[go: up one dir, main page]

JPH06136469A - Method for producing Ni-Fe based super heat-resistant alloy ingot - Google Patents

Method for producing Ni-Fe based super heat-resistant alloy ingot

Info

Publication number
JPH06136469A
JPH06136469A JP4308054A JP30805492A JPH06136469A JP H06136469 A JPH06136469 A JP H06136469A JP 4308054 A JP4308054 A JP 4308054A JP 30805492 A JP30805492 A JP 30805492A JP H06136469 A JPH06136469 A JP H06136469A
Authority
JP
Japan
Prior art keywords
electrode
ingot
ratio
hollow
resistant alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4308054A
Other languages
Japanese (ja)
Other versions
JP3072199B2 (en
Inventor
Tomoo Takenouchi
朋夫 竹之内
Yoshiaki Ichinomiya
義昭 一宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP4308054A priority Critical patent/JP3072199B2/en
Priority to US08/073,465 priority patent/US5524019A/en
Priority to EP93109401A priority patent/EP0577997A1/en
Priority to US08/243,736 priority patent/US5487082A/en
Priority to US08/243,741 priority patent/US5444732A/en
Publication of JPH06136469A publication Critical patent/JPH06136469A/en
Application granted granted Critical
Publication of JP3072199B2 publication Critical patent/JP3072199B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

(57)【要約】 【目的】 偏析傾向の大きいNi−Fe基超耐熱合金
をしようする場合にも、偏析が少なくて高品質の鋳塊が
得られる製造方法を提供する。 【構成】 Ni−Fe基超耐熱合金を中空電極を用い
たエレクトロスラグ再溶解により製造する。電極の中空
部の断面積を、中空部を含む電極全断面積に対し、0.
04〜0.9の比率とするのが望ましい。また、円筒状
中空電極では、電極内径が外径に対し、0.2〜0.9
5の比率からなり、電極の外径が、鋳型内径に対し、
0.4〜0.95の比率からなるのが望ましい。 【効果】 エレクトロスラグ再溶解時に偏析の発生が
有効に防止され、マクロ偏析がなく、しかも表面肌に優
れたNi−Fe基超耐熱合金鋳塊が得られる。
(57) [Summary] [Object] To provide a manufacturing method capable of obtaining a high quality ingot with less segregation even when using a Ni-Fe-based superheat-resistant alloy having a large segregation tendency. [Structure] A Ni-Fe-based superalloy is manufactured by electroslag remelting using a hollow electrode. The cross-sectional area of the hollow part of the electrode was 0.
A ratio of 04 to 0.9 is desirable. Further, in the cylindrical hollow electrode, the inner diameter of the electrode is 0.2 to 0.9 with respect to the outer diameter.
It consists of the ratio of 5 and the outer diameter of the electrode is
It is desirable to have a ratio of 0.4 to 0.95. [Effects] The occurrence of segregation during electroslag remelting is effectively prevented, and there is no macrosegregation, and a Ni-Fe-based superheat-resistant alloy ingot having excellent surface texture can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、Ni−Fe基超耐熱
合金鋳塊をエレクトロスラグ再溶解により溶製する製造
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a Ni-Fe based superalloy alloy ingot by electroslag remelting.

【0002】[0002]

【従来の技術】インコネル(商標、以下同じ)718合
金やインコネル706合金で代表されるNi−Fe基超
耐熱合金鋳塊を得る場合には、内部性状を改善するため
にエレクトロスラグ再溶解(以下、ESRという)によ
り溶製される場合があり、特に大型の鋳塊では偏析の発
生を防止するためにESRが有効に利用されている。E
SR法は、中実電極から溶融スラグへの通電により発生
するジュール熱で電極を溶融させてスラグ下に滴下さ
せ、この鋳型内溶融金属プールを指向性凝固させること
により良好な肌と内部性状を有する鋳塊を得る方法であ
る。このような良質な鋳塊を得るためには、適切なスラ
グ温度を維持しながら溶融金属プールを制御する必要が
あり、電極送入速度、電圧、電流、スラグ浴の深さ、ス
ラグ組成、フィルレイショ(電極径/鋳型径)などの因
子によって適切なESR条件を決定しなければならな
い。
2. Description of the Related Art In the case of obtaining a Ni--Fe based super heat-resistant alloy ingot represented by Inconel (trademark) 718 alloy and Inconel 706 alloy, electroslag remelting (hereinafter , ESR), and ESR is effectively used in order to prevent the occurrence of segregation, especially in large ingots. E
The SR method melts the electrode with Joule heat generated by energizing the molten slag from the solid electrode and drops the molten slag under the slag, and directionally solidifies the molten metal pool in the mold to obtain good skin and internal properties. It is a method of obtaining the ingot. In order to obtain such a high quality ingot, it is necessary to control the molten metal pool while maintaining an appropriate slag temperature, electrode feed rate, voltage, current, slag bath depth, slag composition, fill. Appropriate ESR conditions must be determined by factors such as the ratio (electrode diameter / template diameter).

【0003】[0003]

【発明が解決しようとする課題】しかし、Ni−Fe基
合金のような超合金では、多量の合金元素を含有するた
め、偏析に対する感受性が非常に高く、一般に大型材よ
りも偏析が生じにくいとされる比較的小さい鋳塊を製造
する場合であっても、ESR法を適用し、なおかつ前述
したような制御を適当に行ってもフレッケル状やストリ
ーク状のマクロ偏析がESR鋳塊に出現し易く、良好な
性能を有する製品が得られないという問題がある。ま
た、Ni−Fe基超耐熱合金の中でもインコネル718
合金のESR鋳塊は、表面肌が悪く鍛造割れを発生しや
すい。そのため、鋳塊外表面を機削りして平滑にした
後、鍛造を行っている。しかし、この方法では、鋳塊表
層の緻密層が除去されるため、外皮の除去により熱間加
工性が劣化するという問題があり、また、高品質部分が
活用できない、鋳塊歩留りが低下するという問題もあ
る。この発明は上記事情を背景としてなされたものであ
り、偏析傾向が大きいNi−Fe基超合金の鋳塊を製造
する際にも、偏析が少なく、しかも表面肌の良好な鋳塊
を得ることができる製造方法を提供するものである。
However, since a superalloy such as a Ni--Fe based alloy contains a large amount of alloying elements, it is very sensitive to segregation, and generally segregation is less likely to occur than a large material. Even if a relatively small ingot is produced, even if the ESR method is applied and the control as described above is appropriately performed, freckle-like or streak-like macro segregation easily appears in the ESR ingot. However, there is a problem that a product having good performance cannot be obtained. In addition, Inconel 718 among Ni-Fe based superalloys
The ESR ingot of alloy has a poor surface texture and is likely to cause forging cracks. Therefore, the outer surface of the ingot is machined to be smooth and then forged. However, in this method, since the dense layer of the surface layer of the ingot is removed, there is a problem that the hot workability is deteriorated by the removal of the outer cover, and the high quality portion cannot be used, and the ingot yield is reduced. There are also problems. The present invention has been made in view of the above circumstances, and even when producing an ingot of a Ni-Fe-based superalloy having a large segregation tendency, it is possible to obtain an ingot with less segregation and a good surface texture. The present invention provides a possible manufacturing method.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するた
め、本願発明のNi−Fe基超耐熱合金鋳塊の製造方法
は、重量%で、Ni :39〜55%、Cr :14.5〜
21%、Al :0.2〜0.8%、Ti :0.65〜2
%、Nb :2.5〜5.5%、B:0.006%以下
と、所望によりMo :2.8〜3.3%を含有し、残部
がFe 及び不可避的不純物からなる中空電極を用いてエ
レクトロスラグ再溶解を行うことを特徴とする。その場
合、電極の中空部の断面積が、中空部を含む電極全断面
積に対し、0.04〜0.9の比率からなる中空電極を
用いるのが望ましい。また円筒状中空電極の場合には、
電極内径が外径に対し、0.2〜0.95の比率からな
り、そしてこの該電極の外径が、鋳型内径に対し、0.
4〜0.95の比率からなるのが望ましい。なお、本願
発明のESR用電極は、目的とする用途などに従って、
Ni−Fe基超耐熱合金の範ちゅうから選定されるもの
であり、その組成が具体的に限定されるものではない。
In order to solve the above-mentioned problems, the method for producing a Ni-Fe based super heat-resistant alloy ingot according to the present invention is, by weight%, Ni: 39-55%, Cr: 14.5-.
21%, Al: 0.2 to 0.8%, Ti: 0.65 to 2
%, Nb: 2.5 to 5.5%, B: 0.006% or less and, if desired, Mo: 2.8 to 3.3%, and the balance is Fe and inevitable impurities. It is characterized in that the electroslag is redissolved by using it. In that case, it is desirable to use a hollow electrode in which the cross-sectional area of the hollow portion of the electrode is 0.04 to 0.9 with respect to the total cross-sectional area of the electrode including the hollow portion. In the case of a cylindrical hollow electrode,
The inner diameter of the electrode is in a ratio of 0.2 to 0.95 to the outer diameter, and the outer diameter of the electrode is 0.
It is desirable that the ratio is 4 to 0.95. In addition, the electrode for ESR of the present invention is
It is selected from the range of Ni-Fe based super heat resistant alloys, and the composition thereof is not specifically limited.

【0005】[0005]

【作用】マクロ偏析のない良好な内部性状のESR鋳塊
を製造するためには溶融金属プールを浅く皿状にするこ
とが不可欠であり、これが深くなると、凝固組織の緻密
化が妨げられて組織が粗大化しやすく、また逆V偏析な
どのマクロ偏析が発生しやすい。しかし、鋳塊が限界の
大きさ以上になると良好な肌を確保しつつマクロ偏析が
生成しない程度の浅いプールにすることは困難である。
例えばESR電極の形状の影響を考えてみると、フィル
レイショが小さい場合は溶融スラグ中央部での発熱量が
多く、電流が凝固した鋳塊中に多く流れてジュール発熱
も多くなり、プールは深くなる傾向にある。一方、フィ
ルレイショが大きいと溶融スラグ全体で発熱し、電流は
鋳型へ流れる割合が増えるのでプールは浅くなる傾向に
ある。しかし、フィルレイショを大きくする後者の方法
でも、偏析が生成しない程に十分に浅いプールにするこ
とは容易ではない。しかるに本願発明によれば、電極中
心部直下から鋳塊内を流れる電流が少なくなり、中心部
の溶融プールの深さが浅くなって、全体としてプール形
状が平坦化され、偏析の発生を抑制する。また、鋳型近
傍で、通電量が増えてスラグの温度が高くなり、得られ
る鋳塊肌が良好になる。
In order to produce an ESR ingot with good internal properties without macro segregation, it is essential to make the molten metal pool shallow and dish-shaped. Are likely to become coarse, and macro segregation such as inverse V segregation is likely to occur. However, when the ingot becomes larger than the limit size, it is difficult to form a shallow pool in which macro segregation does not occur while ensuring good skin.
For example, considering the influence of the shape of the ESR electrode, when the fill ratio is small, the amount of heat generated in the central portion of the molten slag is large, and the current flows in the solidified ingot to increase the amount of Joule heat generation. Tends to become. On the other hand, when the fill ratio is large, heat is generated in the entire molten slag, and the proportion of current flowing to the mold increases, so the pool tends to be shallow. However, even with the latter method of increasing the fill ratio, it is not easy to make the pool shallow enough so that segregation does not occur. However, according to the present invention, the current flowing in the ingot from directly below the center of the electrode is reduced, the depth of the molten pool in the center is shallow, the pool shape is flattened as a whole, and the occurrence of segregation is suppressed. . Further, in the vicinity of the mold, the energization amount is increased and the temperature of the slag is increased, and the obtained ingot surface is improved.

【0006】なお、本発明の電極の製造法は特に限定さ
れないが、例えば要求されるガス成分や不純物成分に応
じて大気中あるいは真空中で溶解、精錬、造塊した中空
鋳塊や、中実鋳塊を孔明けしたもの、鋳塊を板状に加工
して板曲げし溶接したもの、中空電極の分割材を組み立
て溶接したものなどを用いて目的の中空電極を得ること
ができる。このようにして製造される電極の外形は、円
柱形状の他に、角柱形状やその他の異形形状とすること
ができる。そして、電極に形成される孔は、通常は電極
の中心部に位置するが、完全に中心に位置するものに限
定されるものではなく、ほぼ中心である芯部に形成され
るものであればよい。
The method for producing the electrode of the present invention is not particularly limited. For example, a hollow ingot or a solid ingot melted, refined, or agglomerated in the air or in a vacuum depending on the required gas component or impurity component is used. The target hollow electrode can be obtained by using a product obtained by forming a hole in the ingot, a product obtained by processing the ingot into a plate shape and bending and welding the plate, or a product obtained by assembling and welding the divided material of the hollow electrode. The outer shape of the electrode manufactured in this manner can be a prismatic shape or another irregular shape, in addition to the cylindrical shape. And, the hole formed in the electrode is usually located at the center of the electrode, but is not limited to the one completely located at the center, as long as it is formed in the core which is almost the center Good.

【0007】また、孔の形状は特に限定されないが、通
常は電極外壁と相似形の断面形状に形成される。例え
ば、円柱形状の電極に丸孔を形成し、角柱形状の電極
に、角孔を形成する。この孔は通常は、電極の両端に貫
通させるが、必ずしもこれに限定されるものではなく、
ESR操業初期または終期では、中実部を溶融させるよ
うに、電極の一端または両端で孔が閉塞しているもので
あってもよい。また、孔は軸心方向に沿って同一断面形
状を有する直孔状に形成するのが通常であるが、軸方向
位置によっては異形断面としてもよく、例えば、孔の内
面形状を軸心方向に沿ってテーパー状とすることも考え
られる。また、孔は通常は電極の芯部に一つを形成する
が、複数形成する可能性もある。
Although the shape of the hole is not particularly limited, it is usually formed in a sectional shape similar to the outer wall of the electrode. For example, a round hole is formed in a columnar electrode, and a square hole is formed in a prismatic electrode. This hole is usually formed at both ends of the electrode, but is not limited to this.
At the beginning or end of the ESR operation, the holes may be closed at one or both ends of the electrode so as to melt the solid portion. Further, the hole is usually formed in a straight hole shape having the same cross-sectional shape along the axial direction, but it may have a modified cross section depending on the axial position. For example, the inner surface shape of the hole may be in the axial direction. It is also possible to make it taper shape along. Moreover, although one hole is usually formed in the core of the electrode, a plurality of holes may be formed.

【0008】このようにして形成される孔は、その断面
積が、電極外壁内側の全断面積に対し、0.04〜0.
9の比率からなるのが望ましい。これを円柱電極におけ
る丸孔で考えれば、孔の径が、電極の外径に対し、0.
2〜0.95の比率からなるのが望ましい。上記の比が
下限未満であると、溶融金属プールの形状変化に及ぼす
影響が小さく、十分な溶融プール平坦化の効果が認めら
れない。また、上限を越えると、必要鋳塊重量を得るた
めの電極長さが増大し、実操業への適用が困難になるた
め、断面積比で0.04〜0.9、径の比で0.2〜
0.95の範囲を望ましいものとした。さらには、この
電極の外径が、鋳型内径に対し、0.4〜0.95の比
率からなるのが望ましい。上記比が0.4未満であると
必要鋳塊重量を得るための電極長さが増大し、実操業へ
の適用が困難になる。また比が0.95を越えると、鋳
型と電極との間隔が狭くなり、鋳型または電極の昇降に
おいて鋳型と電極が接触する可能性があり、実操業への
適用が困難になるおそれがあるため、上記比が0.4〜
0.95の範囲内にあるのを望ましいものとした。
The cross-sectional area of the thus-formed hole is 0.04 to 0.
A ratio of 9 is desirable. Considering this as a round hole in a cylindrical electrode, the diameter of the hole is 0.
It is desirable that the ratio is 2 to 0.95. When the ratio is less than the lower limit, the effect on the shape change of the molten metal pool is small, and the effect of sufficient flattening of the molten pool cannot be recognized. On the other hand, if the upper limit is exceeded, the electrode length for obtaining the required ingot weight increases, making it difficult to apply it to actual operations. Therefore, the cross-sectional area ratio is 0.04 to 0.9, and the diameter ratio is 0. .2-
The range of 0.95 was made desirable. Furthermore, it is desirable that the outer diameter of this electrode be 0.4 to 0.95 with respect to the inner diameter of the mold. If the above ratio is less than 0.4, the electrode length for obtaining the required weight of the ingot increases, and it becomes difficult to apply it to the actual operation. On the other hand, if the ratio exceeds 0.95, the space between the mold and the electrode becomes narrow, and the mold and the electrode may come into contact with each other when the mold or the electrode is moved up and down, which may make it difficult to apply in actual operation. , The above ratio is 0.4 to
It was set to be desirable within the range of 0.95.

【0009】[0009]

【実施例】表1に示す組成のNi−Fe基超耐熱合金を
常法により溶製し、さらに中子を用いて中心に丸孔を有
する円柱状電極に鋳造した。なお、電極の製造に際して
は、表2に示すように電極の内径/外径比を変えて、2
種の電極を実施例の電極とした。また、従来法により中
子を用いることなく鋳造した中実電極を比較例の電極と
して用意した。これらの電極はほぼ同じ電極断面積(孔
部は除く)とし、同一組成の電極を用いた実施例と比較
例とでは、溶解速度がほぼ同じになるようにESR条件
を設定した。
Example A Ni-Fe based superalloy having the composition shown in Table 1 was melted by a conventional method, and was cast into a cylindrical electrode having a round hole at the center by using a core. When manufacturing the electrode, the inner diameter / outer diameter ratio of the electrode should be changed as shown in Table 2
The seed electrode was the electrode of the example. In addition, a solid electrode cast without using a core by a conventional method was prepared as an electrode of a comparative example. These electrodes had substantially the same electrode cross-sectional area (excluding holes), and the ESR conditions were set so that the dissolution rate was almost the same in the examples and the comparative examples using the electrodes having the same composition.

【0010】[0010]

【表1】 [Table 1]

【0011】[0011]

【表2】 [Table 2]

【0012】これらのESR用電極を用いて、表2に示
す鋳型、溶解速度で、ESRを行った。得られたESR
鋳塊を鍛造して丸棒とした後、端部端面をマクロ腐食し
てマクロ偏析を評価するとともに鋳塊肌を評価して、そ
の結果を表2に示した。この結果、表2に示すとおり、
中実電極を用いた場合に、鋳塊肌は不良であり、内部性
状では軽微なマクロ偏析が生成していた。これに対し、
中空電極を用いたものでは大型の鋳塊でも、鋳塊肌、内
部性状ともに著しく改善されており、良質なESR鋳塊
が得られた。
Using these ESR electrodes, ESR was performed at the template and dissolution rate shown in Table 2. ESR obtained
After the ingot was forged into a round bar, the end face was macro-corroded to evaluate macro segregation and the ingot surface was evaluated. The results are shown in Table 2. As a result, as shown in Table 2,
When the solid electrode was used, the surface of the ingot was poor, and a slight macrosegregation was generated in the internal properties. In contrast,
In the case of using the hollow electrode, even in a large ingot, the ingot surface and internal properties were remarkably improved, and a good quality ESR ingot was obtained.

【0013】[0013]

【発明の効果】以上説明したように本願発明によれば、
中空電極を用いてESR鋳塊を製造するので、溶融プー
ル形状が浅くなって平坦化され、偏析の生成が抑止さ
れ、偏析感受性の高いNi−Fe基超耐熱合金でも偏析
がなく、しかも表面肌が良好な高品質の鋳塊が得られる
効果がある。
As described above, according to the present invention,
Since the ESR ingot is manufactured using the hollow electrode, the shape of the molten pool becomes shallow and flattened, the generation of segregation is suppressed, and there is no segregation even in the Ni-Fe-based superheat-resistant alloy with high segregation sensitivity, and the surface texture is high. Has the effect of obtaining a high quality ingot.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C22C 19/03 Z 30/00 33/04 H ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location C22C 19/03 Z 30/00 33/04 H

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、Ni :39〜55%、Cr :
14.5〜21%、Al :0.2〜0.8%、Ti :
0.65〜2%、Nb :2.5〜5.5%、B:0.0
06%以下を含み、残部がFe 及び不可避的不純物から
なる中空電極を用いてエレクトロスラグ再溶解を行うこ
とを特徴とするNi−Fe基超耐熱合金鋳塊の製造方法
1. By weight percent, Ni: 39-55%, Cr:
14.5-21%, Al: 0.2-0.8%, Ti:
0.65 to 2%, Nb: 2.5 to 5.5%, B: 0.0
A method for producing a Ni-Fe-based superheat-resistant alloy ingot, characterized in that electroslag remelting is performed using a hollow electrode containing not more than 06% and the balance being Fe and inevitable impurities.
【請求項2】 請求項1の組成にさらに、Mo :2.8
〜3.3%を含有し、残部がFe 及び不可避的不純物か
らなる中空電極を用いてエレクトロスラグ再溶解を行う
ことを特徴とするNi−Fe基超耐熱合金鋳塊の製造方
2. The composition of claim 1 further comprising Mo: 2.8.
To 3.3% and the rest is electroslag remelting using a hollow electrode consisting of Fe and unavoidable impurities.
【請求項3】 電極の中空部の断面積が、中空部を含む
電極全断面積に対し、0.04〜0.9の比率からなる
中空電極を用いてエレクトロスラグ再溶解を行うことを
特徴とする請求項1または2記載のNi−Fe基超耐熱
合金鋳塊の製造方法
3. The electroslag remelting is carried out using a hollow electrode having a ratio of the cross-sectional area of the hollow portion of the electrode to the total cross-sectional area of the electrode including the hollow portion of 0.04 to 0.9. The method for producing a Ni-Fe-based superheat-resistant alloy ingot according to claim 1 or 2.
【請求項4】 円筒状からなる中空電極において、該電
極内径が外径に対し、0.2〜0.95の比率からな
り、さらに該電極の外径が、鋳型内径に対し、0.4〜
0.95の比率からなる中空電極を用いてエレクトロス
ラグ再溶解を行うことを特徴とする請求項1または2記
載のNi−Fe基超耐熱合金鋳塊の製造方法
4. A hollow electrode having a cylindrical shape, wherein the inner diameter of the electrode is 0.2 to 0.95 with respect to the outer diameter, and the outer diameter of the electrode is 0.4 with respect to the inner diameter of the mold. ~
Electroslag remelting is performed using the hollow electrode which consists of a ratio of 0.95, The manufacturing method of the Ni-Fe based superalloy alloy ingot of Claim 1 or 2 characterized by the above-mentioned.
JP4308054A 1992-06-11 1992-10-22 Method for producing Ni-Fe-based super heat-resistant alloy ingot Expired - Fee Related JP3072199B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP4308054A JP3072199B2 (en) 1992-10-22 1992-10-22 Method for producing Ni-Fe-based super heat-resistant alloy ingot
US08/073,465 US5524019A (en) 1992-06-11 1993-06-09 Electrode for electroslag remelting and process of producing alloy using the same
EP93109401A EP0577997A1 (en) 1992-06-11 1993-06-11 Electrode for electroslag remelting and process of producing alloy using the same
US08/243,736 US5487082A (en) 1992-06-11 1994-05-17 Electrode for electroslag remelting and process of producing alloy using the same
US08/243,741 US5444732A (en) 1992-06-11 1994-05-17 Electrode for electroslag remelting and process of producing alloy using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4308054A JP3072199B2 (en) 1992-10-22 1992-10-22 Method for producing Ni-Fe-based super heat-resistant alloy ingot

Publications (2)

Publication Number Publication Date
JPH06136469A true JPH06136469A (en) 1994-05-17
JP3072199B2 JP3072199B2 (en) 2000-07-31

Family

ID=17976335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4308054A Expired - Fee Related JP3072199B2 (en) 1992-06-11 1992-10-22 Method for producing Ni-Fe-based super heat-resistant alloy ingot

Country Status (1)

Country Link
JP (1) JP3072199B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09241767A (en) * 1996-03-08 1997-09-16 Hitachi Metals Ltd Consumable electrode type remelting method for superalloy
AT406384B (en) * 1996-01-29 2000-04-25 Inteco Int Techn Beratung METHOD FOR ELECTROSHELL STRAND MELTING OF METALS
JP2000144273A (en) * 1998-08-28 2000-05-26 Daido Steel Co Ltd Consumable electrode type re-melting method for super heat resistant alloy
JP2001098345A (en) * 1999-09-29 2001-04-10 Nippon Mining & Metals Co Ltd Fe-Ni alloy for shadow mask and method for producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52129625A (en) * 1976-04-23 1977-10-31 Hitachi Shipbuilding Eng Co Electro slug casting
JPS5857266B2 (en) * 1974-06-04 1983-12-19 セントロ スペリメンタ−ル メタラ−ジコ ソチエタ ペル アツイオニ Fukugouyouyuuseidenkiyoku
JPH05345934A (en) * 1992-06-11 1993-12-27 Japan Steel Works Ltd:The Electrode for remelting electroslag and production of alloy using the electrode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5857266B2 (en) * 1974-06-04 1983-12-19 セントロ スペリメンタ−ル メタラ−ジコ ソチエタ ペル アツイオニ Fukugouyouyuuseidenkiyoku
JPS52129625A (en) * 1976-04-23 1977-10-31 Hitachi Shipbuilding Eng Co Electro slug casting
JPH05345934A (en) * 1992-06-11 1993-12-27 Japan Steel Works Ltd:The Electrode for remelting electroslag and production of alloy using the electrode

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT406384B (en) * 1996-01-29 2000-04-25 Inteco Int Techn Beratung METHOD FOR ELECTROSHELL STRAND MELTING OF METALS
JPH09241767A (en) * 1996-03-08 1997-09-16 Hitachi Metals Ltd Consumable electrode type remelting method for superalloy
JP2000144273A (en) * 1998-08-28 2000-05-26 Daido Steel Co Ltd Consumable electrode type re-melting method for super heat resistant alloy
JP2001098345A (en) * 1999-09-29 2001-04-10 Nippon Mining & Metals Co Ltd Fe-Ni alloy for shadow mask and method for producing the same

Also Published As

Publication number Publication date
JP3072199B2 (en) 2000-07-31

Similar Documents

Publication Publication Date Title
DE60224514T2 (en) METHOD FOR PRODUCING BLOCKS FROM NICKEL BASE ALLOY WITH LARGE DIAMETER
US8668760B2 (en) Method for the production of a β-γ-TiAl base alloy
KR20180019546A (en) Alloy melting and refining method
JP5857917B2 (en) Ni-base superalloy ingot manufacturing method
CH375903A (en) Niobium alloy
DE2230317A1 (en) METHOD OF CASTING METAL OBJECTS
CN111004976A (en) Nickel-saving type air valve alloy and preparation method thereof
JP3072199B2 (en) Method for producing Ni-Fe-based super heat-resistant alloy ingot
US3980468A (en) Method of producing a ductile rare-earth containing superalloy
JP2622796B2 (en) Electroslag for remelting electroslag and method for producing alloy using the electrode
JP3250241B2 (en) Target material and its manufacturing method
US6565681B1 (en) Age-hardenable copper alloy casting molds
US4830086A (en) Mold member and rapidly solidifying water cooled rotary roll member
JP2745369B2 (en) Manufacturing method of iron-based heat-resistant alloy
JP3308058B2 (en) Rolls for rolling steel bars
JP3110565B2 (en) Method of manufacturing working roll for cold rolling
JP3083653B2 (en) Manufacturing method of retaining ring material
JP2000144273A (en) Consumable electrode type re-melting method for super heat resistant alloy
KR100220572B1 (en) Fe-ni-cr-al alloy and same manufacturing method
JP3066459B2 (en) Cast mold material for shell core and method of manufacturing the same
KR100220573B1 (en) Nickel-chromium-iron-aluminum alloy for low resistance electric wire and manufacturing method thereof
JPH08253830A (en) Production of single-crystal ni-base alloy casting having high single-crystallization ratio
JP3679439B2 (en) Alloy for glass molding mold and manufacturing method thereof
JPH06126430A (en) Method of manufacturing forged steel working roll material for hot rolling
JP2022076856A (en) Ingot of pure titanium or titanium alloy

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080526

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees