JPH06140707A - Antireflection film of deliquescent optical crystal - Google Patents
Antireflection film of deliquescent optical crystalInfo
- Publication number
- JPH06140707A JPH06140707A JP4310843A JP31084392A JPH06140707A JP H06140707 A JPH06140707 A JP H06140707A JP 4310843 A JP4310843 A JP 4310843A JP 31084392 A JP31084392 A JP 31084392A JP H06140707 A JPH06140707 A JP H06140707A
- Authority
- JP
- Japan
- Prior art keywords
- optical crystal
- fluoride
- antireflection film
- deliquescent
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 50
- 239000013078 crystal Substances 0.000 title claims abstract description 44
- KLZUFWVZNOTSEM-UHFFFAOYSA-K Aluminium flouride Chemical compound F[Al](F)F KLZUFWVZNOTSEM-UHFFFAOYSA-K 0.000 claims abstract description 19
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims abstract description 9
- 235000019796 monopotassium phosphate Nutrition 0.000 claims description 21
- 229910000402 monopotassium phosphate Inorganic materials 0.000 claims description 12
- PJNZPQUBCPKICU-UHFFFAOYSA-N phosphoric acid;potassium Chemical compound [K].OP(O)(O)=O PJNZPQUBCPKICU-UHFFFAOYSA-N 0.000 claims description 12
- BYMUNNMMXKDFEZ-UHFFFAOYSA-K trifluorolanthanum Chemical compound F[La](F)F BYMUNNMMXKDFEZ-UHFFFAOYSA-K 0.000 claims description 6
- TYIZUJNEZNBXRS-UHFFFAOYSA-K trifluorogadolinium Chemical compound F[Gd](F)F TYIZUJNEZNBXRS-UHFFFAOYSA-K 0.000 claims description 5
- XRADHEAKQRNYQQ-UHFFFAOYSA-K trifluoroneodymium Chemical compound F[Nd](F)F XRADHEAKQRNYQQ-UHFFFAOYSA-K 0.000 claims description 5
- 150000002222 fluorine compounds Chemical group 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 abstract description 23
- 239000000758 substrate Substances 0.000 abstract description 14
- 230000007774 longterm Effects 0.000 abstract description 5
- 238000004299 exfoliation Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 description 9
- IRPGOXJVTQTAAN-UHFFFAOYSA-N 2,2,3,3,3-pentafluoropropanal Chemical compound FC(F)(F)C(F)(F)C=O IRPGOXJVTQTAAN-UHFFFAOYSA-N 0.000 description 5
- 239000003989 dielectric material Substances 0.000 description 5
- 239000003921 oil Substances 0.000 description 4
- OKOSPWNNXVDXKZ-UHFFFAOYSA-N but-3-enoyl chloride Chemical compound ClC(=O)CC=C OKOSPWNNXVDXKZ-UHFFFAOYSA-N 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910016569 AlF 3 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 229910005690 GdF 3 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(iv) oxide Chemical compound O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Landscapes
- Surface Treatment Of Optical Elements (AREA)
- Lasers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、例えばレーザ装置の波
長変換素子として使用される潮解性のある光学結晶の反
射防止膜に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an antireflection film of a deliquescent optical crystal used as a wavelength conversion element of a laser device, for example.
【0002】[0002]
【従来の技術】レーザー装置の波長変換素子には、例え
ばリン酸二水素カリウム(KDP)などの潮解性のある
光学結晶が使用されている。この潮解性光学結晶は、高
いレーザ損傷閾値(レーザ耐力)を有し且つ波長が0.
35μm程度の紫外光までの波長変換が可能なために、
YAGレーザやガラスレーザなどのレーザ装置から発生
する例えば波長が1050〜1060nmの赤外光を、
波長が530nm程度の可視光または波長が350nm
程度の紫外光へ波長変換するのに好適である。然し、こ
のリン酸二水素カリウム(KDP)は吸湿性が高く強い
潮解性を有するので、そのまま大気中で使用した場合に
は結晶が水分を吸収して溶解し、表面に生じた白濁で散
乱を生じて透過率が低下すると共に、反射防止膜が剥離
して表面反射を起こすなど光学的性能が低下する欠点が
ある。そこで、これらを防止する手段として上記リン酸
二水素カリウム(KDP)による光学結晶が大気に触れ
ないように、波長変換素子と屈折率がほぼ等しいオイル
中に浸した状態で使用されているのが現状である。2. Description of the Related Art A deliquescent optical crystal such as potassium dihydrogen phosphate (KDP) is used for a wavelength conversion element of a laser device. This deliquescent optical crystal has a high laser damage threshold (laser resistance) and a wavelength of 0.
Since wavelength conversion up to about 35 μm ultraviolet light is possible,
For example, infrared light having a wavelength of 1050 to 1060 nm generated from a laser device such as a YAG laser or a glass laser,
Visible light with wavelength of about 530 nm or wavelength of 350 nm
It is suitable for wavelength conversion into ultraviolet light of a certain degree. However, since this potassium dihydrogen phosphate (KDP) has a high hygroscopic property and a strong deliquescent property, when it is used as it is in the atmosphere, the crystals absorb water to dissolve, and the white turbidity generated on the surface causes scattering. There is a defect that the optical performance is deteriorated by the occurrence of such a phenomenon that the transmittance is lowered and the antireflection film is peeled off to cause surface reflection. Therefore, as a means for preventing these, the optical crystal made of potassium dihydrogen phosphate (KDP) is used in a state of being immersed in oil having a refractive index almost equal to that of the wavelength conversion element so that the optical crystal does not come into contact with the atmosphere. The current situation.
【0003】[0003]
【発明が解決しようとする課題】然しながら、上記のよ
うにオイル中に浸して使用する場合には例えば反射防止
手段を施したガラス容器(セル)内にオイルを満たし、
このオイル中に光学結晶を収容させる格別な設備を必要
とするので、大気中でそのまま使用した場合に比べて装
置が大型化したりコスト高になると共に、上記セルとオ
イルの間およびオイルと光学結晶との間で生ずる透過光
のロスを最小限にするための配慮が必要になるなどの問
題点があった。また、上記リン酸二水素カリウム(KD
P)による光学結晶を大気中で使用するために、表面へ
酸化物などによる反射防止膜をコーティングする試みも
成されたが、酸化物はフッ化物に比べてレーザ耐力が低
く高出力パルスレーザ光の照射によって長期使用中に膜
が劣化し易いと共に、この酸化物の粒子間の空孔を介し
て大気中の水分が内部にある潮解性光学結晶の表面側へ
浸透し、その表面を溶解して白濁や反射防止膜を剥離さ
せるので、レーザ耐力および光学的性能が更に低下する
などの課題があり、実用には供し得ないものであった。However, when it is used by immersing it in oil as described above, for example, a glass container (cell) provided with antireflection means is filled with oil,
Since special equipment for accommodating the optical crystal in this oil is required, the size and cost of the device will be larger than in the case where it is used as it is in the atmosphere. However, there is a problem that it is necessary to consider to minimize the loss of transmitted light between and. In addition, the potassium dihydrogen phosphate (KD
In order to use the optical crystal according to P) in the atmosphere, an attempt was made to coat the surface with an antireflection film such as an oxide. However, the oxide has a lower laser resistance than a fluoride and a high output pulsed laser beam. The film easily deteriorates during long-term use due to the irradiation with water, and moisture in the atmosphere permeates into the surface side of the deliquescent optical crystal inside through the pores between the oxide particles to dissolve the surface. Since the white turbidity and the antireflection film are peeled off, there is a problem that the laser resistance and the optical performance are further deteriorated, and it cannot be put to practical use.
【0004】これを具体的に説明すると、図3で示す従
来例では潮解性光学結晶基板として屈折率が1.54の
リン酸二水素カリウム(KDP)を使用し、一層目の反
射防止膜として膜厚が35nmで屈折率が2.10の二
酸化ハフニウム(HfO2)を使用し、二層目の反射防
止膜として膜厚が111nmで屈折率が1.48の二酸
化ケイ素(SiO2)を使用して波長変換素子を構成し
た場合である。尚、上記従来例における屈折率はいずれ
も波長352nmにおける値である。この波長変換素子
を大気中において、波長352nmの紫外光でパルス幅
が11nsecの高出力パルスレーザ光を照射したとこ
ろ、初期には反射率が0.12%でレーザ耐力が3.6
J/cm2 となり、反射率は良好であるがレーザ耐力に
劣り、然もこの波長変換素子は二か月経過後には膜が剥
離して反射率の増大を生じて使用不能であった。To explain this concretely, in the conventional example shown in FIG. 3, potassium dihydrogen phosphate (KDP) having a refractive index of 1.54 is used as the deliquescent optical crystal substrate, and as the first antireflection film. Hafnium dioxide (HfO 2 ) having a thickness of 35 nm and a refractive index of 2.10 is used, and silicon dioxide (SiO 2 ) having a thickness of 111 nm and a refractive index of 1.48 is used as the second antireflection film. Then, the wavelength conversion element is configured. The refractive index in the above conventional example is a value at a wavelength of 352 nm. When this wavelength conversion element was irradiated with high-power pulsed laser light having a pulse width of 11 nsec with ultraviolet light having a wavelength of 352 nm in the atmosphere, the reflectance was 0.12% and the laser resistance was 3.6 at the initial stage.
It was J / cm 2 , and the reflectance was good, but the laser resistance was poor, and after a lapse of two months, the film peeled off and the reflectance increased, and this wavelength conversion element was unusable.
【0005】[0005]
【課題を解決するための手段】そこで本発明では、上記
したような従来技術の課題を解決するための潮解性光学
結晶の反射防止膜であり、潮解性光学結晶に誘電体多層
膜による反射防止膜がコーティングされ、この反射防止
膜中には吸湿性のあるフッ化アルミニウム(AlF3)
層が含まれている。また、上記反射防止膜が上記フッ化
アルミニウム(AlF3)層および屈折率が1.50〜
1.70の他のフッ化物層とで構成されている。更に
は、上記潮解性光学結晶がリン酸二水素カリウム(KD
P)で構成され、上記他のフッ化物層がフッ化ホルミニ
ウム(HoF3),フッ化ガドリウム(GdF3),フ
ッ化ランタン(LaF3),フッ化ネオジウム(NdF
3)の少なくともいずれか1つで構成され、上記フッ化
アルミニウム(AlF3)層が最上層に構成されてい
る。Therefore, in the present invention, there is provided an antireflection film of a deliquescent optical crystal for solving the above-mentioned problems of the prior art, and the antireflection film of the deliquescent optical crystal is formed by a dielectric multilayer film. film is coated, aluminum fluoride in the anti-reflection film with a hygroscopic (AlF 3)
The layers are included. Further, the antireflection film has the refractive index of 1.50 to that of the aluminum fluoride (AlF 3 ) layer.
1.70 with another fluoride layer. Furthermore, the deliquescent optical crystal is potassium dihydrogen phosphate (KD
Is composed of P), the other fluoride layer is fluoride Horuminiumu (H o F 3), fluoride gadolinium (GdF 3), lanthanum fluoride (LaF 3), neodymium fluoride (NdF
3 ), and the aluminum fluoride (AlF 3 ) layer is the uppermost layer.
【0006】[0006]
【作用】上記した本発明による反射防止膜では、吸湿性
のあるフッ化アルミニウム(AlF3)を使用すること
により、このフッ化アルミニウム層で吸収された大気中
の水分で当該反射防止膜の粒子間の空孔が埋められ、内
部にある潮解性光学結晶の表面側へ浸透しないように抑
止作用し、大気中で使用しても潮解性光学結晶の表面に
対する溶解がなくなり、白濁や表面反射を生ずることが
防止されると共に、膜の剥離や劣化を生ずることがなく
長期使用に際してもレーザ耐力や反射率などの光学的性
能を維持させることができる。In the antireflection film according to the present invention described above, by using hygroscopic aluminum fluoride (AlF 3 ), particles in the antireflection film are absorbed by moisture in the atmosphere absorbed by the aluminum fluoride layer. The voids in the space are filled, and the deliquescent optical crystal inside has a deterrent action so as not to penetrate to the surface side, and even when used in the atmosphere, the deliquescent optical crystal does not dissolve on the surface, resulting in white turbidity and surface reflection. It is possible to prevent the occurrence of such a phenomenon, and to maintain the optical performance such as the laser resistance and the reflectance even during long-term use without causing peeling or deterioration of the film.
【0007】[0007]
【実施例】以下に本発明による反射防止膜を、図1〜2
で示す実施例と図3で示す実験データに基づいて説明す
る。図1で示す第1実施例では、潮解性光学結晶基板1
に対し、性状の異なる誘電体による反射防止膜層2,3
を二層にコーティングしたものである。この潮解性光学
結晶基板1には、屈折率が1.54のリン酸二水素カリ
ウム(KDP)を使用し、一層目の反射防止膜層2とし
て膜厚が88nmで屈折率が1.60のフッ化ランタン
(LaF3)を使用し、二層目の反射防止層膜3として
は膜厚が88nmで屈折率が1.39のフッ化アルミニ
ウム(AlF3)を使用して波長変換素子4が構成され
ている。この波長変換素子4を大気中において、波長3
52nmの紫外光でパルス幅が10nsecの高出力パ
ルスレーザ光を照射したところ、図3で示すように初期
には反射率が0.65%でレーザ耐力が7.2J/cm
2 となり、従来例のものに比べて反射率では劣るがレー
ザ耐力が著しく向上され、然もこの波長変換素子4を一
年経過後に調べたところ白濁や膜の剥離は見られず、レ
ーザ耐力や光学的性能にも変化はなかった。EXAMPLE An antireflection film according to the present invention is shown in FIGS.
Will be described based on the example shown in FIG. 3 and the experimental data shown in FIG. In the first embodiment shown in FIG. 1, the deliquescent optical crystal substrate 1
On the other hand, the antireflection film layers 2 and 3 made of dielectric materials having different properties
Is a two-layer coating. For the deliquescent optical crystal substrate 1, potassium dihydrogen phosphate (KDP) having a refractive index of 1.54 is used, and the first antireflection film layer 2 has a thickness of 88 nm and a refractive index of 1.60. The wavelength conversion element 4 is made of lanthanum fluoride (LaF 3 ) and aluminum fluoride (AlF 3 ) having a thickness of 88 nm and a refractive index of 1.39 as the second antireflection film 3. It is configured. In the atmosphere, this wavelength conversion element 4 has a wavelength of 3
When high-power pulsed laser light with a pulse width of 10 nsec was irradiated with ultraviolet light of 52 nm, as shown in FIG. 3, the reflectance was 0.65% and the laser resistance was 7.2 J / cm at the initial stage.
2 , the reflectance is inferior to that of the conventional example, but the laser resistance is significantly improved, and when the wavelength conversion element 4 is examined after one year, no cloudiness or peeling of the film is observed, and the laser resistance or There was no change in the optical performance.
【0008】また図2で示す第2実施例では、潮解性光
学結晶基板5に対し、性状の異なる誘電体による反射防
止膜層6,7,8を三層にコーティングしたものであ
る。この潮解性光学結晶基板4は、第1実施例の潮解性
光学結晶基板1と同じ屈折率が1.54のリン酸二水素
カリウム(KDP)を使用し、一層目と三層目の反射防
止膜層6,8として膜厚が111nmで屈折率が1.3
9のフッ化アルミニウム(AlF3)を使用し、二層目
の反射防止膜7としては膜厚が36nmで屈折率が1.
60のフッ化ランタン(LaF3)を使用して波長変換
素子9が構成されている。この波長変換素子9に対し、
第1実施例と同じ高出力パルスレーザ光を照射したとこ
ろ、初期には反射率が0.13%でレーザ耐力が10.
8J/cm2 となり、従来例のものに比べて反射率が同
等でレーザ耐力は著しく向上され、然もこの波長変換素
子9の場合にも一年経過後に調べたところ白濁や膜の剥
離は見られず、レーザ耐力や光学的性能にも変化はなか
った。更に、図3で示す第3実施例または第4実施例の
ように、反射防止膜を形成する誘電体の一部にフッ化ホ
ルミニウム(HoF3)またはフッ化ガドリウム(Gd
F3)を使用した場合にも、同様の好結果が得られた。
尚、各実施例中の屈折率はいずれも波長が352nmに
おける値である。In the second embodiment shown in FIG. 2, the deliquescent optical crystal substrate 5 is coated with three layers of antireflection film layers 6, 7 and 8 made of dielectrics having different properties. This deliquescent optical crystal substrate 4 uses potassium dihydrogen phosphate (KDP) having a refractive index of 1.54, which is the same as that of the deliquescent optical crystal substrate 1 of the first embodiment, and prevents reflection in the first and third layers. The film layers 6 and 8 have a film thickness of 111 nm and a refractive index of 1.3.
Aluminum fluoride (AlF 3 ) of No. 9 is used, and the second antireflection film 7 has a thickness of 36 nm and a refractive index of 1.
The wavelength conversion element 9 is configured by using 60 lanthanum fluoride (LaF 3 ). For this wavelength conversion element 9,
When the same high-power pulsed laser light as in the first embodiment was irradiated, the reflectance was 0.13% and the laser proof strength was 10.
It was 8 J / cm 2 , and the reflectance was equivalent to that of the conventional example, and the laser resistance was remarkably improved. In the case of this wavelength conversion element 9 as well, it was found that white turbidity and peeling of the film were found after one year. The laser resistance and the optical performance were not changed. Further, as in the third or fourth embodiment shown in FIG. 3, holmium fluoride (H o F 3 ) or gadolinium fluoride (Gd) is formed on a part of the dielectric material forming the antireflection film.
Similar good results were obtained with F 3 ).
The refractive index in each example is a value at a wavelength of 352 nm.
【0009】このように、潮解性光学結晶基板に対する
反射防止膜として吸湿性のあるフッ化アルミニウム(A
lF3)を使用することにより、このフッ化アルミニウ
ム層で吸収された大気中の水分で当該反射防止膜の粒子
間の空孔が埋められ、内部にある潮解性光学結晶基板の
表面側へ浸透しないように抑止作用する。これにより、
大気中で使用しても潮解性光学結晶基板の表面に対する
溶解がなくなり、白濁や表面反射を生ずることが防止さ
れると共に、膜の剥離や劣化を生ずることがなく長期使
用に際してもレーザ耐力や反射率などの光学的性能を維
持させることができる。As described above, hygroscopic aluminum fluoride (A) is used as an antireflection film for the deliquescent optical crystal substrate.
By using 1F 3 ), the pores between the particles of the antireflection film are filled with the moisture in the atmosphere absorbed by the aluminum fluoride layer, and penetrate into the surface side of the deliquescent optical crystal substrate inside. Do not act as a deterrent. This allows
Even if it is used in the atmosphere, it will not dissolve on the surface of the deliquescent optical crystal substrate, preventing white turbidity and surface reflection, and will not cause peeling or deterioration of the film, and laser resistance and reflection during long-term use. The optical performance such as the index can be maintained.
【0010】尚、本発明は上記実施例に限定されるもの
ではなく、要旨の範囲内において各種の変形を採り得る
ものである。例えば、潮解性光学結晶は上記したリン酸
二水素カリウム(KDP)以外のベーターホウ酸バリウ
ム(BBO)の光学結晶やその他の潮解性のある光学結
晶にも適用される。また、反射防止膜として使用される
フッ化アルミニウム(AlF3)以外の反射防止膜層と
しては各種のフッ化物の使用が可能であり、最上層にレ
ーザ耐力のあるフッ化物を使用すれば酸化物の使用も可
能である。The present invention is not limited to the above embodiments, but various modifications can be made within the scope of the invention. For example, the deliquescent optical crystal is applied to an optical crystal of beta-barium borate (BBO) other than the above-mentioned potassium dihydrogen phosphate (KDP) and other deliquescent optical crystals. Further, various kinds of fluorides can be used as the antireflection film layer other than aluminum fluoride (AlF 3 ) used as the antireflection film, and if a fluoride having laser resistance is used as the uppermost layer, it is an oxide. Can also be used.
【0011】[0011]
【発明の効果】以上の実施例と実験データでも明らかな
ように、本発明による潮解性光学結晶の反射防止膜で
は、大気中で使用した場合でも潮解性光学結晶への水分
の浸透が抑制され、白濁や表面反射を防止することがで
きると共に、高出力パルスレーザ光の照射による膜の剥
離や長期の使用中による膜の劣化が少ない反射防止膜を
形成し、変換効率の良い波長変換器を小型で且つ安価に
提供することができる。As is clear from the above examples and experimental data, the antireflection film of a deliquescent optical crystal according to the present invention suppresses the permeation of water into the deliquescent optical crystal even when used in the atmosphere. A wavelength converter with high conversion efficiency can be formed by preventing clouding and surface reflection, and by forming an antireflection film that is less likely to peel off due to irradiation with high-power pulsed laser light and less deteriorated during long-term use. It can be provided in a small size and at low cost.
【図1】本発明の反射防止膜を使用した第1実施例によ
る波長変換素子の概略断面図。FIG. 1 is a schematic sectional view of a wavelength conversion element according to a first embodiment using an antireflection film of the present invention.
【図2】本発明の反射防止膜を使用した第2実施例によ
る波長変換素子の概略断面図。FIG. 2 is a schematic sectional view of a wavelength conversion element according to a second embodiment using the antireflection film of the present invention.
【図3】本発明の実施例および従来例による反射防止膜
を使用した各種の波長変換素子の実験テータを示す一覧
表。FIG. 3 is a table showing experimental data of various wavelength conversion elements using antireflection films according to examples of the present invention and conventional examples.
1,5 潮解性光学結晶基板 2,3,6,7,8 反射防止膜層 4,9 波長変換素子 1,5 Deliquescent optical crystal substrate 2,3,6,7,8 Antireflection film layer 4,9 Wavelength conversion element
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成5年7月23日[Submission date] July 23, 1993
【手続補正2】[Procedure Amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】請求項3[Name of item to be corrected] Claim 3
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【手続補正3】[Procedure 3]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0005[Name of item to be corrected] 0005
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0005】[0005]
【課題を解決するための手段】そこで本発明では、上記
したような従来技術の課題を解決するための潮解性光学
結晶の反射防止膜であり、潮解性光学結晶に誘電体多層
膜による反射防止膜がコーティングされ、この反射防止
膜中には吸湿性のあるフッ化アルミニウム(AlF3)
層が含まれている。また、上記反射防止膜が上記フッ化
アルミニウム(AlF3)層および屈折率が1.50〜
1.70の他のフッ化物層とで構成されている。更に
は、上記潮解性光学結晶がリン酸二水素カリウム(KD
P)で構成され、上記他のフッ化物層がフッ化ホルミニ
ウム(HoF3),フッ化ガドリウム(GdF3),フ
ッ化ランタン(LaF3),フッ化ネオジウム(NdF
3)の少なくともいずれか1つで構成され、上記フッ化
アルミニウム(AlF3)層が最上層に構成されてい
る。Therefore, in the present invention, there is provided an antireflection film of a deliquescent optical crystal for solving the above-mentioned problems of the prior art, and the antireflection film of the deliquescent optical crystal is formed by a dielectric multilayer film. film is coated, aluminum fluoride in the anti-reflection film with a hygroscopic (AlF 3)
The layers are included. Further, the antireflection film has the refractive index of 1.50 to that of the aluminum fluoride (AlF 3 ) layer.
1.70 with another fluoride layer. Furthermore, the deliquescent optical crystal is potassium dihydrogen phosphate (KD
P) and the other fluoride layer is holmium fluoride ( Ho F 3 ), gadolinium fluoride (GdF 3 ), lanthanum fluoride (LaF 3 ), neodymium fluoride (NdF).
3 ), and the aluminum fluoride (AlF 3 ) layer is the uppermost layer.
【手続補正4】[Procedure amendment 4]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0008[Correction target item name] 0008
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0008】また図2で示す第2実施例では、潮解性光
学結晶基板5に対し、性状の異なる誘電体による反射防
止膜層6,7,8を三層にコーティングしたものであ
る。この潮解性光学結晶基板4は、第1実施例の潮解性
光学結晶基板1と同じ屈折率が1.54のリン酸二水素
カリウム(KDP)を使用し、一層目と三層目の反射防
止膜層6,8として膜厚が111nmで屈折率が1.3
9のフッ化アルミニウム(AlF3)を使用し、二層目
の反射防止膜7としては膜厚が36nmで屈折率が1.
60のフッ化ランタン(LaF3)を使用して波長変換
素子9が構成されている。この波長変換素子9に対し、
第1実施例と同じ高出力パルスレーザ光を照射したとこ
ろ、初期には反射率が0.13%でレーザ耐力が10.
8J/cm2となり、従来例のものに比べて反射率が同
等でレーザ耐力は著しく向上され、然もこの波長変換素
子9の場合にも一年経過後に調べたところ白濁や膜の剥
離は見られず、レーザ耐力や光学的性能にも変化はなか
った。更に、図3で示す第3実施例または第4実施例の
ように、反射防止膜を形成する誘電体の一部にフッ化ホ
ルミニウム(HoF3)またはフッ化ガドリウム(Gd
F3)を使用した場合にも、同様の好結果が得られた。
尚、各実施例中の屈折率はいずれも波長が352nmに
おける値である。In the second embodiment shown in FIG. 2, the deliquescent optical crystal substrate 5 is coated with three layers of antireflection film layers 6, 7 and 8 made of dielectrics having different properties. This deliquescent optical crystal substrate 4 uses potassium dihydrogen phosphate (KDP) having a refractive index of 1.54, which is the same as that of the deliquescent optical crystal substrate 1 of the first embodiment, and prevents reflection in the first and third layers. The film layers 6 and 8 have a film thickness of 111 nm and a refractive index of 1.3.
Aluminum fluoride (AlF 3 ) of No. 9 is used, and the second antireflection film 7 has a thickness of 36 nm and a refractive index of 1.
The wavelength conversion element 9 is configured by using 60 lanthanum fluoride (LaF 3 ). For this wavelength conversion element 9,
When the same high-power pulsed laser light as in the first embodiment was irradiated, the reflectance was 0.13% and the laser proof strength was 10.
It was 8 J / cm 2 , and the reflectance was equivalent to that of the conventional example, and the laser resistance was remarkably improved. In the case of this wavelength conversion element 9 as well, when examined after one year, white turbidity and peeling of the film were observed. The laser resistance and the optical performance were not changed. Further, as in the third or fourth embodiment shown in FIG. 3, holmium fluoride ( Ho F 3 ) or gadolinium fluoride (Gd) is formed on a part of the dielectric material forming the antireflection film.
Similar good results were obtained with F 3 ).
The refractive index in each example is a value at a wavelength of 352 nm.
【手続補正5】[Procedure Amendment 5]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】全図[Correction target item name] All drawings
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図1】 [Figure 1]
【図2】 [Fig. 2]
【図3】 [Figure 3]
Claims (3)
射防止膜がコーティングされ、この反射防止膜中には吸
湿性のあるフッ化アルミニウム(AlF3)層が含まれ
ていることを特徴とする潮解性光学結晶の反射防止膜。1. A deliquescent optical crystal is coated with an antireflection film made of a dielectric multilayer film, and the antireflection film contains a hygroscopic aluminum fluoride (AlF 3 ) layer. Anti-reflection film of deliquescent optical crystal.
ム(AlF3)層と屈折率が1.50〜1.70の他の
フッ化物層とで構成されている請求項1に記載した潮解
性光学結晶の反射防止膜。2. The deliquescent property according to claim 1, wherein the antireflection film is composed of the aluminum fluoride (AlF 3 ) layer and another fluoride layer having a refractive index of 1.50 to 1.70. Anti-reflection film of optical crystal.
ウム(KDP)で構成され、他のフッ化物層がフッ化ホ
ルミニウム(HoF3),フッ化ガドリウム(Gd
F3),フッ化ランタン(LaF3),フッ化ネオジウ
ム(NdF3)の少なくともいずれか1つで構成され、
上記フッ化アルミニウム(AlF3)層が最上層に構成
されている請求項2に記載した潮解性光学結晶の反射防
止膜。Wherein said deliquescent optical crystal consists of potassium dihydrogenphosphate (KDP), other fluoride layer is fluoride Horuminiumu (H o F 3), fluoride gadolinium (Gd
F 3 ), lanthanum fluoride (LaF 3 ), and neodymium fluoride (NdF 3 ), and
The antireflection film of a deliquescent optical crystal according to claim 2, wherein the aluminum fluoride (AlF 3 ) layer is the uppermost layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4310843A JPH06140707A (en) | 1992-10-27 | 1992-10-27 | Antireflection film of deliquescent optical crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4310843A JPH06140707A (en) | 1992-10-27 | 1992-10-27 | Antireflection film of deliquescent optical crystal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06140707A true JPH06140707A (en) | 1994-05-20 |
Family
ID=18010062
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4310843A Pending JPH06140707A (en) | 1992-10-27 | 1992-10-27 | Antireflection film of deliquescent optical crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06140707A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012137687A (en) * | 2010-12-27 | 2012-07-19 | Gigaphoton Inc | Wavelength conversion device and ultraviolet light generating laser device using the same |
JP2012168498A (en) * | 2011-02-14 | 2012-09-06 | Gigaphoton Inc | Wavelength conversion element, solid-state laser device, and laser system |
CN110941107A (en) * | 2018-09-21 | 2020-03-31 | 三星电子株式会社 | Multilayer thin film structure and phase shift device using the same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6177002A (en) * | 1984-09-25 | 1986-04-19 | Canon Inc | Optical antireflecting film |
JPS63113502A (en) * | 1986-10-31 | 1988-05-18 | Canon Inc | Reflection preventive film |
JPH02240605A (en) * | 1989-03-15 | 1990-09-25 | Sumitomo Electric Ind Ltd | Fluoride optical fiber subjected to coating on end face and production thereof |
JPH03242602A (en) * | 1990-02-21 | 1991-10-29 | Toray Ind Inc | Article having antireflection property |
JPH04245232A (en) * | 1991-01-30 | 1992-09-01 | Ibiden Co Ltd | Secondary higher harmonic generating element |
-
1992
- 1992-10-27 JP JP4310843A patent/JPH06140707A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6177002A (en) * | 1984-09-25 | 1986-04-19 | Canon Inc | Optical antireflecting film |
JPS63113502A (en) * | 1986-10-31 | 1988-05-18 | Canon Inc | Reflection preventive film |
JPH02240605A (en) * | 1989-03-15 | 1990-09-25 | Sumitomo Electric Ind Ltd | Fluoride optical fiber subjected to coating on end face and production thereof |
JPH03242602A (en) * | 1990-02-21 | 1991-10-29 | Toray Ind Inc | Article having antireflection property |
JPH04245232A (en) * | 1991-01-30 | 1992-09-01 | Ibiden Co Ltd | Secondary higher harmonic generating element |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012137687A (en) * | 2010-12-27 | 2012-07-19 | Gigaphoton Inc | Wavelength conversion device and ultraviolet light generating laser device using the same |
JP2012168498A (en) * | 2011-02-14 | 2012-09-06 | Gigaphoton Inc | Wavelength conversion element, solid-state laser device, and laser system |
CN110941107A (en) * | 2018-09-21 | 2020-03-31 | 三星电子株式会社 | Multilayer thin film structure and phase shift device using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FR3058584A1 (en) | LASER COMPONENT | |
JP3905035B2 (en) | Method for forming optical thin film | |
KR840007803A (en) | Semiconductor radar device | |
JP7569390B2 (en) | Optical element for VUV wavelength range, optical device, and method for manufacturing optical element | |
JP3799696B2 (en) | Mirror for excimer laser | |
Cook et al. | Antireflective surfaces for high-energy laser optics formed by neutral-solution processing | |
JPH02182447A (en) | Dielectric multilayer reflecting film | |
CN102681041A (en) | Environment-stable deep ultraviolet optical thin-film and preparation method thereof | |
JPH06140707A (en) | Antireflection film of deliquescent optical crystal | |
EP0814350B1 (en) | Optically usable multilayer stack of fluoride materials and its method of manufacturing | |
JP4780845B2 (en) | Antireflection film and optical component | |
JP3224316B2 (en) | Two-wavelength anti-reflection coating | |
JPH0238921B2 (en) | ||
US5741595A (en) | Ultraviolet optical part having coat of ultraviolet optical thin film, and wavelength-changing device and ultraviolet light source unit having coat of ultraviolet optical thin film | |
JPS63142302A (en) | Optical thin film having high resistance to laser light | |
US20240322515A1 (en) | Coated optical crystals and methods for producing the same | |
Turner | Ruby laser damage thresholds in evaporated thin films and multilayer coatings | |
JPS63142301A (en) | Optical thin film influenced only slightly by cummulative effect | |
JP3069641B2 (en) | Dielectric multilayer film | |
Ammann et al. | Damage to ZnS thin films from 1.08-μ m laser radiation | |
JP2004085975A (en) | Oxide multilayer optical element and method of manufacturing the same | |
DE10017614A1 (en) | Production of dielectric reflection mask used as high energy laser mask for processing material using high performance laser comprises arranging absorber layer between substrate and layer system | |
JPH09265005A (en) | Mirror for excimer laser | |
JPS60245775A (en) | Antireflecting film | |
JP4177147B2 (en) | 3-layer antireflection coating |