JPH06140675A - Ultrathin film of bi oxide high-temperature superconductor and manufacture thereof - Google Patents
Ultrathin film of bi oxide high-temperature superconductor and manufacture thereofInfo
- Publication number
- JPH06140675A JPH06140675A JP4086641A JP8664192A JPH06140675A JP H06140675 A JPH06140675 A JP H06140675A JP 4086641 A JP4086641 A JP 4086641A JP 8664192 A JP8664192 A JP 8664192A JP H06140675 A JPH06140675 A JP H06140675A
- Authority
- JP
- Japan
- Prior art keywords
- film
- temperature
- less
- ultrathin
- deposited
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 10
- 239000002887 superconductor Substances 0.000 title claims description 12
- 150000002500 ions Chemical class 0.000 claims abstract description 20
- 238000000034 method Methods 0.000 claims abstract description 16
- 230000007704 transition Effects 0.000 claims abstract description 8
- 239000010408 film Substances 0.000 claims description 54
- 239000010409 thin film Substances 0.000 claims description 17
- 238000005468 ion implantation Methods 0.000 claims description 3
- 239000011261 inert gas Substances 0.000 claims description 2
- 230000001678 irradiating effect Effects 0.000 claims description 2
- 239000000758 substrate Substances 0.000 abstract description 9
- 238000000137 annealing Methods 0.000 abstract description 6
- 238000004544 sputter deposition Methods 0.000 abstract description 6
- 238000001755 magnetron sputter deposition Methods 0.000 abstract description 4
- 238000010438 heat treatment Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 239000012071 phase Substances 0.000 description 5
- 238000007740 vapor deposition Methods 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000004299 exfoliation Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000005477 sputtering target Methods 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Physical Vapour Deposition (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Containers, Films, And Cooling For Superconductive Devices (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【産業上の利用分野】この発明は、Bi系酸化物高温超
伝導体の超薄膜とその製造法に関するものである。さら
に詳しくは、この発明は、マイクロエレクトロニクス、
パワーエレクトロニクス等の広範囲な領域において有用
な、300Å以下という超薄膜状態にあるBi系超伝導
体とその製造法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrathin film of Bi-based high-temperature oxide superconductor and a method for producing the same. More specifically, the present invention relates to microelectronics,
The present invention relates to a Bi-based superconductor in an ultrathin film state of 300 Å or less, which is useful in a wide range of fields such as power electronics, and a manufacturing method thereof.
【従来の技術とその課題】Bi系酸化物高温超伝導体の
バルク体や、線材については、その遷移温度(Tc)を
向上、維持しつつ、遷移電流密度(Jc)についてもよ
り高水準のものとするための検討が行われてきており、
結晶の配向性等の点についての精力的な改良、工夫が進
められてきている。しかしながら、このBi系超伝導体
については薄膜化が難しく、1000Å以下の薄膜につ
いてはほとんど不可能な状況にある。実際、高温超伝導
薄膜の作製方法としては、(1)真空加熱蒸着法、
(2)スパッタ蒸着法、(3)分子線エピタキシアル成
長法、(4)気相成長法が知られているが、膜の厚さが
1000Å以下になると各構成元素の組成を制御するこ
とが難しく、単位胞にして10層程度の超伝導層を整然
と積層することは人為的に難しいとされていた。また、
超薄膜の熱処理では、基板からの膜剥離や元素蒸発が起
こるなど、最適の熱処理条件を達成することが容易では
なかったため、これまでバルク材で得られているような
高い超伝導遷移温度:Tcを示す良質の超薄膜は得られ
ておらず、特に鉛を含まないBi系薄膜で100Kを越
す超薄膜を作製することは不可能であった。この発明
は、以上の通りの従来法における課題を克服するために
なされたものであって、これまでにない膜厚300Å以
下という超薄膜のBi系酸化物超伝導体を提供し、しか
も、Bi系としては最高のTcを示す超薄膜を製造する
方法をも提供することを目的としてる。2. Description of the Related Art A bulk body of Bi-based high-temperature oxide superconductors and wires have a higher transition current density (Jc) while improving and maintaining the transition temperature (Tc). Are being studied to
Vigorous improvements and contrivances regarding the crystal orientation have been made. However, it is difficult to form a thin film of this Bi-based superconductor, and it is almost impossible for a thin film of 1000 Å or less. Actually, as a method for producing a high temperature superconducting thin film, (1) vacuum heating vapor deposition method,
Although (2) sputter deposition method, (3) molecular beam epitaxial growth method, and (4) vapor phase growth method are known, the composition of each constituent element can be controlled when the film thickness is 1000 Å or less. It was difficult, and it was considered artificially difficult to orderly stack about 10 superconducting layers into unit cells. Also,
In the heat treatment of ultra-thin films, it was not easy to achieve optimum heat treatment conditions such as film exfoliation from the substrate and elemental evaporation, so the high superconducting transition temperature: Tc as obtained with bulk materials up to now It has not been possible to obtain a good quality ultra-thin film, and it has been impossible to produce an ultra-thin film exceeding 100 K with a Bi-based thin film containing no lead. The present invention has been made in order to overcome the problems in the conventional method as described above, and provides an unprecedented ultrathin film Bi-based oxide superconductor having a film thickness of 300 Å or less. It is an object of the present invention to provide a method for producing an ultrathin film having the highest Tc as a system.
【課題を解決するための手段】この発明は、上記の課題
を解決するものとして、膜厚300Å以下のスパッタ蒸
着膜にイオン照射してなるBi系酸化物高温超伝導体の
超薄膜を提供する。また、この発明は、前記のスパッタ
蒸着膜の超伝導遷移温度が65〜99Kであることや、
超伝導遷移温度が100K以上の前記超薄膜をその態様
の一つとするとともに、膜厚300Å以下のスパッタ蒸
着膜からなるBi系酸化物高温超伝導体の超薄膜をも提
供する。このような超薄膜については、たとえば次の通
りに製造することができる。 (1)マグネトロン・スパッタ等のスパッタ蒸着法によ
りBiSrCaCuO系超伝導酸化物薄膜をMgO基板
上に厚さ300Å以下、好ましくは150〜300Åの
膜厚となるように蒸着する。この場合、ターゲットに
は、Bi:Sr:Ca:Cu=2.5:2:2:3.5
の組成比を基準とし、所望により、他種元素をも加えつ
つ、適宜な組成比とした混合粉末焼結体を使用する。 (2)蒸着条件は、たとえばマグネトロン・スパッタに
おいては、Årガス等の不活性ガス、あるいは酸素含有
ガスを用い、その全圧1.3Pa程度とし、進行波電力
200W、反射波電力10Wで行うことができる。ター
ゲット−基板間の距離を調整し、プラズマの先端が基板
側中心に集中するようにする。なお、具体例を示すと、
ターゲットは直径152mm、厚さ4mmとする。ターゲッ
ト−基板の最適距離は、40mmであり、とくに基板は
加熱はしなくともよい。 (3)蒸着後、1回目の熱処理を870〜900°Cの
温度範囲で大気中で行うことができる。 (4)1回目の熱処理後、イオン注入法によりÅrなど
の不活性元素イオンを照射する。照射条件は、より好ま
しくは、照射温度77K以下、イオン加速電圧100k
eV以下、ドーズ量1015個/cm2 以下で行う。 (5)イオン照射後、比較的低温の800°C以下で2
回目のアニールを大気中で行うことができる。 もちろん、この発明は、以上の例示に限定されることは
なく、細部の態様については様々に可能である。以下、
実施例を示し、さらに詳しくこの発明について説明す
る。In order to solve the above problems, the present invention provides an ultrathin film of a Bi-based high temperature oxide superconductor obtained by irradiating a sputter-deposited film having a film thickness of 300 Å or less with ions. . Further, according to the present invention, the superconducting transition temperature of the sputter deposited film is 65 to 99K,
The ultrathin film having a superconducting transition temperature of 100 K or more is one of its modes, and an ultrathin film of a Bi-based high-temperature oxide superconductor composed of a sputter deposited film having a film thickness of 300 Å or less is also provided. Such an ultrathin film can be manufactured, for example, as follows. (1) A BiSrCaCuO-based superconducting oxide thin film is deposited on a MgO substrate by a sputter deposition method such as magnetron sputtering to a thickness of 300 Å or less, preferably 150 to 300 Å. In this case, the target is Bi: Sr: Ca: Cu = 2.5: 2: 2: 3.5.
Based on the composition ratio of 1), a mixed powder sintered body is used which has an appropriate composition ratio while adding other elements if desired. (2) In the case of magnetron sputtering, for example, an inert gas such as År gas or an oxygen-containing gas is used as the vapor deposition conditions, the total pressure is about 1.3 Pa, and the traveling wave power is 200 W and the reflected wave power is 10 W. You can The distance between the target and the substrate is adjusted so that the tip of the plasma is concentrated on the substrate side center. In addition, if a specific example is shown,
The target has a diameter of 152 mm and a thickness of 4 mm. The optimum target-substrate distance is 40 mm, and in particular, the substrate need not be heated. (3) After vapor deposition, the first heat treatment can be performed in the atmosphere in the temperature range of 870 to 900 ° C. (4) After the first heat treatment, irradiation with an inert element ion such as År is performed by an ion implantation method. The irradiation conditions are more preferably an irradiation temperature of 77K or less and an ion acceleration voltage of 100k.
It is performed at eV or less and a dose amount of 10 15 pieces / cm 2 or less. (5) After ion irradiation, 2 at a relatively low temperature of 800 ° C or less
The second annealing can be performed in the atmosphere. Of course, the present invention is not limited to the above examples, and various details can be made. Less than,
The present invention will be described in more detail with reference to examples.
【実施例】上記(1)、(2)のマグネトロン・スパッ
タ法によりMgO基板上にスパッタ速度約0.7Å/s
で厚さ150〜300ÅのBiSrCaCuO系酸化物
薄膜を蒸着する。これらの超薄膜の色は、薄い茶色を呈
する。膜厚測定は、段差計により行った。その後、87
0〜900Cの温度範囲で1時間以内のアニールを行
う。この1回目の熱処理によりTc=90〜99Kを示
す超薄膜が得られた。このような良質の蒸着薄膜は、ス
パッタ用ターゲットと基板間の距離を調整し、プラズマ
の形状を制御することにより再現よく作製できた。その
後、イオン注入法により加速電圧100kVのÅrイオ
ンを低温10Kで1×1015個/cm2 以下のドーズ量で
照射する。この際、イオン種は、不要な化学反応を避け
るためÅrイオンなどの不活性元素イオンを使用するこ
とが望ましい。低温照射は、照射中に元素拡散や化学反
応を抑えるため、照射量を低くするのは、超伝導相の損
傷を最小限にするために必要である。Årイオン照射
後、比較的低温の800°C以下で2回目の熱処理を行
う。以上の処理を施した各薄膜試料の構造と超伝導特性
をX線回折法と電気抵抗測定法により調べた。図1は、
膜厚300ÅのBi系超薄膜のÅrイオン照射前(a)
および照射後(b)にえられる電気抵抗−温度曲線を示
す。照射前の蒸着膜でTc=90〜99Kであったもの
が、照射後に800°C以下の温度で2回目のアニール
をすることにより、Tcは、108Kまで上昇した。こ
れまでの超薄膜の製造においては、熱処理すると剥離し
たり構成元素の蒸発などにより良質膜が得られなかった
が、蒸着条件さえよければ、膜の特性や密着性は、本質
的な問題ではないことが分かった。得られたTcの値
は、これまで得られているPbを含まないBi系超伝導
酸化物材料の最高値である。すなわち、300Åという
超薄膜でも最高値のTc=108Kを示す良質の超伝導
薄膜が作製できたことを示すものである。なお、この試
料77Kにおけるゼロ磁場での臨界電流密度は、2万ア
ンペア/cm2 であった。図2は、照射後のX線回折図
形を示したものである。X線強度比では、高Tc相と低
Tc相の比は、9対1程度である。また、図3は、超薄
膜表面の走査電子顕微鏡写真を示したものである。通常
の厚さ5000Å以上の膜で観察される表面様相にくら
べて表面の平滑性が極めてよく、結晶サイズも大きい。
微細な段差ステップが一方向に沿って規則正しく配列し
ており、基板上にエピタキシアル成長した結晶配向性の
良い膜が得られていることを示唆している。また、表1
は、実施例の結果をまとめて示したものである。膜厚1
50Åの蒸着膜でもすでにTc〜60K台の超薄膜が得
られている。[Example] Sputtering rate of about 0.7Å / s on a MgO substrate by the magnetron sputtering method of (1) and (2) above.
Then, a BiSrCaCuO-based oxide thin film having a thickness of 150 to 300 Å is deposited. The color of these ultrathin films is light brown. The film thickness was measured with a step gauge. Then 87
Annealing is performed within a temperature range of 0 to 900C for 1 hour or less. By this first heat treatment, an ultrathin film showing Tc = 90 to 99K was obtained. Such a good-quality vapor-deposited thin film could be produced with good reproducibility by adjusting the distance between the sputtering target and the substrate and controlling the plasma shape. After that, År ions with an acceleration voltage of 100 kV are irradiated at a low temperature of 10 K at a dose amount of 1 × 10 15 ions / cm 2 or less by an ion implantation method. At this time, it is desirable to use an inert element ion such as År ion as the ionic species in order to avoid unnecessary chemical reaction. Low-temperature irradiation suppresses elemental diffusion and chemical reaction during irradiation, and thus low irradiation dose is necessary to minimize damage to the superconducting phase. After År ion irradiation, the second heat treatment is performed at a relatively low temperature of 800 ° C or lower. The structure and the superconducting property of each thin film sample subjected to the above-mentioned treatment were examined by the X-ray diffraction method and the electric resistance measuring method. Figure 1
Before År ion irradiation of Bi-based ultrathin film with a film thickness of 300Å (a)
And the electric resistance-temperature curve obtained after irradiation (b) is shown. The deposited film before irradiation having Tc of 90 to 99K was increased to 108K by performing second annealing at a temperature of 800 ° C. or lower after irradiation. In the production of ultra-thin films up to now, a good quality film could not be obtained due to peeling or evaporation of constituent elements when heat-treated, but the characteristics and adhesion of the film are not an essential problem as long as the deposition conditions are good. I found out. The obtained value of Tc is the highest value of the Pb-free Bi-based superconducting oxide material obtained so far. That is, it shows that a superconducting thin film of good quality showing Tc = 108K, which is the highest value, could be produced even with an ultrathin film of 300Å. The critical current density of this sample 77K at zero magnetic field was 20,000 amps / cm 2 . FIG. 2 shows an X-ray diffraction pattern after irradiation. In the X-ray intensity ratio, the ratio of the high Tc phase and the low Tc phase is about 9: 1. Further, FIG. 3 shows a scanning electron micrograph of the surface of the ultrathin film. The surface smoothness is very good and the crystal size is large compared to the surface appearance observed in a normal film having a thickness of 5000 Å or more.
The fine step steps are regularly arranged along one direction, which suggests that the epitaxially grown film with good crystal orientation is obtained. Also, Table 1
Shows a summary of the results of the examples. Film thickness 1
An ultra-thin film of Tc to 60K has already been obtained even with a 50Å deposited film.
【表1】 [Table 1]
【発明の効果】超伝導薄膜は、デバイス素子としての利
用が期待されているが、その際、デバイス素子の高積層
化、高密度化の要請から、できるだけ膜厚を下げ、かつ
膜の超伝導特性が良好で、構造安定性、電気接触性、均
一性などデバイス素子特性に優れた超薄膜材料を開発す
ることが大きな課題である。この発明は、この要請に応
えるものであり、300Å以下の超薄膜で高Tc性、膜
平滑性に優れた超薄膜材料を提供することができる。超
伝導超薄膜デバイス材料の作製方法としての発展も期待
できる。また、蒸気圧が高いため蒸発しやすいPbを添
加せずにTcが100Kを越えるBi系酸化物材料の超
薄膜を作製できることは、Bi系超伝導薄膜の構造安定
性や膜作製プロセスの簡便化に有効である。The superconducting thin film is expected to be used as a device element. At that time, the film thickness should be reduced as much as possible and the superconductivity of the film should be reduced due to the demand for higher lamination and higher density of the device element. The development of ultra-thin film materials with good characteristics and excellent device element characteristics such as structural stability, electrical contact, and uniformity is a major issue. The present invention meets this demand and can provide an ultrathin film material having an ultrathin film of 300 Å or less and having high Tc property and film smoothness. It can be expected to develop as a manufacturing method of superconducting ultrathin film device materials. In addition, since the vapor pressure is high, it is possible to produce an ultrathin film of a Bi-based oxide material having a Tc of more than 100K without adding Pb, which easily evaporates. Is effective for.
【図1】膜厚300ÅのBiSrCaCuO超薄膜のイ
オン照射処理前後の電気抵抗−温度曲線図である。 (a)蒸着後、875°C×0.5hアニール (b)Arイオン照射後、730°C×1hアニールFIG. 1 is an electric resistance-temperature curve diagram of a BiSrCaCuO ultrathin film having a film thickness of 300 liters before and after ion irradiation treatment. (A) After vapor deposition, annealing at 875 ° C. for 0.5 h (b) After irradiation with Ar ions, annealing at 730 ° C. for 1 h
【図2】膜厚300ÅのBiSrCaCuO超薄膜のX
線回折図形図である。(H:高Tc相、L:低Tc相)[Fig. 2] X of BiSrCaCuO ultrathin film with a film thickness of 300Å
It is a line diffraction diagram. (H: high Tc phase, L: low Tc phase)
【図3】膜厚300ÅのBiSrCaCuO超薄膜表面
の走査型電子顕微鏡写真図である。FIG. 3 is a scanning electron micrograph of the surface of a BiSrCaCuO ultrathin film having a film thickness of 300Å.
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成5年10月20日[Submission date] October 20, 1993
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】全図[Correction target item name] All drawings
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図1】 [Figure 1]
【図2】 [Fig. 2]
【図3】 [Figure 3]
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 39/24 ZAA B 9276−4M ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01L 39/24 ZAA B 9276-4M
Claims (7)
オン照射してなるBi系酸化物高温超伝導体の超薄膜。1. An ultrathin film of a Bi-based high-temperature oxide superconductor obtained by irradiating a sputter-deposited film having a thickness of 300 Å or less with ions.
〜99Kである請求項1の超薄膜。2. The superconducting transition temperature of the sputter deposited film is 65.
The ultrathin film according to claim 1, which is about 99K.
1の超薄膜。3. The ultrathin film according to claim 1, which has a superconducting transition temperature of 100 K or more.
なるBi系酸化物高温超伝導体の超薄膜。4. An ultrathin film of a Bi-based high-temperature oxide superconductor consisting of a sputter deposited film having a film thickness of 300 Å or less.
オン注入法によるイオン照射処理することを特徴とする
Bi系酸化物高温超伝導体超薄膜の製造法。5. A method for producing an ultra-thin film of a Bi-based high-temperature oxide superconductor, which comprises subjecting a sputter-deposited film having a film thickness of 300 Å or less to ion irradiation by an ion implantation method.
い、照射温度77K以下、加速電圧100keV以下、
ドーズ量1×1015個/cm2 以下でイオン照射する請
求項5の製造法。6. An inert gas ion is used as an ion species, the irradiation temperature is 77 K or less, the accelerating voltage is 100 keV or less,
The method according to claim 5, wherein the ion irradiation is performed at a dose of 1 × 10 15 pieces / cm 2 or less.
下の温度において熱処理するBi系酸化物高温超伝導体
超薄膜の製造法。7. A method for producing a Bi-based high-temperature oxide superconductor ultrathin film, which is heat-treated at a temperature of 800 ° C. or lower after the ion irradiation of claim 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4086641A JPH0831627B2 (en) | 1992-03-11 | 1992-03-11 | Method for producing high temperature superconducting ultrathin film of Bi oxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4086641A JPH0831627B2 (en) | 1992-03-11 | 1992-03-11 | Method for producing high temperature superconducting ultrathin film of Bi oxide |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06140675A true JPH06140675A (en) | 1994-05-20 |
JPH0831627B2 JPH0831627B2 (en) | 1996-03-27 |
Family
ID=13892654
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4086641A Expired - Lifetime JPH0831627B2 (en) | 1992-03-11 | 1992-03-11 | Method for producing high temperature superconducting ultrathin film of Bi oxide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0831627B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111063788A (en) * | 2019-11-27 | 2020-04-24 | 中国科学院上海微系统与信息技术研究所 | Preparation method of superconducting transition edge detector |
JP2022512581A (en) * | 2018-10-02 | 2022-02-07 | マサチューセッツ インスティテュート オブ テクノロジー | Technologies and related systems and methods for improving cryogenic radiation irradiation of superconductors |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0446084A (en) * | 1990-06-11 | 1992-02-17 | Nippon Telegr & Teleph Corp <Ntt> | Method and device for surface-treating oxide superconducting thin film |
-
1992
- 1992-03-11 JP JP4086641A patent/JPH0831627B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0446084A (en) * | 1990-06-11 | 1992-02-17 | Nippon Telegr & Teleph Corp <Ntt> | Method and device for surface-treating oxide superconducting thin film |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022512581A (en) * | 2018-10-02 | 2022-02-07 | マサチューセッツ インスティテュート オブ テクノロジー | Technologies and related systems and methods for improving cryogenic radiation irradiation of superconductors |
US11783953B2 (en) | 2018-10-02 | 2023-10-10 | Massachusetts Institute Of Technology | Cryogenic radiation enhancement of superconductors |
CN111063788A (en) * | 2019-11-27 | 2020-04-24 | 中国科学院上海微系统与信息技术研究所 | Preparation method of superconducting transition edge detector |
CN111063788B (en) * | 2019-11-27 | 2022-06-07 | 中国科学院上海微系统与信息技术研究所 | A kind of preparation method of superconducting transition edge detector |
Also Published As
Publication number | Publication date |
---|---|
JPH0831627B2 (en) | 1996-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6226858B1 (en) | Method of manufacturing an oxide superconductor wire | |
JP2671916B2 (en) | Method for manufacturing superconductor and method for manufacturing superconducting circuit | |
Matsui et al. | Radiation damage effects in ion‐implanted Bi‐Sr‐Ca‐Cu‐O superconducting thin films | |
JPH0284782A (en) | Manufacturing method of Josephson element | |
JPH06140675A (en) | Ultrathin film of bi oxide high-temperature superconductor and manufacture thereof | |
CA2003850C (en) | Process for preparing a perovskite type superconductor film | |
JPS63310515A (en) | Manufacture of superconductor membrane | |
JPH0825742B2 (en) | How to make superconducting material | |
JP2742418B2 (en) | Method for producing oxide superconducting thin film | |
JPS63225599A (en) | Preparation of oxide superconductive thin film | |
JP2741277B2 (en) | Thin film superconductor and method of manufacturing the same | |
JP2529347B2 (en) | Preparation method of superconducting thin film | |
JPH01201008A (en) | Method for manufacturing oxide superconducting thin film | |
JPH02175613A (en) | Production of oxide superconducting thin film | |
JP2834590B2 (en) | Oxidation degree monitoring method for oxide superconductor thin film | |
JP2668532B2 (en) | Preparation method of superconducting thin film | |
JP2525852B2 (en) | Preparation method of superconducting thin film | |
JPH03197306A (en) | Apparatus and method for producing oxide superconducting thin film | |
JP3240686B2 (en) | Method for producing high-quality oxide superconducting thin film and superconducting junction | |
Li et al. | Heteroepitaxial growth of MgO films by dual ion beam sputtering | |
JPH01212752A (en) | Superconducting thin film fabrication equipment | |
JPS63236794A (en) | Production of superconductive thin film of oxide | |
JPH05194095A (en) | Method for manufacturing thin film electric conductor | |
JP2662609B2 (en) | Method for modifying high temperature superconducting oxide thin film | |
JPH07100609B2 (en) | Method of manufacturing thin film superconductor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |