形のI/Oラックを使うことによって別の問題が起
る。これは、全ての配線をラックに持ち込んで終端する
のが困難である場合が多いからである。(制御するプロ
セスに入力/出力を一層近づけようとして)I/O装置
の少なくとも一部分をCPUから離れた外被又はラック
内に設けることがよく知られているが、1箇所(遠隔で
あっても)に入力/出力の配線が集中するから、この問
題は依然として解決されていない。集中I/O装置に於
ける放熱でも問題がある。その理由で、I/O装置をそ
の最適定格より低い所で使うことが必要になる場合が多
い。
現在のI/O装置に伴う別の問題は、誤動作がプログラ
マブル制御装置自体の中で発生したのか、或いは制御し
ているプロセスで発生したのかの診断及び故障発見が困
難であることである。経験によると、制御装置に関連す
る大抵のオンラインの故障はI/O装置で発生してい
る。現在では、CPU部分が非常に高度になり、これは
例えばマイクロプロセッサ技術並びにデータ処理の進歩
によるところが大きい。然し、電気的な故障が起った
時、その問題を早期に検出し、どういう性格のものであ
るかを早期に診断することが重要である場合が多い。プ
ロセスの或る部分が制御出来なくなってからではなく、
故障した部分を早めの警告によって検出することが当然
望ましい。
従来のI/O装置では、故障の早期検出が困難であり、
構成を表わす信号が出ても、その精密な場所と性格は明
らかでないことがある。多くの場合、制御装置の入力/
出力の故障をプロセス内の故障した要素(例えばモー
タ、押ボタン等)と区別するのが困難でもある。特に制
御装置のI/O装置では、診断の特徴が正に欠如してい
た。従って、I/O装置を診断し、その故障を防止する
為の改良が強く求められている。
各々のI/O点が普通はヒューズによって保護されてい
るので、故障を診断することが困難になることがある。
ヒューズは特定のI/Oモジュールを過電流から保護す
るが、これは余分な問題を生じる場合が多い。例えば、
単なる過渡的な電流によりヒューズが切断した場合、故
障点を突止めてヒューズを交換するまで、I/O点は完
全に不作動のまヽにされることがある。
これと幾分関係した問題は、I/O装置の制御部分と被
制御部分の間で診断及び制御情報を交換することに関す
る。これは、例えば、I/O装置を構成する為に分布し
たI/Oモジュールを使う場合に生じる。このような場
合、情報を交換するための簡単で信頼性のある手段並び
に方法を提供することが望ましい。
従来のI/O装置の別の欠点は、(前に述べたことであ
るが)各々のI/O点が厳密に入力点又は出力点として
作用することである。同一の点を一方の用途から他方の
用途に容易に変換することが出来ない。従って、プログ
ラマブル制御装置の利用者は、初期の需要の見積りに基
づいて、入力機能及び出力機能を別々に選択することが
要求される。予測し難い将来の需要に対する融通性が欠
如していることは明らかである。更に、I/O点はグル
ープ(例えば配線カードあたり6個又は8個の点)とし
て利用し得るのが典型的であるから、制御装置内には使
われていない非常に多数のI/O点がある場合が多い。
従って、この発明の主な目的は、従来のI/O装置のこ
ういう欠点を解決する入力/出力装置を提供することで
ある。更に特定して云えば、各々のI/O点を入力点と
して又は出力点として動作する様に選ぶことが出来る様
なI/O装置を提供することが求められる。
更に、各々のI/O点が、ヒューズ又は遮断器を使わず
に、過電流及び過電圧状態に対して自己保護になってい
て、各々のI/O点がI/O装置内でも、制御されるプ
ロセス内でも、連続的に自動的に故障診断され、検出さ
れた故障を確認して自動的に報告する様な入力/出力装
置を提供することが求められる。したがって、この発明
の別の特定の目的は、配線も利用も簡単で経済的であ
り、制御するプロセス又はこのプロセスの特定の部分に
密に接近して配置される様に、分布したグループ又はモ
ジュールとして個々のI/O点を有するI/O装置を提
供することである。この発明の別の目的は、普通の中央
処理装置とは独立に、各々のI/O点を監視し、制御
し、故障診断する手段を含むI/O装置を提供すること
である。この発明のその他の目的、特徴及び利点は、以
下の詳しい説明から明らかになろう。
発明の概要 この発明はプログラマブル説明装置に対するインテリジ
ェント入力/出力(I/O)装置で診断及び制御情報を
発生することが出来る入力/出力回路を提供する。この
発明の入力/出力回路は、ヒューズ、遮断器等を使わず
に、過電流から保護されると共に、過負荷状態が是正さ
れた後、自動的に通常の動作に復元することが出来る。
この発明の好ましい形式では、指令信号に応じて負荷電
流を制御する制御手段を含み、該制御手段としてスイッ
チング手段、例えば負荷電流の大部分を通す主電流部分
及び全負荷電流の小さな一部分を通すエミュレーション
部分すなわち分路部分を持つ絶縁ゲート・トランジスタ
(IGT)を用いる。エミュレーション部分の電流は常
に全電流に追従している。IGTは負荷電流を制御する
為に、ゲート制御によって導電させ、又は非導電にする
ことが出来る。エミュレーション部分の電流を感知する
様に配置された電流感知手段が、瞬時負荷電流を表わす
信号を発生する。この信号を連続的に予め選ばれた基準
レベルと比較して、負荷電流が基準値を越えているかど
うかを表わす診断信号を取出す。この診断信号は、IG
Tを略瞬時に遮断するか、或いは過大電流の持続時間と
その大きさに応じて定まる時刻に遮断するのに役立つ。
その他の点について云うと、この発明の回路は、全IG
T電流がIGTを即座に遮断することが必要である程に
過度に大きいかどうか、或いは全IGT電流が負荷の開
路又は切離しを表わす程非常に小さいかどうかを夫々表
わす第2及び第3の診断信号を発生する。負荷電圧、線
路電圧及び温度を監視する為にこの他の診断信号が発生
される。これらの診断信号は故障状態を即時に検出し且
つその場所を突止めるために発生され、これらの信号は
分布した入力/出力モジュールから遠隔の場所にある中
央処理装置に送ることが出来る。
この発明の要旨は特許請求の範囲に具体的に且つ明確に
記載してあるが、この発明は以下図面について説明する
所から、更によく理解されよう。
発明の詳しい説明 第1図に示すプログラマブル説明装置は中央処理装置
(CPU)20、入力/出力(I/O)制御器22、複
数個の入力/出力(I/O)モジュール24乃至26、
及び各々のI/Oモジュール24乃至26をI/O制御
器22と相互接続するデータ通信回線28を有する。こ
れらのCPU20を除く部品は、全般的に制御装置の入
力/出力装置を構成する。CPU20は大体普通の設計
であって、データを処理して制御する為の1つ以上のマ
イクロプロセッサと、動作プログラム及び入力/出力デ
ータを記憶し、更に内蔵プログラムの実行及び制御の実
施に使われる、計算で求められた他の中間又は永久デー
タを記憶する為のメモリとを含んでいてよい。更に、C
PU20が十分に機能を持つ様にする為に、必要に応じ
て、電源装置の様な他の普通の要素も設けられる。I/
O制御器22が種々のI/Oモジュール24乃至26と
CPU20との間で交換される情報を制御する。
各々のI/Oモジュール24乃至26は、CPU20及
びI/O制御器22から離れていて、制御するプロセス
に密に接近する別々の場所に置くことが出来る。第1図
には3つのI/Oモジュールしか示してないが、実際の
数がこれよりずっと多いことは云うまでもない。例えば
こヽで説明する装置では、16個の別々のI/Oモジュ
ールを容易に収容することが出来る。各々のI/Oモジ
ュールは他のモジュールとは独立であり、夫々他の全て
のI/Oモジュールによって制御されるプロセスとは別
個のプロセスを制御する為の専用のモジュールとするこ
とが出来る。
第1図では、例えばN番目のI/Oモジュール26が一
般化して示したプロセス30を制御することが示されて
いる。プロセス30に関連する入力及び出力信号が、プ
ロセス30とI/Oモジュール26の間を伸びる導体3
2によって伝えられる。勿論、プロセス30は事実上ど
んな形式であってもよい。然し、何れにせよ、それがプ
ロセス30の状態を感知する種々のセンサ、スイッチ等
(具体的に示してない)を含んでいる。プロセスからの
情報はI/Oモジュール26に対する入力信号の形であ
る。プロセス30は、I/Oモジュール26からの出力
信号を受取り、プロセス30の制御を行う被制御要素
(例えばポンプ、モータ等、これも示してない)をも含
む。同様に、他の各々のI/Oモジュール24,25も
入力装置及び出力装置等の各プロセスに関連した装置に
相互接続される。
データ通信回線28は直列回線であることが好ましい
が、CPU20とI/Oモジュール24乃至26の間で
信号を並列に伝送することも容易に行うことが出来る。
何れの場合でも、I/Oモジュール24乃至26がCP
U20との通信の為、通信回線28に接続される。通信
回線28は1対の捩り導体、同軸ケーブル、光ファイバ
ー・ケーブルで構成することが出来、何れもコスト及び
利用し易さと云う観点から受入れることが出来る。
第1図のI/Oモジュール24には各々のI/Oモジュ
ールの全体的な電子回路構造がブロック図で例示されて
いる。
即ち、マイクロコントローラ36が、CPU20と情報
を交換する為のインターフェイス・ポートを持つと共
に、I/Oモジュールの種々の要素を制御し且つ故障の
発生を診断する動作の内蔵プログラムを実施する為の関
連したメモリ(図に示してない)を持っている。更に複
数個の個別のI/O点(又はI/O回路)37乃至39
があり、その各々は入力点として又は出力点として選択
的に動作させることが出来、且つその各々は制御される
プロセスの入力又は出力要素と導体を介して直接的に個
別に結合される。I/O点37乃至39が導体母線40
によってマイクロコントローラ36に接続される。任意
の特定のI/Oモジュール24乃至26にあるI/O点
37乃至39の数は、放熱並びにマイクロコントローラ
36の制約の様な実際的な観点によって決まる。然し、
1例として云えば、I/Oモジュール1個あたり16個
のI/O点を設けるのが非常に実用的で便利であること
が判った。
入力及び出力部品の完全さ及び作用能力を検証すると共
に保守及び故障診断の為、監視装置42が設けられてい
る。監視装置42は手で持てる寸法にして、或るI/O
モジュールから別のI/Oモジュールへ容易に便利に移
動することが出来る様にすることが好ましい。これは各
々のI/Oモジュールにケーブルによって接続される様
になっている。このケーブルは、I/Oモジュールに固
定されたコネクタと合さるコネクタを持っている。この
ケーブル並びにそれと合うコネクタが第1図に図式的に
示されている。第1図では、監視装置42がマイクロコ
ントローラ36のインターフェイス・ポートを介してI
/Oモジュール24に接続されている。
1つのI/Oモジュールに接続した時、携帯式の監視装
置42はこのモジュールのI/O点を監視して制御する
ことが出来る様にすると共に、このモジュールに関連す
る診断情報を表示する。携帯式の監視装置が中央処理装
置(CPU)20とは無関係に、且つCPU20が存在
しなくても、こういう機能を実行することが有利であ
る。例えば監視装置42は、出力点をオン及びオフに転
ずると共に、入力点の状態を読取る様に作用する。故障
が発生した場合、監視装置42は故障の性格と場所の表
示をも発生することが出来る。携帯式の監視装置42
が、英数字を表示するデータ表示パネル44と、アドレ
ス・プログラミング並びにI/Oモジュール24乃至2
6の作動を行わせる一組のキー・スイッチ46を持つこ
とが認められよう。
第2図には、携帯式の監視装置及び個別のI/Oモジュ
ールの好ましい物理的な形が例示されている。即ち、図
示のI/Oモジュール51は実質的に端子ブロックの形
をしていて、制御するプロセスの入力及び出力装置と接
続される導体に接続する為の1列の導体端子53を持っ
ている。端子53はねじ形接続部にすることが出来る。
この接続部では、ねじを接続線又は端子片に対して締付
ける。各々のI/O点又は回路が対応する端子接続部に
割当てられる。更に、外部電源(交流又は直流)に接続
する為、並びに第1図に示す様にデータ通信回線に接続
する為の端子が割当てられている。各々のI/O点の状
態を表示する発光ダイオード(LED)55の形をした
可視表示器が設けられている。別のLED57,58が
モジュール51の動作を表わす。例えばLED57は
(モジュールの内部又は外部の何れかに)故障状態が存
在することを表わし、LED58は正常な動作状態を表
わす。モジュール51にはケーブル・コネクタ60と合
さるコネクタ59を設け、こうしてケーブル61を介し
て携帯式の監視装置49に接続される。
図示の携帯式の監視装置49は、第1図に関連して前に
説明した様に、それが接続されたI/Oモジュールを働
かせることが出来る。即ち、携帯式の監視装置は、I/
Oモジュールが第1図に示す様に中央処理装置に接続さ
れていなくても、それを作動して完全に検査することが
出来る。
第3図のブロック図はI/Oモジュール80を詳しく示
している(これは第1図のモジュール24乃至26の内
のどの1つとも実質的に同じである)。即ち、I/Oモ
ジュール80が8個の別々のI/O点81乃至88から
成るグループを持っている。各々のI/O点がマイクロ
コントローラ90と制御及び診断情報信号をやり取りす
る。交流又は直流の電力が端子H及びNに供給される。
端子H、Nに接続された電源が内部直流電源装置94に
電力を供給すると共に、モジュール80をその一部分と
して含むプログラマブル制御装置によって制御される外
部出力負荷(例えば被制御要素)があれば、この負荷に
対して電力を供給する。電源装置94は単に、I/Oモ
ジュール内に含まれる、動作に直流電力を必要とする全
ての要素に対する直流電源である。
各々のI/O点81乃至88が夫々1対の導体95乃至
102を介してマイクロコントローラ90に接続され
る。各対の内のD線と呼ぶ一方の導体が関連したI/O
点に対する制御データを伝える。各対の他方の導体すな
わちM線がI/O点からの状態及び診断情報をマイクロ
コントローラ90に伝える。各々のI/O点81乃至8
8はまた電源装置94から電力(例えば15ボルト)を
受取る様に接続されていると共に、夫々電源端子H及び
Nにも接続されている。端子H、Nに接続された外部電
源が例えば交流115又は230ボルト線路である場
合、端子H及びNは単にこの線路の活線側及び中性点側
を指す。然し、外部電源が直流である場合、端子Hはそ
の電源の正の側であり、端子Nは負の側である。更に各
々のI/Oモジュール81乃至88が2重作用を持つ入
力/出力端子を持っている。I/O点を出力点として動
作させた場合、そのI/O点の入力/出力端子が、プロ
セスの内、このI/O点に制御作用が割当てられている
被制御要素(又は負荷)に接続される。他方、I/O点
が入力点として動作する場合、そのI/O点の入力/出
力端子が入力装置からの入力信号を受取る。この為、同
じ入力/出力線が、マイクロコントローラ90からの指
令と、入力又は出力装置の2番目の(又は基準)接続と
に応じて、両方の作用に使われる。1例として、I/O
点82が出力点として作用し、負荷装置89に対する電
力をオン又はオフに転ずることが示されている。負荷8
9がI/O点82の入力/出力線と電源のN線との間に
接続される。これと対照的に、I/O点84が入力点と
して動作し、入力スイッチング装置91が入力/出力線
と電源のH線の間に接続されることが示されている。I
/O点81乃至88の任意の1つは、そのI/O点の内
部回路に幾分関係するが、出力様式では直流シンクの様
な直流源として、又は交流源として動作することが出来
る。回路のこういう面については後で詳しく説明する。
各々のI/O点81乃至88からM線を介してマイクロ
コントローラに供給される情報は、負荷電流の状態(高
又は低)、このI/O点に供給された電力レベル、I/
O点の温度状態、任意の入力装置の状態を報告するデー
タ並びにその他の情報を含んでおり、これら全ては後で
更に詳しく説明する。
第1図について概略を説明した様に、各々のI/O点8
1乃至88の制御が最終的には中央処理装置によって決
定される。第3図では、CPUとの通信はマイクロコン
トローラ90のインターフェイス・ポート(好ましくは
直列ポート)及びデータ通信回線106(第1図の28
に相当する)を介して行われる。第3図のモジュール8
0と実質的に同様なこの他のI/Oモジュールもデータ
通信回線106に接続することが出来る。マイクロコン
トローラ90は中央処理装置の指令に応答するが、I/
Oモジュール80内にある各々のI/O点を局部的に分
布した形で制御する。マイクロコントローラ90は動作
制御装置であって、内蔵プログラムに従って、中央処理
装置からの指令並びに各々のI/O点81乃至88から
M線を介して受取った信号の関数として動作する。第3
図には詳しく示してないが、マイクロコントローラ90
はプログラムを記憶する為、並びにプログラムを実行し
て初期の制御作用を行うのに必要なその他のデータを記
憶する為のメモリをも含んでいる。
第4図の簡略ブロック図は、出力スイッチング装置を除
いたI/O回路の好ましい実施例を示す。即ち、I/O
点が通信部分111と制御及び感知部分113とを含
む。通信部分111(これを最初に説明する)がタイマ
117、出力データ・フィルタ119、出力選択器12
0、2ビット計数器121、最終状態保持ラッチ12
3、ディフォールト(default)ラッチ124、
状態符号化器125、状態ラッチ127及びデータ選択
器129を含む。
通信部分111がD線を介して動作制御装置(例えば第
3図のマイクロコントローラ90)からの信号SIGを
受取ると共に、導体6本の母線115を介して一組の状
態を表わす(診断)信号を受取る。通信部分111は制
御及び感知部分113に対してオン/オフ指令信号を発
生すると共に、M線を介してマイクロコントローラに対
し、診断信号(STATE)を送る。オン/オフ指令信
号が最終的にスイッチング装置(これは絶縁ゲート・ト
ランジスタIGTであることが好ましいが、後で説明す
る)を制御する。このスイッチング装置の動作は、I/
O点が入力点として作用するか出力点として作用するか
によって決まる。第5図及び第6図は通信部分111の
動作に関連する或る信号の間の関係を例示しており、こ
れらの図を第4図と共に参照されたい。
制御信号SIGは、オン/オフ情報、最終状態保持(H
LS)情報、デイフォールト状態(DEF)情報及びタ
イミング情報を含む符号化パルス列である。これは一連
のフレームで構成され、各々のフレームは2個又は4個
のパルスを含み、その後、1個のパルスが省略され、即
ち消失パルスが続いている。「消失パルス」が通信部分
11の動作を再同期させるのに役立つ。2個又は4個の
パルスの各々は25%又は75%の何れかのデューティ
・サイクルを持っている。1フレーム内のパルスの間の
時間Tが一定であり、これが「消失パルス」の持続時間
でもある。制御信号SIGが最初はタイマ117に印加
され、そこでその立上りによって、タイマ117をリセ
ットし、そのタイミング・サイクルを開始する。この
為、タイマ117は、信号SIGの各々の立上りから約
0.5T後にクロック信号CLKの立上りを出す。信号
CLKを使って2ビット計数器121、出力データ・フ
ィルタ119及びラッチ123,124のクロック動作
を行う。最初にリセットされていないと、タイマ117
は、信号SIGの立上りから約1.5T後に同期信号S
YNCの立上りをも発生し、信号SIGの立上りから少
し長い時間(例えば2.5T)後に信号の立下り
を出す。通常、信号SIGの立上りはTの間隔で発生
し、この為、タイマ117は信号SYNC又はの
変化が発生する前にリセットされる。然し、「消失パル
ス」(同期期間)が発生すると、信号SIGの立上りの
間に2Tの時間があり、信号SYNCが約0.5Tの間
高になる。パルス信号SYNCが通信部分111をリセ
ットし、こうしてこれから新しいフレームが開始するこ
とを知らせる。信号SIGの立上りの間に2.5Tより
長い期間があると、信号が低になり、信号の損失
が起こったことを通信部分111に知らせる。
D線を介してI/O点に送られるオン/オフ情報は、制
御信号SIGの各フレームの最初の2個のパルスの中に
入っている。75%のデューティ・サイクルを持つパル
スは論理1(スイッチ・オン)に対応し、25%のデュ
ーティ・サイクルを持つパルスは論理0(スイッチ・オ
フ)に対応する。後で明らかになるが、信号SIGのパ
ルスの立上りから0.5T後に発生するクロック・パル
ス(CLK)が、実効的に信号SIGをこの時サンプリ
ングする。この為、信号SIGとして25%のデューテ
ィ・サイクル(0.25T)のパルスが送られた場合、
0.5Tの時間後に低レベル又は論理0が得られる。他
方、75%のデューティ・サイクル(0.75T)のパ
ルスが送られた場合、0.5Tの時間後に高レベル又は
論理1が得られる。信号SIGの最初の2つのパルスは
冗長性のために伝送される。即ち、通信部分111がオ
ン/オフ指令に応答する為には、最初の2つのパルスが
一致(両方1又は両方0)しなければならない。こうい
う目的の為、制御信号SIGが出力データ・フィルタ1
19に供給され、このフィルタが制御信号の最初の2つ
のパルスを実効的にサンプリングして比較する。2つの
パルスが(例えば雑音の干渉の為に)相異なる場合、出
力データ・フィルタ119は最後に受取った有効なオン
/オフ指令を保持する。
制御信号の1フレームが2個でなく4個のパルスを持つ
場合、3番目及び4番目のパルスを使って、夫々最終状
態保持ラッチ123及びディフォールト・ラッチ125
を更新する。これらのラッチ123,124の内容は、
3番目及び3番目のパルスを受取った時にだけ変更され
る。3番目のパルス位置が論理1であると、最終状態保
持信号HLSが高にセットされ、3番目のパルス位置が
論理0であると、信号HLSが低になる。信号HLSが
最終状態保持ラッチ123の出力に現われ、出力選択器
120及び状態符号化器125に供給される。同様に、
4番目のパルスがディフォールト信号DEFを高又は低
(高=オン、低=オフ)に設定する。ディフォールト信
号DEF及びその補数がディフォールト・ラッチ
124の出力として現われる。ディフォールト信号DE
Fが状態符号化器125に供給され、その補数が
出力選択器120に供給される。マイクロコントローラ
からの通信がない場合(即ち、制御信号がなく、信号
が低になる場合)、信号HLSが出力選択器120
に指令して、前のオン/オフ状態を保持させるか、或い
はディフォールト状態をとらせる。信号HLSが論理1
であれば、前の状態が保持される。信号HLSが論理0
であれば、信号L0Sが低になるや否や、ディフォール
ト状態をとる。この動作の利点は明らかである。すなわ
ち、I/O点と制御要素(即ち第1図及び第3図のマイ
クロコントローラ)の間の通信が失われた場合、オン/
オフ状態が強制的に予め選ばれた好ましい状態になる。
2ビット計数器121がクロック・パルス(CLK)を
計数して、出力カウントS0及びS1を発生する。これ
らは0と3の間の2進値を持つ。このカウントは、1フ
レーム内のどのパルスを受取っているかを表わし、出力
データ・フィルタ119、最終状態保持ラッチ123、
ディフォールト・ラッチ124及びデータ選択器129
に(信号S0及びS1として)供給され、各々の回路が
1フレームの中の適当なパルスだけに応答する様にす
る。
第5図の波形は種々の状態に対する信号SIG、CL
K、SYNC、及びオン/オフ信号の関係を示
す。最初のフレーム(参照の便宜の為、フレームには任
意にフレーム番号を付してある)では、信号SIGとし
て2つの冗長な25%のデューティ・サイクルを持つパ
ルスが論理0すなわちオフ・スイッチ状態に対応して送
られる。信号SIGのパルスの立上りから0.5Tの時
にクロック・パルスが発生される。2つの冗長パルスの
後、同期期間又は「消失パルス」がある。消失パルスに
より、パルス消失SYNCが発生され、フレームの終り
であることを知らせる。信号SIGの2つのパルスが共
に25%のデューティ・サイクルを持つから、オン/オ
フ値は低にとヾまり、信号は高にとヾまる。
2番目のフレームでは、信号SIGの最初のパルスが2
5%のデューティ・サイクルで、2番目が75%のデュ
ーティ・サイクルである。同一でないことは、例えば雑
音の干渉によるものであることがある。この場合、最初
のフレームと同じ様に、信号CLK及びSYNCのパル
スが再び発生され、信号は高にとヾまる。然し、
信号SIGの2つのパルスが相異なる為、オン/オフ信
号は前の値、今の場合は低を保つ。3番目のフレームで
は、信号SIGのパルスが共に75%のデューティ・サ
イクルの持続時間を持ち、オン/オフ・スイッチ信号を
オン・レベルに高くすべきであることを知らせる。これ
は、信号SIGの2番目のパルスに続くクロック・パル
スの立上りの時に行われる。4番目のフレームでは、制
御信号SIGのパルス間で同一性がなく、その為オン/
オフ線が高にとヾまる。5番目のフレームは、共に25
%のデューティ・サイクルを持つ2つの冗長なパルスが
発生したことにより、オン/オフ線が低レベルに復帰す
る。6番目のフレームでは、信号SIGは4つの75%
のデューティ・サイクルを持つパルスを含む。6番目の
フレームは、4つのパルスと「消失パルス」を収容する
為に持続時間が幾分伸びている。信号SIGの第1及び
第2のパルスがオン/オフ信号を高に戻す。第5図に示
してないが、このフレームの第3のパルスが、その時出
るクロック・パルスの立上りと同時に信号HLSを高に
し、このフレームの第4のパルスが信号DEFを高にす
る。
オン/オフ、ディフォールト及び最終状態保持情報の他
に、制御信号SIGは、状態データ又は診断データをマ
イクロコントローラに送り返すタイミングを定める。状
態符号化器125が、オン/オフ信号、信号DEF及び
HLSのビットと共に、制御及び感知部分113から、
導体母線115を介して6つのスイッチ状態を入力とし
て受取る。状態符号化器125はこれらの入力信号を組
合せて4ビットの符号化状態メッセージを形成し、それ
が状態ラッチ127に供給される。データ選択器129
は4者択1(one of four)選択器であっ
て、これは状態ラッチ127からの4つのデータ・ビッ
トを受取り、その後、この4ビット状態情報(STAT
E)をM線を介してマイクロコントローラに逐次的に送
る。2ビット計数器121の出力は信号SIGのパルス
のカウントを表わし、データ選択器129を制御して、
それが信号SIGの各々のパルスを受取る度に、1つの
ビットを送出す様にする。4つのビットは、1番目のビ
ット(X0)が故障状態が存在するかどうかを示し、2
番目のビット(X1)が出力負荷に電圧が現われている
かどうかを示す様に符号化されている。故障が発生する
と(X0=0)、3番目及び4番目のビット(X2及び
X3)が故障の性格を表示する。故障が発生しないこと
(X0=1)、3番目のビットは最終状態保持の値を表
わし、4番目のビットはディフォールト値を表わす。
マイクロコントローラ90(第3図)は、通信部分11
1に送られる制御信号SIGにある1フレームあたりの
パルス数により、通信部分111からどれだけの情報を
受取るべきかを決定する。マイクロコントローラが、D
線に信号SIGの立上りを出した直後、M線の状態信号
を読取る。この為、制御信号中の1フレームあたりのパ
ルス数と1フレームあたりに読取る状態ビット数は同じ
である。通常、マイクロコントローラは1フレームあた
り2個のパルスを出し、ビットX0及びX1を読取る。
ビットX0が故障を示す場合、マイクロコントローラは
1フレームあたり4パルスに切換わり、ビットX2及び
X3に含まれる故障メッセージを読取ることが出来る様
にする。故障がない時、最終状態保持ラッチ123及び
ディフォールト・ラッチ124の読取及び書込みの為に
4パルス様式を使うことも出来る。この場合、信号SI
Gの3番目及び4番目のパルスが最終状態保持ラッチ及
びディフォールト・ラッチ124を夫々セット又はリセ
ットし、状態信号STATEのビットX2及びX3がこ
れら2つのラッチの状態を表示する。
第4図の制御及び感知部分113が、スイッチ論理回路
133、比較回路135及びゲート駆動回路137を含
む。スイッチ論理回路133が通信部分111によって
発生されたオン/オフ信号を受取り、他の入力信号の状
態に応じて、ゲート駆動回路137を介して対応するゲ
ート信号を電力スイッチング装置のゲート端子に供給す
る。電力スイッチング装置は絶縁ゲート・トランジスタ
(IGT)であることが好ましく、これは後で更に詳し
く説明する。
スイッチ論理回路133に供給されるこの他の信号の中
には、電源装置からの給電電圧レベル及び電力スイッチ
ング装置の温度を表わす信号がある。線路電圧、負荷電
圧及び負荷電流を表わす信号が比較回路135の入力と
して供給される。比較回路135は、予め選ばれた低限
界、中間限界及び高限界に対する負荷電流のレベルを表
わす一組の信号を発生する。比較回路135は線路電圧
レベルに対する負荷電圧レベルを表わす信号をも発生
し、交流に対しては、交流のゼロ交差を表わす信号をも
発生する。これら全ての信号が導体5本の母線136を
介してスイッチ論理回路133の入力に供給される。ス
イッチ論理回路133に対する別の入力がAC/DCと
記されていて、交流様式又は直流様式の何れかの動作を
予め選択する為に使われる。
スイッチ論理回路133が一組の診断信号を発生し、そ
れが導体6本の母線115を介して状態符号化器125
に供給される。この一組の診断信号は、比較回路135
によって発生される電圧及び電流レベル信号と温度信号
及び給電電圧信号である。6つの診断信号は、例えば、
1)負荷が開路である又は切離されていること、2)負
荷が第1の高限界の値を越えていて、即時の保護応答を
必要とすること、3)負荷電流が第2の高限界の値を越
えていて、予め選ばれた或る期間の間電流がこの限界よ
り高いまヽである場合にだけ、保護応答を必要とするこ
と、4)負荷電圧が印加されている又は印加されていな
いこと、5)供給電圧の相対的なレベル、6)電力スイ
ッチング装置の相対的な温度を表示する為に使うことが
出来る。
種々の入力/出力スイッチング回路を設けて、制御及び
感知部分113から出るゲート信号によって制御するこ
とが出来る。例えば、電界効果トランジスタ又はシリコ
ン制御整流器(SCR)で構成されたスイッチング手段
を入力/出力スイッチング回路として使うことが出来
る。何れにせよ、好ましいスイッチング回路は、接続さ
れた負荷に対する電流を表わす信号を発生する手段を含
む電流分路を含む。然し、最も好ましいスイッチング回
路は絶縁ゲート・トランジスタ、(IGT)を使う。
一般的にIGTはゲート動作によって導電状態にし、又
は導電しなくなる様にすることが出来る電力半導体装置
である。即ち、IGTはそのゲート端子を通じてターン
オン及びターンオフの両方を行うことが出来る。或る形
式のIGTは電流エミュレーション部分を含んでおり、
これは合計IGT電流の比例的な一部分を通す様に設け
られたIGTの一部分である。エミュレーション部分
は、電流を感知する為に電力を消費する大形の分路抵抗
に頼らずに、合計電流を監視する為に使うことが出来る
点で有利である。単一ゲート信号がIGTの主部分及び
エミュレーション部分の両方に於ける電流の流れを制御
する。絶縁ゲート・トランジスタは(名称は違うが)ア
イ・イー・ディー・エム(IEDM)誌82(1982
年12月号)、第264頁乃至第267頁所載のバリガ
等の論文「絶縁ゲート整流器(IGR):新しい電力ス
イッチング装置」に記載されている。エミュレーション
部分を持つIGTが出願人の係属中の米国特許出願番号
第529,240号の対象になっている。第7A図乃至
第7C図は、こヽで説明するI/O装置に使うことが出
来る、IGTを用いた種々の入力/出力スイッチング回
路を示している。
第7A図の直流源回路では、PチャンネルIGT141
のゲート端子140にゲート信号が印加される。IGT
141は主電流部分のエミッタ142とエミュレーショ
ン電流部分のエミッタ143とを持っている。直流電源
の正の側が主エミッタ142に直接に接続されると共
に、負担抵抗145を介してエミュレーション部分のエ
ミッタ143に接続される。IGT装置のコレクタが、
フリーホィール・ダイオード147と前置負荷抵抗14
8の並列の組合せの1端に接続される。ダイオード14
7と前置負荷抵抗148の組合せの他端が直流電源の負
の側に接続される。IGT141とダイオード及び前置
負荷抵抗の組合せとの接続点が入力/出力端子149に
なる。実際に使う時は、入力装置と負荷が同時に接続さ
れることはないが、負荷150が入力/出力端子149
と負荷(即ち、出力)リターン端子152の間に接続さ
れることが示されており、入力装置153が入力/出力
端子149と入力リターン端子155の間に接続される
ことが示されている。リターン端子155,152は夫
々直流電源の正及び負の線と電気的に共通である。前置
負荷抵抗148は比較的高いオーミック値を持ち、負担
抵抗145は比較的小さいオーミック値を持っている
が、第7B図及び第7C図の回路に使われる対応する前
置負荷抵抗及び負担抵抗も同様である。例えば、120
ボルト電源では、前置負荷抵抗148は20キロオーム
程度であってよく、負担抵抗145は10オーム程度で
あってよい。
第7A図の回路を出力として動作させる時、適当な時刻
にIGT141をオン及びオフに転ずることにより、負
荷電流が制御される。負荷電流が電源からIGT141
及び負荷150を通り、電源に戻る。IGTのエミュレ
ーション部分により、負荷電流の監視が容易になる。こ
のエミュレーション部分は、負担抵抗145とエミッタ
143との接続点に負荷電流を表わす信号を発生する。
負荷電圧が実際に印加されたことを確認する負荷電圧信
号が、前置負荷抵抗148とIGT141のコレクタの
接続点から取出される。線路電圧信号が前置負荷抵抗1
48の他端から取出される。フリーホィール・ダイオー
ド147は、誘導性負荷からの逆電流に対する分路とし
て設けられている。
第7A図の回路が入力として動作する時、IGTはオフ
状態に保たれる。この時、前置負荷抵抗148の両端に
発生される電圧を監視することにより、入力装置153
の状態(開閉)が検出される。この状態信号が負荷電圧
線を介して監視される。
第7B図の直流シンク入力/出力回路は、第7A図の直
流源回路と同じ動作素子を持っているが、その形式が若
干異なる。この回路が出力として動作する時、負荷15
7が入力/出力端子158と負荷リターン端子159の
間に接続される。負荷電流を制御する為に、IGT16
1がオン又はオフに切換えられる。然し、IGT161
がNチャンネルIGTであることに注意されたい。コレ
クタ端子が、フリーホィール・ダイオード165と前置
負荷抵抗167の並列の組合せの1端に接続される。こ
の組合せは、負荷157を接続した端子159,158
と並列である。負担抵抗168がエミュレーション部分
のエミッタと直流電源の負の側との間に直列に接続され
る。主部分のエミッタが直流電源の負の側に直結になっ
ている。負荷電流を表わすIGT電流信号が、負担抵抗
168とエミュレーション部分のエミッタ163との接
続点から取出される。負荷電圧信号が入力/出力端子1
58から取出され、線路電圧信号が入力リターン端子1
60にも接続された直流電源の正の側から取出される。
前に述べた直流源回路と同じく、入力/出力回路を入力
として使う時、IGT161をオフに保ち、前置負荷抵
抗167の両端に発生した電圧により、入力装置170
の状態が感知される。この状態信号が負荷電圧線を介し
て送られる。
第7C図は入力/出力回路を示しているが、この図で
は、並列のP及びNチャンネルIGT175,176が
使われる。IGTゲート信号がゲート制御回路178に
印加され、この回路はIGT175,176を制御する
(即ちオン及びオフに転ずる)為の(反対極性の)2つ
のゲート制御信号を同時に発生する。IGT175のエ
ミュレーション部分は直列接続の負担抵抗180を持
ち、IGT176のエミュレーション部分は直列接続の
負担抵抗181を持っている。IGTの負荷電流を表わ
すIGT電流信号が、2つの負担抵抗180,181の
両端に発生した信号を差動比較器183で比較すること
によって得られる。過渡電圧抑圧装置185がIGTの
主部分と並列に、入力/出力端子186と入力装置のリ
ターン端子187の間に接続される。リターン端子18
7は交流線路の片側とも電気的に共通である。前置負荷
抵抗189が入力/出力端子186と負荷リターン端子
190の間に接続される。リターン端子190が交流線
路の反対側に接続されている。第7C図の回路が出力と
して作用する時、ゲート制御回路178が、IGTゲー
ト信号に応答して、IGT175,176を同時にオン
又はオフの何れかになる様に指示し、こうして負荷電流
をオン又はオフに切換える。負荷191が入力/出力端
子186と負荷リターン端子190の間に接続される。
入力として動作する時、負荷191は接続せず、入力ス
イッチング装置192が入力/出力端子186とリター
ン端子187の間に接続される。この場合、IGT17
5,176はオフ状態に保たれ、入力スイッチング装置
192の状態が負荷電圧線の電圧の有無によって決定さ
れる。電圧が存在することは、閉じた入力スイッチが存
在することを表わす。
第8図には制御及び感知部分が詳しく示されており、通
信部分からのオン/オフ信号がナンド・ゲート195の
一方の入力、インバータ196、及びフリップフロップ
198,199のリセット(R)入力に印加される。ナ
ンド・ゲート195の他方の入力はナンド・ゲート20
1の出力信号を受取る。ナンド・ゲート201の1番目
の入力は、出力回路が交流出力として動作するか直流出
力として動作するかに応じて、高又は低の何れかになる
信号が供給される。この信号は、AC/DC選択線を高
又は低の基準値に適当に接続するスイッチ又はジャンパ
線によって発生することが出来ることが理解されよう。
ナンド・ゲート201の残りの入力がゼロ交差検出器2
02からの信号をインバータ201aを介して受取る。
これは、交流線路電圧(交流出力回路の場合)がゼロ電
圧から所定の範囲内にある場合を示す。この為、交流出
力の場合、ナンド・ゲート195は、交流線路電圧のゼ
ロ交差中だけ、オン/オフ信号を通過させる。ゼロ交差
検出器202は、交流入力信号がゼロ交差から所定の範
囲内にあることを表わす信号を発生するものであれば、
多数の普通の回路のどれであってもよい。直流出力の場
合、ナンド・ゲート201の状態により、オン/オフ信
号がナンド・ゲート195を通過することが出来る。ナ
ンド・ゲート195からのオン/オフ信号がフリップフ
ロップ203のセット入力に印加される。フリップフロ
ップ203のQ出力がアンド・ゲート205の3入力の
内の1つに印加され、このアンド・ゲートの出力がIG
Tゲート信号として作用する。
アンド・ゲート205に対する残りの2つの入力は、フ
リップフロップ198,199の出力から供給され
る。オン/オフ信号がオフ状態になる時、フリップフロ
ップ198,199が両方共リセットされる。IGT電
流が予め選ばれた値を越える時、何時でもフリップフロ
ップ198は比較器207からのセット信号を受取る。
この為、IGT電流を表わす信号が比較器207の反転
入力に印加され、IGT電流の過大レベルを表わす基準
電圧が非反転入力に印加される。例えば基準電圧は30
アンペアの電流に対応する値を持っていてよい。同様
に、フリップフロップ199が給電監視装置209から
の信号をセット(S)端子に受取る。給電監視装置20
9は、直流給電電圧が予め選ばれた値より高いか低いか
を表わす信号を発生するものであれば、多数の周知の手
段の内のどれであってもよい。従って、動作上、低い給
電電圧又は過度に高いIGT電流がアンド・ゲート20
5を禁止する。これによってIGT(アンド・ゲート2
05の出力に接続されている)は強制的にオフ状態にな
り、故障状態が除かれるまで、この状態にとヾまる。
フリップフロップ198のQ出力が過電流遮断信号とし
て使われ、導体母線115(第4図)に供給される6つ
のスイッチ状態信号の内の1つである。フリップフロッ
プ199の出力は、アンド・ゲート205に行く他
に、論理ゲート210の一方の入力にも印加される。給
電監視装置209からの信号が論理ゲート210の他方
の入力に印加され、この為、このゲートの出力信号は直
流電源装置の状態を表わす。この出力信号も6つのスイ
ッチ状態信号の内の1つである。
フリップフロップ203がナンド・ゲート210の出力
からリセット信号を受取る。ナンド・ゲート212に対
する2つの入力の内、1番目はインバータ196からの
反転したオン/オフ信号であり、2番目の入力はナンド
・ゲート213から来る。AC/DC選択信号がナンド
・ゲート213の一方の入力に加えられ、比較器214
の出力がインバータ201bを介して他方の入力に加え
られる。比較器214はIGT電流の監視比較器であ
り、その反転入力にIGT電流信号が印加される。比較
的小さい、最小IGT電流の値(例えば0.05アンペ
ア)に対応する基準電圧が、比較器214の非反転入力
に印加される。ナンド・ゲート212、インバータ19
6、ナンド・ゲート213及び比較器214から成る組
合せは、フリップフロップ203を通じて、IGT負荷
電流が基準値より小さくなければ、IGTを(交流動作
様式で)切換えることが出来ない様にする。
IGT電流信号が比較器215の非反転入力にも印加さ
れ、そこで中間の基準電流の値と比較される。この中間
の基準電流の値(例えば2アンペアに対応する)が比較
器215の反転入力に印加される。然し、比較器215
の非反転入力には、抵抗216及びコンデンサ220で
構成される時間遅延回路も接続されている。抵抗216
及びコンデンサ220の組合せは、比較器215の非反
転入力の電圧をIGT電流に対して遅延させる。
この為、IGT電流が延長した期間の間、基準値を越え
る場合だけ、比較器215の出力に影響が出る。単に過
電流の持続時間が短ければ、比較器215の状態変化は
起らない。比較器215の出力及び比較器214の出力
の両方がスイッチ状態信号として供給される。これらの
信号は診断信号として作用し、IGT電流が中間部の基
準値より高いか低いか、並びにそれが低い基準値より高
いか低いかを夫々表わし、必要な場合、マイクロコント
ローラによって是正措置を開始することが出来る様にす
る。
IGT電流が中間の基準値を越えた場合、この過電流の
大きさ並びに持続時間が比較器215の状態を変えるの
に十分である場合にだけ、是正措置がとられる。即ち、
負荷電流が所定の時間の間、中間の基準値を越えたと
き、是正措置がとられる。場合によっては、時間遅延回
路(即ち、抵抗216及びコンデンサ220)を省略
し、マイクロコントローラで実施されるソフトウエアの
ルーチンにより、時間遅延機能を実施することが好まし
いことがある。IGT電流又は負荷電流と低い又は小さ
い基準値との比較により、負荷が接続されているかどう
か、或いは接続されていても、開路しているかどうかを
表わす診断信号(例えば0.05A)を発生することが
出来る。フリップフロップ217のQ出力は、接続され
た負荷に電圧がかヽっているかどうかを表わす診断スイ
ッチ状態信号である。フリップフロップ217のセット
(S)入力端子がナンド・ゲート218の出力に接続さ
れる。ナンド・ゲート218がインバータ219からの
反転した交流ゼロ交差信号を第1の入力端子に受取ると
共に、比較器221の出力を他方の入力端子に受取る。
比較器221が線路電圧及び負荷電圧を比較して、負荷
電圧が線路電圧の予め選ばれた百分率値より大きいか小
さいかを表わす論理信号を発生する。例えば出力信号
は、負荷電圧が線路電圧の70%の値より高いか低いか
を表わすものであってよい。線路電圧及び負荷電圧が夫
々入力抵抗223,224を介して比較器221の入力
端子に印加される。機能的には、ナンド・ゲート218
は、交流線路電圧がゼロ・ボルトから所定の範囲内であ
る時、何時でも、フリップフロップ217の出力の状態
変化を防止する。従って、交流線路電圧がゼロ交差の近
くにある時には、何時でも、負荷電圧の状態に関する判
定を下すことはない。
フリップフロップ217がナンド・ゲート226の出力
によってリセットされる。ナンド・ゲート226に対す
る第1の入力はインバータ219からの反転したゼロ交
差信号であり、第2の入力はインバータ227によって
反転した後の比較器221の出力である。
残りのスイッチ状態信号が温度監視装置229によって
発生され、これはIGT(又は交流出力の場合は複数個
のIGT)のようなスイッチング装置の相対的な温度を
表わす。温度監視装置229は、IGTと熱的に良好な
連絡を持つ単純なPN接合温度検出器であることが好ま
しい。温度検出器は、例えばIGT温度が150℃を越
えたという表示を発生する様に選ぶことが出来る。
第9図は第9A図乃至第9C図で構成されていて、通信
部分(第4図の111)の実施例を詳しく示している。
タイマ117の出力信号が、抵抗300及びタイミング
・コンデンサ301で構成されたRCタイミング回路か
ら取出される。抵抗300及びコンデンサ301が正の
電圧源+V及び回路の共通点の間に直列に接続されてい
る。抵抗300とコンデンサ301との間の接続点が、
信号損失(LOS)比較器303反転入力と、同期(S
YNC)及びクロック(CLOCK)比較器304,3
05の非反転入力に夫々接続される。抵抗308乃至3
12が分圧回路を構成し、この分圧回路の抵抗は電圧線
+Vと回路の共通点の間に直列に接続されている。分圧
回路の抵抗308乃至312の間の各々の接続点が基準
電圧を発生する。抵抗308,309の間の接続点から
取出される最高の基準電圧が、比較器303の非反転入
力に印加される。順次低い電圧レベルを持つ他の電圧基
準がSYNC比較器304及びCLOCK305の反転
入力と制御比較器314の非反転入力に夫々印加され
る。
トランジスタ315のコレクタ端子がコレクタ抵抗31
6を介してタイミング・コンデンサ301に接続され、
コンデンサの他端がトランジスタ315のエミッタに接
続される。トランジスタ315のオン/オフ状態がコン
デンサ301の充電−放電サイクルを制御すると共に、
それ自体はフリップフロップ317のQ出力によって制
御される。抵抗318がトランジスタ315のベース端
子とフリップフロップ317のQ出力端子の間に接続さ
れる。フリップフロップ317のリセット(R)端子は
制御比較器314の出力信号を受取る。制御比較器31
4が(比較器314の反転入力に印加される)タイミン
グ・コンデンサ301の両端の電圧を、抵抗311,3
12の接続点からの基準電圧と連続的に比較する。
タイマ117の動作を考えるにあたって、最初にフリッ
プフロップ317のQ出力が低レベルであって、トラン
ジスタ315をオフに保ち、この為コンデンサ301が
或る電圧レベルに充電され、制御比較器314の出力が
低であると仮定することが出来る。この状態では、フリ
ップフロップ317のクロック(C)入力にバッファ増
幅器320を介して印加される信号SIGのパルスの立
上りにより、Q出力が高レベルに変わる。これによって
トランジスタ315がオンに転じ、コンデンサ301を
放電させる。コンデンサ301が放電すると、比較器3
05からの出力信号CLKが強制的に低レベルになる。
比較器304の出力は、その前に低レベルになっていな
ければ、やはり強制的に低レベルになり、LOS比較器
303の出力は、それまでに高レベルの状態になけれ
ば、強制的に高レベルになる。
コンデンサ301の放電が比較器314によって検出さ
れる。この比較器の出力が高レベルになると、フリップ
フロップ317をリセットする。この時フリップフロッ
プ317のQ出力が低になり、トランジスタ315をオ
フに転じ、こうしてコンデンサ301の再充電を開始す
ることが出来る様にする。一旦再充電電圧が十分に高く
なると、クロック比較器305がトリガされ、高レベル
の信号CLKが発生される。コンデンサ301を引続い
て充電するのに任せると、或る電圧レベルに達して、最
初にSYNC比較器304、次にLOS比較器303を
トリガする。こうしてSYNC比較器304が「消失パ
ルス」によってトリガされ、LOS比較器が約2.5T
の間信号SIGがないことによってトリガされるが、こ
れは前に説明した通りである。
第9B図で、信号SIG及びCLKが出力データ・フィ
ルタ119に印加される。このフィルタはフリップフロ
ップ325,326、排他的ノア・ゲート329、ナン
ド・ゲート328、インバータ330及び伝送ゲーと3
31,332を含む。信号SIG及びCLKのパルスが
フリップフロップ325のD及びC入力に夫々印加さ
れ、このフリップフロップは、その直前の信号SIGの
パルスの高又は低レベル状態をそのQ出力に保持する。
この為、1フレームの最初の2つのパルスの値が比較さ
れる。クロック・パルスが現われたとき、パルスの値が
75%のデューティ・サイクルであるか25%のデュー
ティ・サイクルであるかに応じて、信号SIGの値は高
又は低レベルにある。25%のデューティ・サイクルを
持つパルスでは、フリップフロップ325のQ出力は強
制的に低レベルになる。75%のデューティ・サイクル
を持つパルスでは、Q出力が高レベルである。この為、
事実上、クロック・パルスが発生する度に、信号SIG
の値がサンプリングされる。フリップフロップ325の
Q出力の値が排他的ノア・ゲート329の一方の入力に
印加され、信号SIGの値が他方の入力に印加される。
この為、排他的ノア・ゲート329で現在のパルスの値
及び前のパルスの値が比較され、このゲートの出力は、
入力が同じである時には何時でも高レベルになる。
排他的ノア・ゲート329の出力がナンド・ゲート32
8の一方の入力に印加される。このゲートは他の2つの
入力にカウント・パルスS0及びS1を夫々受取る。パ
ルスS0,,S1及びを合せた値が、1フレー
ム中のどのパルスを受取っているかを表わす。従って、
1フレームの最初の2つのパルスの値が同じであり、受
取っているのが2番目のパルスであれば、ナンド・ゲー
ト328の出力は論理0になる。他の全ての時並びに他
の状態の時、ナンド・ゲート328の出力は論理1であ
る。
ナンド・ゲート328の出力の論理0は、1フレームの
最初の2つのパルスが一致したこと、並びにフリップフ
ロップ326の出力を更新する為の有効な状態を表わ
す。この目的の為、ナンド・ゲート328の出力がイン
バータ330の入力と伝送ゲート331,332の反対
の制御端子に並列に印加される。ナンド・ゲート328
の出力が論理0であると、伝送ゲート332がターンオ
フになり、伝送ゲート331がターンオンになって、制
御信号SIGをフリップフロップ326のD入力に通過
させる。その後クロック・パルスが発生すると、新しい
値がフリップフロップ326の出力に送出される。
他方、1フレームの最初の2つのパルスに冗長性がない
と(すなわち、2つのパルスが相異なると)、ナンド・
ゲート328の出力は論理1であり、伝送ゲート331
がオフになり、伝送ゲート332がオンに保たれる。こ
の状態では、フリップフロップ326の出力がゲート3
32を介して帰還され、フリップフロップ326は前の
出力状態を保持する。従って、フリップフロップ326
の出力は、オン/オフ信号を波したものであり、こ
れがこの後出力選択器120に送られる。
出力選択器120は、波したオン/オフ信号の他に、
信号、最終状態保持信号HLS、及び相補形のデ
ィフォールト信号を受取る。出力選択器120
(これはノア・ゲート335乃至337及びオア・ゲー
ト338を含む)の作用は、I/O点とマイクロコント
ローラの間の通信が失われた場合、即ち、制御信号SI
Gがない場合、出力オン/オフ信号に対する所望の値を
選択することである。この様な通信の損失が起った場
合、出力選択器120は出力にオン/オフ信号を発生す
るが、これは選択器120に対する制御入力として供給
された信号HLS及びに応じて、信号SIGの最
後に伝送された値か又はディフォールト値のどちらかで
ある。
信号HLS及びが夫々最終状態保持ラッチ123
及びディフォールト・ラッチ124によって発生され
る。これらのラッチは実質的に同一であるが、制御信号
の各フレーム内の異なるパルスに応答する。最終状態保
持ラッチ123がナンド・ゲート340と、伝送ゲート
342,343と、インバータ344と、フリップフロ
ップ345を含む。ディフォールト・ラッチ124(第
9C図)がナンド・ゲート348と、伝送ゲート34
9,350と、インバータ352とフリップフロップ3
53を含む。これらの2つのラッチの回路形式及び動作
は略同一であるから、ラッチ123だけについて詳しく
説明する。
ラッチ123が制御信号の各フレーム内の3番目のパル
スに応答する(即ち、2ビット計数器121からの高レ
ベルのパルス及びS1に応答する)。そうすること
によってラッチ出力を更新することが出来る様にする。
パルス及びS1がナンド・ゲート340に対する入
力として印加される。このゲートの出力が伝送ゲート3
42,343を制御する。ナンド・ゲート340の出力
が伝送ゲート342,343の第1組の反対の制御端子
と、インバータ344とに印加される。インバータ34
4の出力が伝送ゲート342,343の第2組の反対の
制御端子に印加される。この為、動作について説明する
と、制御信号の各フレーム中の3番目のパルスが発生し
たことにより、伝送ゲート343がターンオンになり、
伝送ゲート342がターンオフになる。制御信号SIG
が伝送ゲート343に対する入力として印加されるの
で、この信号がフリップフロップ345のD入力へ通過
し、こうしてフリップフロップ345のQ出力から取出
される信号HLSを更新する。出力信号HLSが伝送ゲ
ート342の入力に帰還されるので、制御信号の各フレ
ーム内に3番目のパルスがない場合、信号HLSの値は
ラッチされたまヽである。クロック信号CLKがフリッ
プフロップ342のクロック入力に印加される。ラッチ
123の出力が出力選択器120に供給される。
これに較べて、ディフォールト・ラッチ124は略同様
に動作するが、各フレーム内の4番目のパルスに応答す
る。即ち、ディフォールト・ラッチは制御信号の各フレ
ームのパルスS0及びS1に応答する。然し、ディフォ
ールト・ラッチ124の出力がフリップフロップ353
の出力から取出されるので、相補的な信号が出
力選択器120に供給されることに注意されたい。
普通の動作では、出力選択器120はフリップフロップ
326からの制御信号を単に反転して通過させる様に作
用する。この後、この信号がオン/オフ出力信号となっ
て、制御及び感知部分113(第4図)に印加される。
然し、I/O点とマイクロコントローラの間の通信が消
えると(即ち、制御信号SIGがないと)、出力のオン
/オフ信号は、強制的に信号及びHLSによって
決定された予定の所望の状態になる。信号及びH
LSが両方共出力選択器120に対する入力として印加
される。通信が失われた場合、出力選択器は、どちらが
予め選択されているかに応じて、最終状態を保持するか
又はディフォールト状態を選択する。この予め選択する
のは、通信が失われた場合に、I/O点を強制的に好ま
しい安全な状態になる為である。
信号及びHLSが出力選択器120のノア・ゲー
ト335の入力になる。このゲートの出力がノア・ゲー
ト337に対する一方の入力になる。ノア・ゲート33
7に対する2番目の入力はフリップフロップ326の
出力からの信号である。この為、ノア・ゲート335が
ノア・ゲート337を制御して、信号又はHLS
の何れか一方が高レベルにある時、ノア・ゲート337
が単にフリップフロップ326からの制御信号を反転す
る様にする。他方、信号が低レベルであり(すな
わち、通信が失われており)、信号HLSも低レベルで
ある場合、ノア・ゲート335の出力は高レベルであ
り、ノア・ゲート337の出力を低レベルに保つ。信号
、HLS及びDEFがノア・ゲート336に印加
される。ゲート336の出力が、ノア・ゲート337か
らの出力と共に、オア・ゲート338に対する入力とし
て印加される。オア・ゲート338の出力がオン/オフ
制御信号である。この為、通信が失われ(信号が
低レベル)且つ最終状態を保持する指令がない(信号H
LSが低レベル)場合、オア・ゲート338からのオン
/オフ出力信号がディフォールト信号DEFになる様に
選択される(即ち、信号がオア・ゲート336に
よって反転される)。従って、その動作は、通信が失わ
れ、最終状態保持が選択されていない場合、ディフォー
ルト状態が選択される様になっている。ディフォールト
状態が選択された場合でも最終状態を保持するかどうか
は、勿論、最終状態保持ラッチ123及びディフォール
ト・ラッチ124を適当にセットすることによって制御
し得る。
以上は、制御及び通信部分111の順方向通路を詳しく
説明したものである。符号化診断情報は、前に説明した
様に、状態ラッチ125及び4者択1のデータ選択器1
29を介して送り返される。情報の符号化は第10図に
ついて詳しく説明するが、こヽでは、状態ラッチ125
に対する入力信号X0乃至X3が、第3図のマイクロコ
ントローラ90に送り返される診断情報及びその他の情
報を含む様に符号化される。状態ラッチ125はモート
ローラ・インコーポレーテッド社から入手し得る商品名
LS14174型の様な市場で入手し得る装置であって
よい。符号化情報(X0乃至X3)が状態符号化器12
5に供給される信号SYNCの立上りで、状態ラッチ1
25にラッチされる。この為、制御信号の各フレームで
新しい一組のデータがラッチされる。このデータがI/
O点の動作パラメータを表わす診断信号を形成する。
状態ラッチ125からのデータが4者択1のデータ選択
器129を介してバッファ増幅器360からマイクロコ
ントローラ90にビット毎に伝送される。データ選択器
129が2ビット計数器121からの現在値に応答し
て、信号X0乃至X3の値を順次供給する。例えば、各
フレーム内の最初のパルスを受取った時、診断データの
ビットX0が同時に伝送される。データ選択器129は
モートローラ・インコーポレーテッド社の商品名MC1
4052型の様な市場で入手し得る装置であってよい。
第10図は第4図の符号化器125の様な状態符号化器
の真理値表を例示する。第10図の真理値表を持つ符号
化器は、当業者であれば、標準的な組合わせ論理素子を
用いて容易に実現することが出来る。
第10図について説明すると、入力状態が表の左側部分
の一番上に水平方向に列記されている。その下の各列に
は、各々の入力がとり得る値が記されている。この表で
「1」は或る値が真(例えば高レベルの信号)であるこ
と、「0」は或る値が真でないこと、「×」は「ドント
ケア」(即ち1であっても0であっても影響はないこ
と)を表わす。状態符号化器125の4ビット出力(X
0乃至X3)が図表の右側部分に示されており、X0乃
至X3が4列にわたって横に並べてある。従って4列を
通る各々の横の行が4ビット・ワードであり、これがI
/O点の状態を一意的に限定する。この4ビット・ワー
ドが、第4図のマイクロコントローラ90、そして最終
的にはCPU(第1図)に送り返される診断データであ
る。
例えば、真理値表で、第1行は低電圧の列が高レベルで
あり、他の列は不確定の「ドントケア」状態である。こ
の状態では、4ビット出力は全部「0」であると一意的
に決定される。この全部「0」の4ビット・ワードは、
I/O点の電源装置が切れたことを表わす。別の例とし
て、第6行は、出力がオンに指示されているが、出力が
短絡状態であることを示している。即ち、「オン/オ
フ」を表わす第1列に「1」が現われ、I/O点をター
ンオンすべきことを表わすと同時に、過電流の列(第6
列)に過電流の表示がある。この状態に対する4ビット
出力ワードは、X3が「1」である他は全部「0」であ
る。同様に、I/O点の種々の状態を限定する15個一
組の一意的な4ビット・ワードがある。
以上、プログラマブル制御装置に有用な改良された入力
/出力装置の特徴を説明した。この発明を実施する最善
の様式を説明したが、当業者であれば、この発明を逸脱
せずに、この他の種々の変更を加えることが出来よう。
従って、特許請求の範囲は、この発明の範囲内で可能な
全ての変更を包括するものであることを承知されたい。
【図面の簡単な説明】
第1図はこの発明のインテリジェント入力/出力(I/
O)装置を含むプログラマブル制御装置の簡略ブロック
図である。第2図は何れも第1図のI/O装置に使う様
に構成した個別のI/Oモジュール及び携帯式の監視装
置に考えられる物理的な形状の1例を示す斜視図であ
る。第3図は第1図の1つのI/Oモジュールを詳しく
示すブロック図である。第4図は第3図に示した形式の
I/O点に対する通信部分と制御及び感知部分との簡略
ブロック図である。第5図及び第6図は第4図の回路に
関連する信号の関係を示す波形図である。第7A図、第
7B図及び第7C図は第4図のI/O回路に使うことの
出来る種々の入力/出力スイッチング回路を示す回路図
であり、第7A図は直流源回路、第7B図は直流シンク
回路及び第7C図は交流回路を夫々示す回路図である。
第8図は第4図のI/O点の制御及び感知部分の回路図
である。第9図は第9A乃至9C図の回路の接続の仕方
を示す配置図であり、第9A図、第9B図及び第9C図
は第4図のI/O点の通信部分の詳しい回路図である。
第10図は第4図の通信部分の状態符号化器に於ける組
合せ論理として、診断及び状態データを4ビット符号化
信号に関係づける真理値表を示す図表である。 (主な符号の説明) 20:中央処理装置 28,106:通信回線 24,25,26:I/Oモジュール 36,90:マイクロコントローラ 37乃至39,81乃至88:I/O点 111:通信部分 113:制御及び感知部分 141,146,175,176:絶縁ゲート・トラン
ジスタ 148,167,189:前置負荷抵抗 149,158,186:入力/出力端子 152,159,190:負荷リターン端子 155,160,187:入力リターン端子

Claims (14)

    【特許請求の範囲】
  1. 【請求項1】プログラマブル制御装置に使われる入力/
    出力回路に於て、 それに接続された負荷に対する負荷電流を制御するた
    め、指令信号に応答してターンオン及びターンオフする
    制御手段であって、負荷電流の主要部分を通す主電流部
    分及び前記負荷電流の一部分を通す分路部分を持つ制御
    手段と、 前記制御手段の前記分路部分に結合されていて、前記負
    荷電流の一部分に応答して、前記負荷電流を表わす負荷
    電流表示信号を発生する電流感知手段と、 負荷電流の中間レベルを表わす中間基準信号を発生する
    第1の基準手段と、 前記電流感知手段及び前記第1の基準手段に結合されて
    いて、前記負荷電流表示信号及び前記中間基準信号を受
    取り、前記負荷電流表示信号が前記中間基準信号を越え
    ている持続時間ならびに前記負荷電流表示信号の大きさ
    に応じて定まる時刻に、前記制御手段をターンオフする
    指令信号を開始させる第1の比較手段とを含む、過電流
    保護作用を持つ入力/出力回路。
  2. 【請求項2】特許請求の範囲第1項に記載した入力/出
    力回路に於て、前記制御手段が前記主電流部分に対応す
    る主電流部分及び前記分路部分に対応するエミュレーシ
    ョン部分を持つ形式の絶縁ゲート・トランジスタ(IG
    T)で構成されている入力/出力回路。
  3. 【請求項3】特許請求の範囲第2項に記載した入力/出
    力回路に於て、前記中間基準信号よりも大きさの大き
    い、負荷電流の過大レベルを表わす過大基準信号を発生
    する第2の基準手段と、前記電流感知手段及び前記第2
    の基準手段に結合されていて、前記負荷電流表示信号及
    び前記過大基準信号を受取って、前記負荷電流表示信号
    が前記過大基準信号を越えた時には、直ちに前記制御手
    段をターンオフする指令信号を開始する第2の比較手段
    とを更に含む入力/出力回路。
  4. 【請求項4】特許請求の範囲第3項に記載した入力/出
    力回路に於て、前記中間基準信号よりも大きさが小さ
    い、負荷電流の最小レベルを表わす最小基準信号を発生
    する第3の基準手段と、前記電流感知手段及び前記第3
    の基準手段に結合されていて、前記負荷電流表示信号及
    び前記最小基準信号を受取って、前記負荷電流表示信号
    が前記最小基準信号より小さい時には、負荷電流が不十
    分であることを表わす診断信号を発生する第3の比較手
    段とを更に含む入力/出力回路。
  5. 【請求項5】特許請求の範囲第4項に記載した入力/出
    力回路に於て、前記電流感知手段がオーミック値の比較
    的小さい抵抗で構成されている入力/出力回路。
  6. 【請求項6】特許請求の範囲第5項に記載した入力/出
    力回路に於て、前記第1の比較手段が抵抗−静電容量タ
    イミング回路を含んでいる入力/出力回路。
  7. 【請求項7】プログラマブル制御装置に用いられる入力
    /出力回路に於て、 それに接続された負荷に対する負荷電流を制御する為に
    指令信号に応答してターンオン及びターンオフする絶縁
    ゲート・トランジスタであって、前記負荷電流の主要部
    分を通す主部分及び前記負荷電流の一部分を通すエミュ
    レーション部分を持つ絶縁ゲート・トランジスタ(IG
    T)と、 前記トランジスタの前記エミュレーション部分に結合さ
    れていて、前記負荷電流の前記一部分に応答して、前記
    負荷電流を表わす負荷信号を発生する電流感知手段と、 前記電流感知手段に結合されていて、前記負荷信号に応
    答して、前記負荷電流が予め選ばれた第1の値より高い
    か低いかを表わす第1の診断信号を発生する第1の回路
    手段と、 前記電流感知手段に結合されていて、前記負荷信号に応
    答して、前記負荷電流が前記予め選ばれた第1の値より
    大きさの大きい予め選ばれた第2の値より高いか低いか
    を表わす第2の診断信号を発生する第2の回路手段と、 前記電流感知手段に結合されていて、前記負荷信号に応
    答して、前記負荷電流が前記予め選ばれた第1の値より
    大きさの小さい予め選ばれた第3の値より高いか低いか
    を表わす第3の診断信号を発生する第3の回路手段とを
    含む、電流負荷状態に関する診断情報を発生できる入力
    /出力回路。
  8. 【請求項8】特許請求の範囲第7項に記載した入力/出
    力回路に於て、前記第1の回路手段から前記第1の診断
    信号を受取って、前記負荷電流が前記予め選ばれた第1
    の値より高い間の持続時間に応じて定まる時刻に、前記
    絶縁ゲート・トランジスタをオフにするように指令する
    手段を更に含む入力/出力回路。
  9. 【請求項9】特許請求の範囲第8項に記載した入力/出
    力回路に於て、前記第2の回路手段から前記第2の診断
    信号を受取って、前記負荷電流が前記予め選ばれた第2
    の値より高い時には、直ちに前記絶縁ゲート・トランジ
    スタをオフにする様に指令する手段を更に含む入力/出
    力回路。
  10. 【請求項10】特許請求の範囲第9項に記載した入力/
    出力回路に於て、前記予め選ばれた第3の値は前記予め
    選ばれた第1の値よりも実質的に小さく、前記第3の診
    断信号は、前記負荷電流が前記予め選ばれた第3の値よ
    り小さい時には、負荷が開路しているか又は切断されて
    いることを表わす入力/出力回路。
  11. 【請求項11】プログラマブル制御装置に用いられる入
    力/出力回路に於て、 それに接続された負荷に対する負荷電流を制御するため
    に指令信号に応答してターンオン及びターンオフするス
    イッチング手段であって、負荷電流の主要部分を通す主
    電流部分及び負荷電流の一部分を通す分路部分を持つス
    イッチング手段と、 前記スイッチング手段の前記分路部分に結合されてい
    て、前記負荷電流の一部分に応答して負荷電流信号を発
    生する電流感知手段と、 前記電流感知手段に結合されていて、前記負荷電流信号
    に応答して前記負荷電流の範囲を表わす一組の信号を発
    生する第1の回路手段と、 前記負荷に結合されていて、前記負荷に印加される電圧
    レベルを表わす負荷信号を発生する第2の回路手段と、 電力線路に結合されていて、当該入力/出力回路に対し
    て供給される動作電圧の電圧レベルを表わす線路電圧信
    号を発生する第3の回路手段と、 前記電流感知手段ならびに前記第1及び第2の回路手段
    に結合されていて、前記一組の負荷電流信号、前記負荷
    電圧信号及び前記線路電圧信号に応答して、これらの信
    号に応じて当該入力/出力回路の動作状態を表わす符号
    化値を持つ符号化診断信号を発生する符号化手段とを含
    む、動作状態に関する診断信号を発生できる入力/出力
    回路。
  12. 【請求項12】特許請求の範囲第11項に記載した入力
    /出力回路に於て、前記スイッチング手段の温度に応答
    して温度を表わす信号を発生する温度感知手段を更に含
    み、前記符号化手段が前記温度信号にも応答する入力/
    出力回路。
  13. 【請求項13】特許請求の範囲第12項に記載した入力
    /出力回路に於て、前記スイッチング手段が絶縁ゲート
    ・トランジスタで構成されている入力/出力回路。
  14. 【請求項14】特許請求の範囲第13項に記載した入力
    /出力回路に於て、前記第1の回路手段が比較回路で構
    成され、前記一組の負荷電流信号が負荷電流の高レベ
    ル、中間レベル及び低レベルを表わす信号を含んでいる
    入力/出力回路。
JP60119911A 1984-06-04 1985-06-04 プログラマブル制御装置用の入力/出力回路 Expired - Lifetime JPH0614281B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US617,095 1984-06-04
US06/617,095 US4628397A (en) 1984-06-04 1984-06-04 Protected input/output circuitry for a programmable controller

Publications (2)

Publication Number Publication Date
JPS6111802A JPS6111802A (ja) 1986-01-20
JPH0614281B2 true JPH0614281B2 (ja) 1994-02-23

Family

ID=24472228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60119911A Expired - Lifetime JPH0614281B2 (ja) 1984-06-04 1985-06-04 プログラマブル制御装置用の入力/出力回路

Country Status (5)

Country Link
US (1) US4628397A (ja)
JP (1) JPH0614281B2 (ja)
DE (1) DE3519800C2 (ja)
FR (1) FR2565378B1 (ja)
GB (1) GB2162390B (ja)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5182803A (en) * 1986-12-12 1993-01-26 Heidelberger Druckmaschinen Ag System for inputting and/or outputting signals of a digital control system for a printing machine including a digital filter
DE3642500A1 (de) * 1986-12-12 1988-06-23 Heidelberger Druckmasch Ag System zur ein- und/oder ausgabe von signalen eines digitalen steuersystems
US4853820A (en) * 1987-05-11 1989-08-01 Hendry Mechanical Works Electronic circuit breaker systems
US4879624A (en) * 1987-12-24 1989-11-07 Sundstrand Corporation Power controller
US4812943A (en) * 1987-12-24 1989-03-14 Sundstrand Corp. Current fault protection system
US4811136A (en) * 1987-12-24 1989-03-07 Jones Gregory D Phase controller for processing current and voltage faults
US4814934A (en) * 1987-12-24 1989-03-21 Sundstrand Corp. Voltage fault detector
JP2594096B2 (ja) * 1988-03-07 1997-03-26 三洋電機株式会社 ワイヤレス信号受信制御方式
US5140394A (en) * 1988-07-26 1992-08-18 Texas Instruments Incorporated Electrothermal sensor apparatus
US4870531A (en) * 1988-08-15 1989-09-26 General Electric Company Circuit breaker with removable display and keypad
US4951250A (en) * 1988-11-18 1990-08-21 Cruickshank Ancil B Combined input/output circuit for a programmable controller
JP2694993B2 (ja) * 1989-02-22 1997-12-24 株式会社日立製作所 電力用信号処理システムおよびディジタル保護リレー装置
US4896254A (en) * 1989-04-28 1990-01-23 Honeywell Inc. Protective power controller
EP0688077B1 (en) * 1989-05-09 1999-08-11 UT Automotive Dearborn, Inc. Power delivery circuit with current sensing
GB2234871A (en) * 1989-07-25 1991-02-13 Int Rectifier Corp Power delivery circuit with over current detection
FR2650451B1 (fr) * 1989-07-26 1994-09-02 Merlin Gerin Circuit d'entree, du type tout ou rien, d'un dispositif d'automatisme
JP3028371B2 (ja) * 1989-08-22 2000-04-04 ヴアブコ・ヴエステイングハウス・フアールツオイクブレムゼン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング パワートランジスタ及びこれにより制御される負荷の監視方法
JPH03169273A (ja) * 1989-11-22 1991-07-22 Mitsubishi Electric Corp スイッチングデバイス駆動回路
SE469732B (sv) * 1991-04-02 1993-08-30 Asea Brown Boveri Analog anpassningsenhet
SE469731B (sv) * 1991-04-02 1993-08-30 Asea Brown Boveri Digital anpassningsenhet
US5231565A (en) * 1991-06-28 1993-07-27 Square D Company Electrical distribution system having mappable control inputs
US5892449A (en) * 1991-06-28 1999-04-06 Square D Company Electrical distribution system with an external multiple input and status unit
FR2681160B1 (fr) * 1991-09-05 1995-03-24 Telemecanique Dispositif d'entree ou de sortie, notamment pour automate programmable.
FR2681161B1 (fr) * 1991-09-05 1995-02-24 Telemecanique Dispositif de commande et de protection de sorties, notamment pour automate programmable.
DE9115712U1 (de) * 1991-12-18 1992-03-12 Frank, Georg, 8221 Vachendorf Steuereinheit
US5490086A (en) * 1992-03-06 1996-02-06 Siemens Energy & Automation, Inc. Plug-in ground fault monitor for a circuit breaker
US5426592A (en) * 1992-03-06 1995-06-20 Siemens Energy & Automation, Inc. Circuit breaker trip unit which automatically adapts to operated with a particular display module
JPH05292656A (ja) * 1992-04-13 1993-11-05 Mitsubishi Electric Corp パワーデバイスの過電流保護装置
US5467240A (en) * 1993-09-30 1995-11-14 Caterpillar Inc. Driver circuit with diagnostics and over voltage protection
US5596263A (en) * 1993-12-01 1997-01-21 Siemens Energy & Automation, Inc. Electrical power distribution system apparatus-resident personality memory module
US5446362A (en) * 1994-06-21 1995-08-29 General Electric Company Thermal protection for AC traction motors using temperature estimations to calculate torque limits and blower speed requirements
US6308231B1 (en) * 1998-09-29 2001-10-23 Rockwell Automation Technologies, Inc. Industrial control systems having input/output circuits with programmable input/output characteristics
US6225825B1 (en) 1998-09-30 2001-05-01 Rockwell Technologies, Llc Industrial control systems having input/output circuits with programmable input/output characteristics
US6298393B1 (en) 1998-09-30 2001-10-02 Rockwell Technologies, Llc Industrial control systems having input/output circuits with programmable input/output characteristics
DE19855370A1 (de) * 1998-12-01 2000-06-15 Bosch Gmbh Robert Schutzschaltung für einen Leistungshalbleiter
US6560084B1 (en) 1999-11-05 2003-05-06 Siemens Energy & Automation, Inc. Circuit breaker having programmable amplifier
US6667869B2 (en) * 2000-02-24 2003-12-23 Acuity Imaging, Llc Power control system and method for illumination array
JP3663106B2 (ja) * 2000-02-28 2005-06-22 東芝機械株式会社 データ入出力装置
US20020049551A1 (en) * 2000-10-20 2002-04-25 Ethicon Endo-Surgery, Inc. Method for differentiating between burdened and cracked ultrasonically tuned blades
US6816919B2 (en) 2001-07-16 2004-11-09 Ge Fanuc Automation North America, Inc. Method and system for configuring input/output points
US20030074498A1 (en) * 2001-10-16 2003-04-17 Gareis Ronald E. Method and circuitry for a programmable controller system
DE10152527A1 (de) * 2001-10-24 2003-05-08 Delphi Tech Inc Schaltungsanordnung zur Laststromüberwachung
US6639433B1 (en) 2002-04-18 2003-10-28 Johnson Controls Technology Company Self-configuring output circuit and method
JP3851617B2 (ja) * 2003-05-27 2006-11-29 ファナック株式会社 モータ駆動装置
US20050253744A1 (en) * 2004-05-13 2005-11-17 Johnson Controls Technology Company Configurable output circuit and method
FR2874700B1 (fr) * 2004-08-31 2006-11-17 St Microelectronics Sa Detection de l'etat d'alimentation d'une charge alimentee par une tension variable
JP4627165B2 (ja) 2004-09-02 2011-02-09 三菱電機株式会社 電力用半導体装置の制御用回路および制御用集積回路
US7583037B2 (en) 2006-06-23 2009-09-01 Spacesaver Corporation Mobile storage unit with holding brake and single status line for load and drive detection
US7793115B2 (en) * 2006-09-13 2010-09-07 Hewlett-Packard Development Company, L.P. Method and apparatus for operating a power feed in a computer system
WO2009108920A2 (en) * 2008-02-28 2009-09-03 Bunn-O-Matic Corporation Alternating current overload protection apparatus and method
CN105593772B (zh) 2013-08-06 2019-06-11 基岩自动化平台公司 用于对工业控制系统的模块类型进行合并的方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1352913A (en) * 1971-06-30 1974-05-15 Starkstrom Anlagenbau Veb K Transistor amplifier with overload protection
US3845405A (en) * 1973-05-24 1974-10-29 Rca Corp Composite transistor device with over current protection
CA1042110A (en) * 1974-01-17 1978-11-07 Odo J. Struger Malfunction detection system for a programmable controller
US3938008A (en) * 1974-09-18 1976-02-10 International Business Machines Corporation Common bus driver complementary protect circuit
DE2966268D1 (en) * 1978-10-21 1983-11-10 Ward Goldstone Ltd A switching circuit
IT1202895B (it) * 1979-02-27 1989-02-15 Ates Componenti Elettron Dispositivo di protezione termica per un componente elettronico a semiconduttore
US4247882A (en) * 1979-04-17 1981-01-27 Gould Inc. Universal input/output system construction for programmable controllers
US4293924A (en) * 1979-05-30 1981-10-06 Allen-Bradley Company Programmable controller with high density intelligent I/O interface
US4322771A (en) * 1979-12-31 1982-03-30 Allen-Bradley Company Triac-protected output circuit
US4333120A (en) * 1980-02-27 1982-06-01 General Motors Corporation Transistor protection circuit
JPS56145404A (en) * 1980-03-19 1981-11-12 Omron Tateisi Electronics Co Input circuit of sequence controller
FR2479590A1 (fr) * 1980-03-26 1981-10-02 Electro Automatisme Atel Circuit de protection a reponse rapide pour transistor de puissance, et dispositif d'alimentation electrique a decoupage comportant un tel circuit
DE3012045C2 (de) 1980-03-28 1985-01-31 Nsm-Apparatebau Gmbh & Co Kg, 6530 Bingen Anordnung und Verfahren zum Ein- und Ausschalten einer Vielzahl von an einer Spannungsquelle angeschlossenen Verbrauchern
US4319181A (en) 1980-12-24 1982-03-09 Motorola, Inc. Solid state current sensing circuit
US4347541A (en) * 1981-01-14 1982-08-31 Gte Laboratories Incorporated Circuit breaker
US4425628A (en) 1981-05-26 1984-01-10 General Electric Company Control module for engergy management system
JPS5827202A (ja) * 1981-08-12 1983-02-17 Toshiba Corp デイジタルコントロ−ル装置
US4535409A (en) * 1981-09-18 1985-08-13 Mcgraw-Edison Company Microprocessor based recloser control
US4394724A (en) * 1981-10-30 1983-07-19 Westinghouse Electric Corp. Propulsion motor control apparatus and method
US4435706A (en) * 1981-11-02 1984-03-06 Allen-Bradley Company Switch network
US4417151A (en) * 1982-03-11 1983-11-22 Distributed Control Systems, Inc. Universal input-output device
DE3216833A1 (de) * 1982-05-05 1983-11-10 Siemens AG, 1000 Berlin und 8000 München Schutzschaltung fuer einen schalttransistor
JPS5935209A (ja) * 1982-08-20 1984-02-25 Koyo Denshi Kogyo Kk シ−ケンスコントロ−ラ
GB2145593B (en) * 1983-08-10 1987-03-04 Siliconix Ltd Self protecting solid state switch

Also Published As

Publication number Publication date
DE3519800A1 (de) 1985-12-05
DE3519800C2 (de) 1994-03-31
JPS6111802A (ja) 1986-01-20
GB2162390B (en) 1987-09-23
FR2565378B1 (fr) 1991-04-26
GB2162390A (en) 1986-01-29
FR2565378A1 (fr) 1985-12-06
US4628397A (en) 1986-12-09
GB8508634D0 (en) 1985-05-09

Similar Documents

Publication Publication Date Title
JPH0614281B2 (ja) プログラマブル制御装置用の入力/出力回路
US4593380A (en) Dual function input/output for a programmable controller
US4870564A (en) Distributed input/output system
US4764868A (en) Distributed input/output system
US4879624A (en) Power controller
JPH0646393B2 (ja) 分布形入力/出力装置
US6246928B1 (en) Electrical interruption device comprising a communication module
US5093804A (en) Programmable controller input/output communications system
US4872136A (en) Programmable controller input/output communications system
US4320386A (en) Selection and power reset circuit
US20030074498A1 (en) Method and circuitry for a programmable controller system
CA2122384A1 (en) Fault tolerant programmable controller
CA1247748A (en) Dual function input/output for a programmable controller
CA1248179A (en) Protected input/output circuitry for a programmable controller
CN214895749U (zh) 连接状态检测电路、连接状态检测装置以及电子设备
CN108858206A (zh) 机器人的抱闸控制装置及系统、机器人的抱闸控制方法
CA1248639A (en) Programmable controller input/output communication system
CN203287768U (zh) 无刷直流电机的can总线控制系统
EP0103971B1 (en) Apparatus for testing wiring harnesses
CA1244957A (en) Distributed input/output system
CN110060789B (zh) 可靠性监测系统和具有可靠性监测功能的转速机架
SU1101799A1 (ru) Устройство контрол и защиты двух блоков питани
KR870001728B1 (ko) 마이크로 프로세서의 런 어웨이(Run away) 방지방법 및 장치
JPS6138363Y2 (ja)
RU1788516C (ru) Выходной узел тестера дл контрол цифровых блоков

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term