[go: up one dir, main page]

JPS63142301A - Optical thin film influenced only slightly by cummulative effect - Google Patents

Optical thin film influenced only slightly by cummulative effect

Info

Publication number
JPS63142301A
JPS63142301A JP61289696A JP28969686A JPS63142301A JP S63142301 A JPS63142301 A JP S63142301A JP 61289696 A JP61289696 A JP 61289696A JP 28969686 A JP28969686 A JP 28969686A JP S63142301 A JPS63142301 A JP S63142301A
Authority
JP
Japan
Prior art keywords
thin film
substrate
optical thin
quartz
fluorite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61289696A
Other languages
Japanese (ja)
Inventor
Masaaki Kaneko
正昭 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP61289696A priority Critical patent/JPS63142301A/en
Publication of JPS63142301A publication Critical patent/JPS63142301A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Filters (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

PURPOSE:To reduce cummulative effect by constituting optical thin film of a fluoride dielectrics when a substrate consists of fluorite, and constituting it of an oxide dielectrics when the substrate consists of quartz. CONSTITUTION:In a multilayered or single layered optical thin film wherein incident light intensity of far ultraviolet laser light is >=1.5J/cm<2> when the substrate supporting the optical thin film consists of fluorite, or >=0.8J/cm<2> when the substrate consists of quartz, the thin film is constituted of a fluoride dielectrics when the substrate is constituted of fluorite, and the thin film is constituted of an oxide dielectrics when the substrate is constituted of quartz. If quartz is selected for the substrate, an oxide dielectrics having relatively high refractive index such as Al2O3 or ZrO2 or that having relatively low refractive index such as SiO2, etc. is used selectively. If fluorite is selected for the substrate, a fluoride dielectrics having relatively high refractive index such as NdF3 or LaF3, or that having relatively low refractive index such as MgF2, ThF2, etc. is used selectively. By this constitution, the cummulative effect is reduced even for optical thin film to be used for an optical system using far ultraviolet laser light.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高出力の遠紫外レーザー光が入射する光学薄
膜特に累積効果の少ない光学薄〃りに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical thin film into which high-power deep ultraviolet laser light is incident, particularly an optical thin film with little cumulative effect.

〔従来の技術〕[Conventional technology]

光学薄膜例えば反射防止膜、干渉フィルタ、干渉ミラー
は、光学理論に基づき、4分のλ。(λ。
Based on optical theory, optical thin films such as anti-reflection films, interference filters, and interference mirrors have a wavelength of λ of 4. (λ.

=基準波長)程度の光学的膜厚を°有する薄膜を基板上
に単層又は多層に積層したもので、多層膜の場合には高
屈折率薄膜と低屈折率薄膜と必要に応じて中屈折率薄膜
を交互に積層したものである。
= reference wavelength) is a single layer or multilayer stack of thin films on a substrate with an optical thickness of approximately It consists of alternating layers of thin films.

そして、比較的高い屈折率薄膜の構成物質としては、例
えばAltOff、 Zr0t、 Hf0z、 5CZ
O3,Th0z。
Examples of constituent materials of the relatively high refractive index thin film include AltOff, Zr0t, Hf0z, and 5CZ.
O3, Th0z.

NdFs、 MgO,Yz03など、比較的低い屈折重
曹11々の構成物質としては、例えば5i02. Mg
Fg、 ThFz。
Examples of constituent materials of the baking soda 11 with relatively low refractive index, such as NdFs, MgO, and Yz03, include 5i02. Mg
Fg, ThFz.

5rFt、 LiF、 NaFなどが使用されている。5rFt, LiF, NaF, etc. are used.

一方、この種の光学薄膜は極<薄いので自己支持性がな
いために適当な基板一般にはガラス板上に形成される。
On the other hand, since this type of optical thin film is extremely thin and has no self-supporting properties, it is formed on a suitable substrate, generally a glass plate.

この場合、基板それ自身が適当な光学要素例えばレンズ
、プリズム、ミラー、窓材などであってもよい。
In this case, the substrate itself may be a suitable optical element such as a lens, prism, mirror, window material, etc.

ところで、最近の技術の進歩に伴い光学系に使用される
光として、益々高強度、短波長のものが要求され、よう
やく光強度が500mJ/c+d以上、波長、I=19
5〜325 nmの遠紫外レーザー光が実現しつつある
。このようなレーザー光の光源は、現在のところエキシ
マレーザ−だけである。
By the way, with recent advances in technology, the light used in optical systems is increasingly required to have a higher intensity and shorter wavelength, and it has finally become possible to achieve a light intensity of 500 mJ/c+d or more and a wavelength of I=19.
Deep ultraviolet laser light of 5 to 325 nm is becoming a reality. At present, the only light source for such laser light is an excimer laser.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明者らの研究によれば、このような光強度が500
 mJ/cm2以上の強い遠紫外レーザー光を使用する
光学系にあっては、光学薄膜がレーザー光によって物理
的又は化学的な破損を受けることが判明した。どのくら
いの強度まで破11ないかを計測する方法は次のとおり
である。
According to the research of the present inventors, such light intensity is 500
It has been found that in optical systems that use strong far-ultraviolet laser light of mJ/cm2 or more, the optical thin film is physically or chemically damaged by the laser light. The method for measuring the strength of failure 11 is as follows.

光源としてλ=248 nmのエキシマレーザ−を使用
し、20nsecのパルス光をlXl0’回光学薄膜に
照射する。その後、光学薄膜の表面を微分干渉型顕微鏡
で観察し、孔のような破損があれば「ダメージ(Dam
age) Jと判定し、破損がなければ「ノン・ダメー
ジ(Non−damage) Jと判定する。そして、
強度を変えて同種の光学Fjt膜に対して何回か繰り返
し、r Non−damageJと判定されたときのレ
ーザー光強度の最大値を求める。
An excimer laser of λ=248 nm is used as a light source, and the optical thin film is irradiated with 20 nsec pulsed light lXl0' times. After that, the surface of the optical thin film is observed using a differential interference microscope, and if there is any damage such as holes, it is considered as "damage".
If there is no damage, it is determined as "Non-damage (Non-damage) J."
This is repeated several times for the same type of optical Fjt film while changing the intensity, and the maximum value of the laser light intensity when it is determined to be r Non-damageJ is determined.

同様にパルス光の照射回数つまりパルス数を2X10’
 、3X10’ 、4X10’ 、5xlQ’−−−−
−−−一・と増加させて[Non−daa+age J
と判定されたときのレーザー光の最大値とを求める。
Similarly, the number of pulsed light irradiations, that is, the number of pulses, is 2X10'
, 3X10', 4X10', 5xlQ'----
---Increase to 1.[Non-daa+age J
Find the maximum value of the laser beam when it is determined that

そうすると、照射回数の少ないときの最大値と多いとき
の最大値とで相違があり、多いときの最大値が小さくな
る傾向が認められた。この傾向を本明細書では「″A積
効果」と呼ぶ。
Then, it was observed that there was a difference between the maximum value when the number of irradiations was small and the maximum value when the number of irradiations was large, and the maximum value when the number of irradiations was large tended to become smaller. This tendency is referred to herein as the "A product effect."

従来、光強度が弱い場合には、このような累積効果は認
められなかったが、光学薄膜が酸化物誘電体で構成され
ている場合には光強度が0.8J/cm2以上、また光
学薄膜がフン化物誘電体で構成されている場合には光強
度が1.5J/cfl!以上の遠紫外レーザー光が入射
する光学薄膜にあっては、問題となり、そのため光学薄
膜の寿命が低い、信顛性が低いなどの問題点があった。
Conventionally, such a cumulative effect was not observed when the light intensity was low, but when the optical thin film is composed of an oxide dielectric, the light intensity is 0.8 J/cm2 or more, and when the optical thin film is made of an oxide dielectric, is composed of a fluoride dielectric, the light intensity is 1.5 J/cfl! Problems arise with the optical thin film upon which the far-ultraviolet laser beam enters, and as a result, the optical thin film has problems such as a short life span and low reliability.

本発明の目的は、光強度の強い遠紫外レーザー光が入射
する光学薄膜であって、累積効果の少ない(累積効果が
全く認められない場合を含む)光学薄膜を提供すること
にある。
An object of the present invention is to provide an optical thin film into which a deep ultraviolet laser beam with high light intensity is incident, and which has little cumulative effect (including cases where no cumulative effect is observed).

c問題点を解決するための手段〕 遠紫外レーザー光をi3遇する基板材料は、現在のとこ
ろ、はたる石か石英に限られているが、本発明者らは、
鋭意研究の結果、基板としてほたる石(CaFz)を使
用した場合には光学薄膜をフン化物誘電体例えばMaF
z、 NdF3などで構成し、基板として石英(SiO
z)を使用した場合には光学薄膜を酸化物誘電体例えば
5iOz、 AhQsなどで構成すると、はたる石基板
の場合光強度が1.5 J/el+!以上、石英基板の
場合光強度が1.5J/co!以上の遠紫外レーザー光
が入射する光学薄膜においても累積効果が少な(なるか
又は全く認められないことを見い出し、本発明を成すに
至った。
Means for Solving Problem c] At present, substrate materials that allow deep ultraviolet laser light are limited to marble or quartz; however, the present inventors have
As a result of extensive research, we found that when fluorite (CaFz) is used as a substrate, optical thin films can be formed using fluoride dielectrics such as MaF.
z, NdF3, etc., and the substrate is quartz (SiO
z) and the optical thin film is composed of an oxide dielectric such as 5iOz or AhQs, the light intensity is 1.5 J/el+! As mentioned above, in the case of a quartz substrate, the light intensity is 1.5 J/co! The inventors have discovered that even in the optical thin film into which the far-ultraviolet laser light is incident, the cumulative effect is small (or not observed at all), leading to the present invention.

従って、本発明は、[光学薄膜を支持する基板かほたる
石の場合には光強度が1.5J/cj以上の、前記基板
が石英の場合には光強度が0.8J/cI11以上の、
遠紫外レーザー光が入射する多層又は単層光学薄膜に於
いて、 基板がほたる石の場合には該薄膜を)・7化物誘電体で
構成し、基板が石英の場合には酸化物誘電体で構成した
ことを特徴とする累積効果の少ない光学薄膜」を提供す
る。
Therefore, the present invention provides [a light intensity of 1.5 J/cj or more when the substrate supporting the optical thin film is fluorite, a light intensity of 0.8 J/cI11 or more when the substrate is quartz,
In a multi-layer or single-layer optical thin film on which deep ultraviolet laser light is incident, if the substrate is made of fluorite, the thin film is made of a heptaide dielectric; if the substrate is made of quartz, it is made of an oxide dielectric. To provide an optical thin film with little cumulative effect characterized by the following structure.

〔作用〕[Effect]

本発明に於いて、基板は記述のように、はたる石又は石
英が使用されるが、それ自体レンズ、プリズム、ミラー
、窓材などの光学要素を構成していてもよい。
In the present invention, the substrate is made of marble or quartz as described above, but the substrate itself may constitute an optical element such as a lens, prism, mirror, or window material.

本発明の単層又は多層光学F!膜は、目的に応して、反
射防止膜、反射膜、干渉フィルタ、NDフィルタなどに
分類される。
Single layer or multilayer optical F! of the invention! Films are classified into antireflection films, reflective films, interference filters, ND filters, etc. depending on their purpose.

これらの光学薄膜を構成する層は、記述のように基板と
して、石英を選択した場合には、酸化物誘電体例えば 比較的高い屈折率のもの: AhOi、 ZrO2,l
1fOz+Sin、 5ctOs+ ’lx’s 比較的低い屈折率のもの: Si(1gなどを光学理論
に従い選択使用し、はたる石を選択した場合には、フッ
化物誘電体例えば比較的高い屈折率のもの: NdFi
、 LaFs、 ThFt比較的低い屈折率のもの: 
MgF、、 ThFz、 5rFzなどを光学理論に従
い選択使用する。
The layers constituting these optical thin films can be made of oxide dielectrics such as those with a relatively high refractive index: AhOi, ZrO2, l, if quartz is selected as the substrate as described.
1fOz+Sin, 5ctOs+'lx's Something with a relatively low refractive index: If Si (1g, etc.) is selected and used according to optical theory, and if you select travertine, then a fluoride dielectric, such as something with a relatively high refractive index: NdFi
, LaFs, ThFt with relatively low refractive index:
MgF, ThFz, 5rFz, etc. are selected and used according to optical theory.

以下、実施例により本発明を具体的に説明するが、本発
明はこれに限定されるものではない。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited thereto.

〔実施例1〕 石英基板(na ”1.51)の上に、高屈折率薄膜と
してλ/4の光学的膜厚を有するAl2O3N膜(na
−1,72)を真空蒸着し、続いて低屈折率薄膜として
λ/4の光学的膜厚を有する5tox?3!膜(n4=
1.44 )を真空蒸着することにより、2層反射防止
膜(設計基準波長λ=248 ru++)を作製した。
[Example 1] An Al2O3N film (na
-1,72) is vacuum deposited, followed by 5tox? with an optical thickness of λ/4 as a low refractive index thin film. 3! Membrane (n4=
A two-layer antireflection film (design reference wavelength λ=248 ru++) was prepared by vacuum evaporating 1.44 ).

〔比較例1〕 はたる石基板(na ”1.47)の上に、実施例1と
同一の2層反射防止膜(設計基準波長λ=2413 n
m)を作製した。
[Comparative Example 1] The same two-layer antireflection film as in Example 1 (design standard wavelength λ = 2413 n
m) was prepared.

〔実施例2〕 はたる石基板(n4=1.47)の上に、高屈折率薄膜
としてλ/4の光学的膜厚を有するNdFs薄膜(n4
=1.66)を真空蒸着し、続いて低屈折率薄膜として
λ/4の光学的膜厚を有するMgF、薄Inn4=1.
405)を真空蒸着することにより、2N反射防止膜(
設計基準波長λ”248 nm)を作製した。
[Example 2] A NdFs thin film (n4
= 1.66), and then a thin Inn4 of MgF having an optical thickness of λ/4 as a low refractive index thin film.
405) by vacuum evaporation to form a 2N antireflection film (
A design reference wavelength λ" (248 nm) was prepared.

この反射防止膜を基板の片面に設けた場合の分光反射率
特性と、両面に設けた場合の分光透過率特性を測定した
ので、この結果を第3図及び第4図に示す、第3図及び
第4図では中心波長が設計波長より多少ずれているが、
これは製作誤差である。
The spectral reflectance characteristics when this anti-reflection film was provided on one side of the substrate and the spectral transmittance characteristics when it was provided on both sides were measured, and the results are shown in Figures 3 and 4. And in Figure 4, the center wavelength is slightly shifted from the design wavelength,
This is a manufacturing error.

〔比較例2〕 石英基板上に実施例2と同一2N反射防止膜を作成した
[Comparative Example 2] The same 2N antireflection film as in Example 2 was created on a quartz substrate.

〔試験例〕[Test example]

光源としてλ=248n−のエキシマレーザ−を使用し
、20nsetのパルス光をlXl0’回だけ光学薄膜
に照射する。その後、光学薄膜の表面を微分干渉型顕微
鏡で観察し、孔のような破損があれば[ダメージ(Da
mage) Jと判定し、破損がなければ[ノン・ダメ
ージ(Non−damage) Jと判定する。
An excimer laser with λ=248n- is used as a light source, and the optical thin film is irradiated with 20nset pulsed light lXl0' times. After that, the surface of the optical thin film is observed with a differential interference microscope, and if there is damage such as holes [damage (Da
If there is no damage, it is determined as [Non-damage (Non-damage) J].

そして、強度を変えて同種の光学薄膜に対して何回か繰
り返し、rNon−da+mageJと判定されたとき
のレーザー光強度の最大値を求める。
Then, by changing the intensity and repeating it several times for the same type of optical thin film, the maximum value of the laser light intensity when it is determined that rNon-da+mageJ is determined.

同様にパルス光の照射回数つまりパルス数を2 xlO
’ 、3 xlO’ 、4 xlO’ 、5 xlO’
−・−・−と増加させてr Non−damageJと
判定されたときのレーザー光の最大値とを求める。
Similarly, the number of pulsed light irradiations, that is, the number of pulses, is set to 2 x lO
' , 3 xlO' , 4 xlO' , 5 xlO'
The maximum value of the laser beam when r is determined to be Non-damageJ is determined by increasing the value of r.

先の実施例!及び比較例1の光学薄膜について試験した
結果を第5図に、実施例2及び比較例2の光学薄膜につ
いて試験した結果を第6図にそれぞれ示す。
Previous example! The results of testing the optical thin films of Comparative Example 1 and Comparative Example 1 are shown in FIG. 5, and the results of testing the optical thin films of Example 2 and Comparative Example 2 are shown in FIG. 6, respectively.

これにより明らかなように光学薄膜をフッ化物で構成し
たときには基板をほたる石にすると累積効果が認められ
ず、酸化物で構成したときには基板を石英にすると累積
効果が認めらない。
As is clear from this, when the optical thin film is made of fluoride, no cumulative effect is observed when the substrate is made of fluorite, and when the optical thin film is made of oxide, no cumulative effect is observed when the substrate is made of quartz.

〔発明の効果〕〔Effect of the invention〕

以上のとおり、本発明によれば、光強度が強い遠紫外レ
ーザー光を使用する光学系のための光学薄膜にあっても
、累積効果が少なくなる。
As described above, according to the present invention, even in an optical thin film for an optical system that uses deep ultraviolet laser light with high light intensity, the cumulative effect is reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、フン化物誘電体からなる2層反射防止膜の層
構成を示す説明図であり、 第2図は、酸化物誘電体からなる2層反射防止膜の層構
成を示す説明図である。 第3図は、実施例2の反射防止膜(片面コート)の分光
反射率特性を測定しfこグラフである。 第4図は、実施例2の反射防止膜(両面コート)の分光
透過率特性を測定したグラフである。 第5図は、実施例1と比較例1の光学薄膜について累積
効果を比較するグラフである。 第6図は、実施例2と比較例2の光学薄膜について累積
効果を比較するグラフである。
FIG. 1 is an explanatory diagram showing the layer structure of a two-layer anti-reflection film made of a fluoride dielectric, and FIG. 2 is an explanatory diagram showing the layer structure of a two-layer anti-reflection film made of an oxide dielectric. be. FIG. 3 is a graph obtained by measuring the spectral reflectance characteristics of the antireflection film (single-sided coating) of Example 2. FIG. 4 is a graph showing the spectral transmittance characteristics of the antireflection film (coated on both sides) of Example 2. FIG. 5 is a graph comparing the cumulative effects of the optical thin films of Example 1 and Comparative Example 1. FIG. 6 is a graph comparing the cumulative effects of the optical thin films of Example 2 and Comparative Example 2.

Claims (1)

【特許請求の範囲】 光学薄膜を支持する基板がほたる石の場合には光強度が
1.5J/cm^2以上の、前記基板が石英の場合には
光強度が0.8J/cm^2以上の、遠紫外レーザー光
が入射する多層又は単層光学薄膜に於いて、 基板がほたる石の場合には該薄膜をフッ化物誘電体で構
成し、基板が石英の場合には酸化物誘電体で構成したこ
とを特徴とする累積効果の少ない光学薄膜。
[Claims] When the substrate supporting the optical thin film is made of fluorite, the light intensity is 1.5 J/cm^2 or more, and when the substrate is quartz, the light intensity is 0.8 J/cm^2. In the multi-layer or single-layer optical thin film described above into which deep ultraviolet laser light is incident, the thin film is composed of a fluoride dielectric when the substrate is fluorite, and an oxide dielectric when the substrate is quartz. An optical thin film with little cumulative effect, characterized by comprising:
JP61289696A 1986-12-04 1986-12-04 Optical thin film influenced only slightly by cummulative effect Pending JPS63142301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61289696A JPS63142301A (en) 1986-12-04 1986-12-04 Optical thin film influenced only slightly by cummulative effect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61289696A JPS63142301A (en) 1986-12-04 1986-12-04 Optical thin film influenced only slightly by cummulative effect

Publications (1)

Publication Number Publication Date
JPS63142301A true JPS63142301A (en) 1988-06-14

Family

ID=17746558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61289696A Pending JPS63142301A (en) 1986-12-04 1986-12-04 Optical thin film influenced only slightly by cummulative effect

Country Status (1)

Country Link
JP (1) JPS63142301A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0517161A2 (en) * 1991-06-03 1992-12-09 The Furukawa Electric Co., Ltd. Optical coupler/splitter with a filter
JPH05148091A (en) * 1991-12-03 1993-06-15 Nittetsu Mining Co Ltd Rutile single crystal processing method
US6465272B1 (en) 1999-07-22 2002-10-15 Corning Incorporated Extreme ultraviolet soft x-ray projection lithographic method and mask devices
US6776006B2 (en) 2000-10-13 2004-08-17 Corning Incorporated Method to avoid striae in EUV lithography mirrors
JP2009162989A (en) * 2008-01-07 2009-07-23 Hoya Corp Antireflection film and optical component having the same, interchangeable lens and imaging device
CN114853355A (en) * 2022-04-08 2022-08-05 常州市万华激光科技有限公司 Preparation method of ultraviolet 193nm antireflection film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0517161A2 (en) * 1991-06-03 1992-12-09 The Furukawa Electric Co., Ltd. Optical coupler/splitter with a filter
JPH05148091A (en) * 1991-12-03 1993-06-15 Nittetsu Mining Co Ltd Rutile single crystal processing method
US6465272B1 (en) 1999-07-22 2002-10-15 Corning Incorporated Extreme ultraviolet soft x-ray projection lithographic method and mask devices
US6576380B2 (en) 1999-07-22 2003-06-10 Corning Incorporated Extreme ultraviolet soft x-ray projection lithographic method and mask devices
US6776006B2 (en) 2000-10-13 2004-08-17 Corning Incorporated Method to avoid striae in EUV lithography mirrors
JP2009162989A (en) * 2008-01-07 2009-07-23 Hoya Corp Antireflection film and optical component having the same, interchangeable lens and imaging device
CN114853355A (en) * 2022-04-08 2022-08-05 常州市万华激光科技有限公司 Preparation method of ultraviolet 193nm antireflection film

Similar Documents

Publication Publication Date Title
JP2754214B2 (en) Dielectric multilayer film capable of compensating frequency chirp of light pulse
KR100389996B1 (en) Photomask
JPS63142301A (en) Optical thin film influenced only slightly by cummulative effect
DiJon et al. High-damage-threshold fluoride UV mirrors made by ion-beam sputtering
JPS63113502A (en) Reflection preventive film
JPS6177002A (en) Optical antireflecting film
US5879820A (en) Multilayer stack of fluoride materials usable in optics and its production process
JPH0552923B2 (en)
JP7410498B2 (en) porous thin film
CN106067652B (en) Dual-wavelength antireflection film for excimer laser and optical film thickness monitoring system
JPS62123401A (en) Optical thin film for far ultraviolet rays
Stolz et al. Damage threshold study of ion-beam-sputtered coatings for a visible high-repetition laser at LLNL
JP4455022B2 (en) Antireflection film and objective lens
JPS6177001A (en) Optical antireflecting film
JP2005221867A (en) Reflection type optical device
JPH06160602A (en) Two-wavelength antireflection film
JPS63142302A (en) Optical thin film having high resistance to laser light
CN114488359B (en) Optical components and optical devices
JP2004085975A (en) Oxide multilayer optical element and method of manufacturing the same
JPH07244202A (en) Dual wavelength anti-reflection film
Carniglia et al. Production of resonator optics for the 1315 nm oxygen iodine laser
JPH07244204A (en) Dual wavelength anti-reflection film
JP2001141904A (en) Multi-layered antireflection film
JPH10232312A (en) Optical branching filter
Rudisill Design/deposition process tradeoffs for high performance optical coatings in the DUV spectral region