[go: up one dir, main page]

JPH06136159A - Transparent conductive film and its production - Google Patents

Transparent conductive film and its production

Info

Publication number
JPH06136159A
JPH06136159A JP4312926A JP31292692A JPH06136159A JP H06136159 A JPH06136159 A JP H06136159A JP 4312926 A JP4312926 A JP 4312926A JP 31292692 A JP31292692 A JP 31292692A JP H06136159 A JPH06136159 A JP H06136159A
Authority
JP
Japan
Prior art keywords
film
transparent conductive
thin film
transparent
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4312926A
Other languages
Japanese (ja)
Inventor
Tatsunori Miyazaki
龍法 宮崎
Koji Saiki
幸治 斎木
Akimine Hayashi
明峰 林
Kenji Matsumoto
賢次 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP4312926A priority Critical patent/JPH06136159A/en
Publication of JPH06136159A publication Critical patent/JPH06136159A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PURPOSE:To obtain a film excellent in water vapor barrier effect, gas barrier effect, alkali resistance, conductivity and transparency by successively forming a specified thin barrier film and a specified thin transparent conductive film on a transparent film base. CONSTITUTION:A thin transparent barrier film of a thickness of desirably 10-100nm made of a metal oxide based on silicon oxide or a metal nitrile based on silicon nitride (e.g. SiO1.5) is formed on a transparent base made of desirably a polyacrylate film, and a thin transparent conductive film of a thickness of desirably 10-400nm made of a metal oxide based on indium oxide (e.g. tin oxide (10%)/indium oxide mixture) is formed on the preceding film to form a thin transparent conductive film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、透明導電性フィルムお
よびその製造法に関し、更に詳しくは、透明フィルム基
板上に珪素酸化物を主体とする金属酸化物または珪素窒
化物を主体とする金属窒化物の透明バリヤー性薄膜の上
に、インジウム酸化物を主体とする金属酸化物の透明導
電性薄膜を形成した、水蒸気バリヤー、ガスバリヤー、
耐アルカリ性、導電性および透明性の良好な透明導電性
フィルムおよびその製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transparent conductive film and a method for producing the same, and more particularly to a metal oxide mainly composed of silicon oxide or a metal nitride mainly composed of silicon nitride on a transparent film substrate. A transparent conductive thin film of a metal oxide mainly composed of indium oxide is formed on a transparent barrier thin film of an object, a water vapor barrier, a gas barrier,
The present invention relates to a transparent conductive film having good alkali resistance, conductivity and transparency, and a method for producing the same.

【0002】[0002]

【従来の技術】エレクトロニクス技術の急速な進歩にと
もない、透明電極の特性の向上が急務となっている。特
に液晶表示素子、太陽電池用光電変換素子などへの応用
が進んでいる。これらに用いる透明電極は、一般にガラ
ス基板上に形成される。ガラス基板上に形成されたもの
の例として、たとえば酸化錫などを薄膜加工したネサガ
ラス、酸化インジウムと酸化錫の混合物(ITO)の薄
膜を形成したITOガラス、金、銀などの導電性金属薄
膜を形成した導電性ガラスなどが知られている。しかし
ながら、基板として用いるガラスには、衝撃に弱い、重
い、可撓性がない、大面積化がしにくい、などの欠点が
あり、それらの欠点を補う意味でプラスチックフィルム
を基板とする透明導電性フィルムも製造されている。プ
ラスチックフィルムは、耐衝撃性、可撓性、軽量、大面
積化の容易さ、加工性の良さなどの利点を有しており、
プラスチックフィルムを基板とする透明導電性フィルム
は、現在でも液晶表示素子、タッチパネル、帯電防止フ
ィルム、赤外線反射膜などに用いられている。
2. Description of the Related Art With the rapid progress of electronics technology, there is an urgent need to improve the characteristics of transparent electrodes. In particular, application to liquid crystal display devices, photoelectric conversion devices for solar cells, and the like is progressing. The transparent electrodes used for these are generally formed on a glass substrate. Examples of those formed on a glass substrate include, for example, Nesa glass obtained by thin film processing of tin oxide, ITO glass formed of a thin film of a mixture of indium oxide and tin oxide (ITO), and conductive metal thin films such as gold and silver. Conductive glass and the like are known. However, glass used as a substrate has drawbacks such as weakness against impact, heavy, inflexible, and difficult to increase in area, and in order to compensate for those drawbacks, transparent conductivity using a plastic film as a substrate Films are also manufactured. The plastic film has advantages such as impact resistance, flexibility, light weight, easy increase in area, and good workability.
The transparent conductive film using a plastic film as a substrate is still used in liquid crystal display devices, touch panels, antistatic films, infrared reflective films and the like.

【0003】現在透明導電性フィルムに用いられている
導電性薄膜は、導電性と透明性の双方に優れ、しかもパ
ターン加工が容易であるITO薄膜が主流であり、この
透明導電性薄膜はエレクトロニクス表示デバイス分野で
広く利用されている。前記ITO薄膜をプラスチックフ
ィルム基板上に形成する方法としては、真空蒸着法、ス
パッタリング法、イオンプレーティング法などが知られ
ており、これらのうちでは、フィルムへの密着性がよ
い、膜の均一性がよい、膜質のコントロールが容易であ
る、生産性がよい、などの理由から、マグネトロンスパ
ッタリング法が多く利用されている。
The conductive thin film currently used for the transparent conductive film is mainly an ITO thin film which is excellent in both conductivity and transparency and can be easily patterned. This transparent conductive thin film is used for electronic display. Widely used in the device field. As a method of forming the ITO thin film on a plastic film substrate, a vacuum deposition method, a sputtering method, an ion plating method, etc. are known, and among these, good adhesion to the film and film uniformity are obtained. The magnetron sputtering method is widely used because of its good quality, easy control of film quality, and good productivity.

【0004】[0004]

【発明が解決しようとする課題】しかし、単一のプラス
チックフィルム基材ではガスバリヤー性、水蒸気バリヤ
ー性、耐溶剤性などの諸特性を満足するものは得られな
い。そのため、フィルム基材に対し下塗や表面処理を施
し複合化することが多い。複合化に当たっては、コーテ
ィング、スパッタリングなどの公知の方法を用いればよ
いが、従来はコーティングによる複合化が広く用いられ
ていた。しかし、コーティングによる複合化では、コー
ティング材料の制約上、十分な特性が得られなかった。
特に液晶表示素子用の基板としては、その製造工程上、
耐アルカリ性が必要であるが、5%程度の濃度の水酸化
ナトリウム水溶液に対する5〜10分の浸漬で剥離、亀
裂などの障害が発生することが多かった。本発明は、プ
ラスチックフィルム基板上に特定の透明バリヤー性薄膜
及びその上に特定の透明導電性薄膜を形成することによ
り、ガスバリヤー性、水蒸気バリヤー性、導電性、透明
性の諸特性を満足し、かつ水酸化ナトリウム水溶液に代
表されるアルカリ溶液に侵されないという、これまで得
られなかった優れた特性を持つ透明導電性フィルムを得
ることを目的としている。
However, with a single plastic film substrate, it is not possible to obtain one which satisfies various properties such as gas barrier property, water vapor barrier property and solvent resistance. Therefore, a film base material is often subjected to undercoating or surface treatment to form a composite. A known method such as coating or sputtering may be used for compounding, but conventionally compounding by coating has been widely used. However, in the composite by coating, sufficient characteristics could not be obtained due to the limitation of the coating material.
Especially as a substrate for a liquid crystal display element, in its manufacturing process,
Although alkali resistance is required, problems such as peeling and cracking often occur when immersed in a sodium hydroxide aqueous solution having a concentration of about 5% for 5 to 10 minutes. The present invention satisfies various characteristics of gas barrier property, water vapor barrier property, conductivity and transparency by forming a specific transparent barrier thin film and a specific transparent conductive thin film on it on a plastic film substrate. In addition, it is an object of the present invention to obtain a transparent conductive film having excellent properties that have not been obtained up to now such that it is not attacked by an alkaline solution typified by an aqueous solution of sodium hydroxide.

【0005】[0005]

【課題を解決するための手段】本発明者らは前記実状に
鑑み前記目的を達成すべく鋭意検討を重ねた結果、本発
明に到達したものである。すなわち、本発明の第1は、
透明フィルム基板(A)上に、珪素酸化物を主体とする
金属酸化物または珪素窒化物を主体とする金属窒化物の
透明バリヤー性薄膜(B)を形成し、さらにその上にイ
ンジウム酸化物を主体とする金属酸化物の透明導電性薄
膜(C)を形成したことを特徴とする透明導電性フィル
ムを、本発明の第2は、透明フィルム基板(A)上に、
珪素酸化物を主体とする金属酸化物または珪素窒化物を
主体とする金属窒化物の透明バリヤー性薄膜(B)をマ
グネトロンスパッタリング法により形成し、さらにその
上にインジウム酸化物を主体とする金属酸化物の透明導
電性薄膜(C)をマグネトロンスパッタリング法により
形成することを特徴とする透明導電性フィルムの製造法
を、それぞれ内容とする。
The present inventors have arrived at the present invention as a result of earnest studies in order to achieve the above-mentioned object in view of the above circumstances. That is, the first aspect of the present invention is
A transparent barrier thin film (B) of a metal oxide mainly composed of silicon oxide or a metal nitride mainly composed of silicon nitride is formed on a transparent film substrate (A), and indium oxide is further formed thereon. According to a second aspect of the present invention, a transparent conductive film characterized in that a transparent conductive thin film (C) of a metal oxide as a main component is formed on a transparent film substrate (A),
A transparent barrier thin film (B) of a metal oxide mainly composed of silicon oxide or a metal nitride mainly composed of silicon nitride is formed by a magnetron sputtering method, and a metal oxide mainly composed of indium oxide is further formed thereon. A transparent conductive thin film (C) is formed by a magnetron sputtering method.

【0006】本発明に用いられる透明フィルム基板とし
ては、プラスチックフィルムから形成された厚さが好ま
しくは20〜200μm 程度、より好ましくは75〜1
25μm 程度で、光線透過率が好ましくは85%以上、
より好ましくは90%以上、表面の平滑性が良好なフィ
ルムが好適である。基板の厚さが20〜200μm の範
囲内の場合には、光線透過率が85%以上で表面の平滑
性が良好でフィルムの厚みの均一な透明性フィルムが得
られやすい。また基板の光線透過率が85%以上の場合
には、得られる透明導電性フィルムの透明度も良好とな
り、かつ薄膜の表面性も良好となり、エッチングなどの
微細加工性も向上する。
As the transparent film substrate used in the present invention, the thickness formed of a plastic film is preferably about 20 to 200 μm, more preferably 75 to 1
About 25 μm, the light transmittance is preferably 85% or more,
A film having 90% or more and a good surface smoothness is more preferable. When the thickness of the substrate is in the range of 20 to 200 μm, the light transmittance is 85% or more, the surface smoothness is good, and a transparent film having a uniform film thickness is easily obtained. Further, when the light transmittance of the substrate is 85% or more, the transparency of the obtained transparent conductive film becomes good, the surface property of the thin film becomes good, and the fine workability such as etching is improved.

【0007】前記プラスチックフィルムは、単一の基材
からのフィルムに限定されるものではなく、付着強度の
改善、バリヤー性の向上、耐溶剤性の改善などの目的
で、各種下塗や表面処理を施した複合フィルムであって
もよい。複合化にあたっては、コーティング、スパッタ
リングなどの公知の方法を用いることができる。上記プ
ラスチックとしては、たとえばポリアリレート(PA
R)、ポリエチレンテレフタレート(PET)、ポリカ
ーボネート(PC)、ポリエーテルサルフォン(PE
S)、ポリサルフォン、ポリアミド、セルローストリア
セテート(TAC)などが挙げられ、これらは単独又は
2種以上組み合わせて用いられる。これらのプラスチッ
クの中では、透明性が高く、耐熱性に優れたポリアリレ
ートが好ましく、特に液晶表示素子の用途に使用するの
に好ましい。
The plastic film is not limited to a film made of a single base material, and various undercoats and surface treatments may be applied for the purpose of improving adhesion strength, barrier property, solvent resistance and the like. The applied composite film may be used. A known method such as coating or sputtering can be used for forming the composite. Examples of the plastic include polyarylate (PA
R), polyethylene terephthalate (PET), polycarbonate (PC), polyether sulfone (PE
S), polysulfone, polyamide, cellulose triacetate (TAC) and the like, and these may be used alone or in combination of two or more kinds. Among these plastics, polyarylate, which has high transparency and excellent heat resistance, is preferable, and it is particularly preferable for use in the application of liquid crystal display devices.

【0008】本発明における珪素酸化物を主体とする金
属酸化物または珪素窒化物を主体とする金属窒化物の透
明バリヤー性薄膜としては、厚さ10〜100nm程度
が好ましく、より好ましくは20〜60nm程度であ
り、また酸素透過度は5cc/m2/day 以下が好ましく、よ
り好ましくは1cc/m2/day 以下、水蒸気透過度は5g/m2
/day以下が好ましく、より好ましくは1g/m2/day以下の
バリヤー性薄膜である。珪素酸化物を主体とした金属酸
化物を主体とした金属窒化物とは、二酸化珪素あるいは
これを主成分として含み、一酸化珪素、酸化アルミニウ
ムなどの金属酸化物の1種以上を含む化合物であり、ま
た珪素窒化物を主体とした金属窒化物とは、窒化珪素あ
るいはこれを主成分として含み、窒化アルミニウムなど
の金属窒化物の1種以上を含む化合物である。。これら
具体例としては、例えばSiOx、SiAINなどが挙
げられる。前記珪素酸化物を主体とした金属酸化物また
は珪素窒化物を主体とした金属窒化物のうちでもSiO
x 、特にxの値が1.3〜1.8、好ましくは1.5〜
1.8のものが、酸素ガスおよび水蒸気バリヤー性を維
持しつつ、優れた耐アルカリ性を発現することから好ま
しい。
The transparent barrier thin film of the metal oxide mainly composed of silicon oxide or the metal nitride mainly composed of silicon nitride in the present invention preferably has a thickness of about 10 to 100 nm, more preferably 20 to 60 nm. The oxygen permeability is preferably 5 cc / m 2 / day or less, more preferably 1 cc / m 2 / day or less, and the water vapor permeability is 5 g / m 2
/ day or less is preferable, and a barrier thin film of 1 g / m 2 / day or less is more preferable. A metal nitride mainly composed of silicon oxide is a metal nitride mainly composed of silicon dioxide or a compound containing at least one metal oxide such as silicon monoxide or aluminum oxide. The metal nitride mainly composed of silicon nitride is silicon nitride or a compound containing silicon nitride as a main component and at least one kind of metal nitride such as aluminum nitride. . Specific examples thereof include SiO x and SiAIN. Among the metal oxides mainly containing silicon oxide or the metal nitrides mainly containing silicon nitride, SiO
x , especially the value of x is 1.3 to 1.8, preferably 1.5 to
1.8 is preferable because it exhibits excellent alkali resistance while maintaining the oxygen gas and water vapor barrier properties.

【0009】本発明におけるインジウム酸化物を主体と
する金属酸化物の透明導電性薄膜としては、厚さ10〜
400nm程度が好ましく、より好ましくは50〜20
0nm程度、更に好ましくは60〜150nm程度であ
り、光線透過率は80%以上が好ましく、より好ましく
は85%以上であり、シート抵抗は100Ω/□以下が
好ましく、より好ましくは50Ω/□以下で膜厚分布の
均一な透明導電性薄膜である。透明導電性薄膜の厚さが
10〜400nm程度の範囲内の場合には、シート抵抗
および光線透過率の双方を目的の範囲にしやすい。ま
た、前記透明導電性薄膜の光線透過率が80%程度以上
の場合には、透明導電性フィルムの透明性も良好にしう
る。インジウム酸化物を主体とする金属酸化物には、酸
化インジウムまたはこれを主成分、好ましくは80%
(重量%、以下同様)以上、より好ましくは90〜95
%含み、酸化スズ、酸化カドミウムなどの他の金属酸化
物の1種以上を好ましくは20%以下、より好ましくは
5〜10%含む化合物であり、この化合物の具体例とし
ては、例えばITO、CdIn2 4 などが挙げられ
る。前記インジウム酸化物を主体とした金属酸化物のう
ちでもITO、特に金属換算でスズが好ましくは10%
以下、より好ましくは5〜10%のものが、高い透明性
を維持しつつシート抵抗を下げる点から好ましい。
In the present invention, the transparent conductive thin film of metal oxide mainly composed of indium oxide has a thickness of 10 to 10.
It is preferably about 400 nm, more preferably 50 to 20.
0 nm, more preferably about 60 to 150 nm, the light transmittance is preferably 80% or more, more preferably 85% or more, and the sheet resistance is preferably 100Ω / □ or less, more preferably 50Ω / □ or less. It is a transparent conductive thin film having a uniform film thickness distribution. When the thickness of the transparent conductive thin film is within the range of about 10 to 400 nm, it is easy to set both the sheet resistance and the light transmittance to the target ranges. In addition, when the light transmittance of the transparent conductive thin film is about 80% or more, the transparency of the transparent conductive film can be improved. The metal oxide mainly composed of indium oxide includes indium oxide or a main component thereof, preferably 80%.
(Wt%, the same applies below) or more, more preferably 90 to 95
%, And preferably 20% or less, more preferably 5 to 10% of one or more other metal oxides such as tin oxide and cadmium oxide. Specific examples of this compound include ITO and CdIn. 2 O 4 and the like. Among the metal oxides mainly composed of indium oxide, ITO is preferable, and tin is preferably 10% in terms of metal.
Hereafter, more preferably 5 to 10% from the viewpoint of lowering sheet resistance while maintaining high transparency.

【0010】つぎに、本発明の透明導電性フィルム製法
の一例について説明する。本発明の透明導電性フィルム
とは、たとえばマグネトロンスパッタリング法など公知
の方法によって製造される。成膜に使用するターゲット
としては、透明バリヤー性薄膜の場合は、前述のように
珪素酸化物を主体として酸化アルミニウムなどの他の金
属酸化物または珪素窒化物を主体として窒化アルミニウ
ムのような金属窒化物の混合焼結体が用いられる。特に
二酸化珪素と一酸化珪素の複合酸化物焼結体を用いるの
が望ましい。透明導電性薄膜の場合は、酸化インジウム
またはこれを主成分として酸化スズなどの他の金属酸化
物を含む複合酸化物焼結体が用いられる。とくにITO
(酸化インジウムと酸化スズの混合物)の焼結体を用い
るのが望ましい。ITOの酸化インジウムと酸化スズの
比率としては、前述のように、金属換算でスズが10%
以下のものが望ましい。
Next, an example of the method for producing the transparent conductive film of the present invention will be described. The transparent conductive film of the present invention is produced by a known method such as a magnetron sputtering method. As a target used for film formation, in the case of a transparent barrier thin film, as described above, other metal oxides such as aluminum oxide mainly containing silicon oxide or metal nitrides such as aluminum nitride mainly containing silicon nitride are used. A mixed sintered body of the products is used. In particular, it is desirable to use a composite oxide sintered body of silicon dioxide and silicon monoxide. In the case of a transparent conductive thin film, indium oxide or a composite oxide sintered body containing this as a main component and another metal oxide such as tin oxide is used. Especially ITO
It is desirable to use a sintered body of (a mixture of indium oxide and tin oxide). As described above, the ratio of indium oxide to tin oxide of ITO is 10% tin in terms of metal.
The following are desirable:

【0011】スパッタリング時のガス組成としては、ア
ルゴンなどの不活性ガスまたはこれを主成分として酸
素、水素などを加えたものが用いられる。総ガス圧とし
ては、透明バリヤー性薄膜の場合は1×10-3〜3×1
-3Torrが好ましい。1×10-3Torrよりも小さくなる
と放電が不安定となり、また3×10-3Torrより大きく
なるとガスバリアー性が低下する。透明導電性薄膜の場
合は3×10-3〜9×10-3Torrが好ましい。3×10
-3Torrよりも小さくなると耐アルカリ性が悪化し、また
9×10-3Torrより大きくなるとシート抵抗が悪化し実
用的でない。ガス比率としては、たとえばITO薄膜の
場合、酸素分圧を総ガス圧の0.5〜5%の間でコント
ロールするのが望ましい。0.5%未満でも、5%を越
えても抵抗が増大する。使用する電源はDC(直流)、
RF(高周波)のいずれでもよいが、透明バリヤー性薄
膜の場合はターゲットの物性からRFが望ましく、透明
導電性薄膜の場合は生産性の観点からDCが望ましい。
スパッタリングは上記の各条件を勘案しつつ、ターゲッ
トへの投入電力などをコントロールすることにより行
う。透明バリヤー性薄膜の場合は、RF0.5〜5W/
cm2 程度の電力密度で成膜することが望ましく、さらに
は1.1W/cm2以上であることが一層望ましい。0.
5W/cm2 よりも小さくなるとバリアー性が不十分であ
り、また電力密度は大きい程好ましいが、ターゲット冷
却能力の問題から5W/cm2 よりも大きくすることは困
難である。薄膜の厚みは前記のとおり10〜100nm
が好ましく、より好ましくは20〜60nmである。透
明導電性薄膜の場合は、DC0.1〜2W/cm2 程度で
成膜することが望ましく、さらには1.2W/cm2 以下
で成膜するのが一層望ましい。0.1W/cm2 よりも小
さくなると生産性が極めて悪く、2W/cm2 よりも大き
くなると耐アルカリ性が不十分となる。薄膜の厚みは前
記のとおり10〜400nmが好ましく、より好ましく
は50〜200nm、更に好ましくは60〜150nm
である。
As a gas composition during sputtering, an inert gas such as argon, or a gas containing an inert gas such as oxygen as a main component to which oxygen, hydrogen and the like are added is used. The total gas pressure is 1 × 10 −3 to 3 × 1 in the case of a transparent barrier thin film.
0 -3 Torr is preferred. When it is smaller than 1 × 10 -3 Torr, the discharge becomes unstable, and when it is larger than 3 × 10 -3 Torr, the gas barrier property is deteriorated. In the case of a transparent conductive thin film, 3 × 10 −3 to 9 × 10 −3 Torr is preferable. 3 x 10
When it is less than -3 Torr, the alkali resistance is deteriorated, and when it is more than 9 × 10 -3 Torr, the sheet resistance is deteriorated, which is not practical. As for the gas ratio, for example, in the case of an ITO thin film, it is desirable to control the oxygen partial pressure within the range of 0.5 to 5% of the total gas pressure. If it is less than 0.5% or exceeds 5%, the resistance increases. The power supply used is DC (direct current),
Either RF (high frequency) may be used, but in the case of a transparent barrier thin film, RF is preferable from the physical properties of the target, and in the case of a transparent conductive thin film, DC is preferable from the viewpoint of productivity.
Sputtering is performed by controlling the power input to the target while taking into account the above conditions. RF 0.5 to 5 W / for transparent barrier thin film
It is desirable to form a film with a power density of about cm 2 , and more desirably 1.1 W / cm 2 or more. 0.
Becomes smaller than 5W / cm 2 is insufficient barrier property and is preferably as power density is large, it is difficult to increase than 5W / cm 2 from the target cooling capacity problem. The thickness of the thin film is 10 to 100 nm as described above.
Is preferable, and more preferably 20 to 60 nm. In the case of a transparent conductive thin film, it is desirable to form a film with a DC of about 0.1 to 2 W / cm 2 , and more desirably 1.2 W / cm 2 or less. If it is less than 0.1 W / cm 2 , productivity is extremely poor, and if it is more than 2 W / cm 2 , alkali resistance becomes insufficient. As described above, the thickness of the thin film is preferably 10 to 400 nm, more preferably 50 to 200 nm, further preferably 60 to 150 nm.
Is.

【0012】[0012]

【実施例】以下、実施例に基づいて本発明を更に具体的
に説明するが、本発明はこれらに限定されるものではな
い。なお、物性の評価は下記の方法により行った。 〔酸素ガスバリヤー性〕米国モダンコントロール社製O
X−TRAN100を用いて測定し、cc/m2/day の単位
で表示した。 〔水蒸気バリヤー性〕防湿包装材料の透湿度試験方法
(カップ法)JIS−Z−0208に基づいて測定し
た。 〔シート抵抗〕四探針抵抗率測定法に準じて測定した。 〔光線透過率〕空気をリファレンスとして波長550n
mでのフィルム基板を含めた透過率を100分率で表し
た。 〔耐アルカリ性〕5%水酸化ナトリウム水溶液にサンプ
ルを10分間浸漬し、外観の変化、特に剥離の有無を観
察すると同時に、処理前後のシート抵抗の変化を調べ
た。すなわち、処理前のシート抵抗をRO 、処理後のそ
れをRとし、R/RO の値を比較した。
The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited thereto. The physical properties were evaluated by the following methods. [Oxygen gas barrier property] US made by Modern Control Co. O
It was measured using X-TRAN100 and displayed in units of cc / m 2 / day. [Water vapor barrier property] It was measured according to the moisture permeability test method (cup method) JIS-Z-0208 of the moisture-proof packaging material. [Sheet resistance] The sheet resistance was measured according to the four-probe resistivity measurement method. [Light transmittance] Wavelength 550n with air as reference
The transmittance including the film substrate in m was expressed as a percentage. [Alkali resistance] The sample was dipped in a 5% sodium hydroxide aqueous solution for 10 minutes to observe the change in appearance, especially the presence or absence of peeling, and at the same time, the change in sheet resistance before and after the treatment was examined. That is, the sheet resistance before treatment was taken as R O and that after treatment was taken as R, and the values of R / R O were compared.

【0013】実施例1 基板として125μm ポリアリレート透明フィルム、透
明バリヤー性薄膜用ターゲットとしてSiO1.5 、透明
導電性薄膜ターゲットとして酸化スズ比10%のIT
O、スパッタガスとして透明バリヤー性薄膜はアルゴン
のみで総ガス圧1.0mTorr、ガス流量10sccm、透明
導電性薄膜ではアルゴンに酸素を1%加えたもので総ガ
ス圧7mTorr、ガス流量20sccm、パワー条件として透
明バリヤー性薄膜はRF400W(2.35W/c
m2 )、透明導電性薄膜ではDC0.6A250V
(0.88W/cm2 )となるようにして、マグネトロン
スパッタリング装置(島津製作所(株)製HSM−72
0型)にて成膜を行った。透明バリヤー性薄膜は1.5
分処理し、厚さ30nm、透明導電性薄膜は3分処理
し、厚さ100nmの厚みの透明導電性フィルムを得
た。物性の測定結果を表1に示す。表1から明らかな如
く、シート抵抗74Ω/□、光線透過率79%、酸素ガ
スバリヤー性0.5cc/m2/day 、水蒸気バリヤー性0.
5g/m2/dayであり、かつ耐アルカリ性の十分な透明導電
性フィルムが得られた。
Example 1 125 μm polyarylate transparent film as a substrate, SiO 1.5 as a target for a transparent barrier thin film, and IT with a tin oxide ratio of 10% as a transparent conductive thin film target.
O, as a sputtering gas, the transparent barrier thin film is argon only, the total gas pressure is 1.0 mTorr, and the gas flow rate is 10 sccm. For the transparent conductive thin film, argon is added with 1% oxygen, the total gas pressure is 7 mTorr, and the gas flow rate is 20 sccm. As a transparent barrier thin film, RF400W (2.35W / c)
m 2 ), DC0.6A250V for transparent conductive thin film
(0.88 W / cm 2 ) so that the magnetron sputtering device (HSM-72 manufactured by Shimadzu Corporation)
The film was formed by the 0 type. Transparent barrier thin film is 1.5
The transparent conductive thin film having a thickness of 30 nm and the transparent conductive thin film was processed for 3 minutes to obtain a transparent conductive film having a thickness of 100 nm. Table 1 shows the measurement results of physical properties. As is clear from Table 1, sheet resistance 74 Ω / □, light transmittance 79%, oxygen gas barrier property 0.5 cc / m 2 / day, water vapor barrier property 0.
A transparent conductive film having a sufficient alkali resistance of 5 g / m 2 / day was obtained.

【0014】比較例1 基板フィルムその他の条件は実施例1と同様とし、透明
導電性薄膜の成膜パワーをDC1.6A250V(2.
35W/cm2 )となるようにして、成膜を行った。透明
バリヤー性薄膜は1.5分処理し、厚さ30nm、透明
導電性薄膜は1分処理し、厚さ100nmとなる透明導
電性フィルムを得た。表1から明らかな如く、透明導電
性薄膜の成膜パワーが2W/cm2 を越えると、シート抵
抗45Ω/□、光線透過率79%、酸素ガスバリヤー性
0.5g/m2/dayとなる透明導電性フィルムが得られる
が、耐アルカリ性が不十分で薄膜が剥離してしまい、液
晶セル組立が不可能であった。
Comparative Example 1 The substrate film and other conditions were the same as in Example 1, and the film-forming power of the transparent conductive thin film was DC 1.6 A 250 V (2.
The film was formed at a power of 35 W / cm 2 ). The transparent barrier thin film was treated for 1.5 minutes to a thickness of 30 nm, and the transparent conductive thin film was treated for 1 minute to obtain a transparent conductive film having a thickness of 100 nm. As is clear from Table 1, when the film forming power of the transparent conductive thin film exceeds 2 W / cm 2 , the sheet resistance is 45 Ω / □, the light transmittance is 79%, and the oxygen gas barrier property is 0.5 g / m 2 / day. Although a transparent conductive film was obtained, the alkali resistance was insufficient and the thin film was peeled off, making it impossible to assemble a liquid crystal cell.

【0015】比較例2 基板フィルムその他の条件は実施例1と同様とし、透明
導電性薄膜の成膜時のプロセス圧力を1×10-3Torrと
して成膜した。透明バリヤー性薄膜は1.5分処理し、
厚さ30nm、透明導電性薄膜は3分処理し、厚さ10
0nmとなる透明導電性フィルムを得た。表1から明ら
かな如く、透明導電性薄膜の成膜プロセス圧力を3×1
-3Torr未満とすると、シート抵抗45Ω/□、光線透
過率79%、酸素ガスバリヤー性0.5cc/m2/day 、水
蒸気バリヤー性0.5g/m2/dayとなる透明導電性フィル
ムが得られるが、透明導電性薄膜の成膜プロセス圧力が
低いために、比較例1と同様に、アルカリによる剥離が
発生し、液晶セル組立は不可能であった。
Comparative Example 2 The substrate film and other conditions were the same as in Example 1, and the process pressure for forming the transparent conductive thin film was 1 × 10 −3 Torr. The transparent barrier thin film is treated for 1.5 minutes,
The thickness of 30 nm, the transparent conductive thin film is processed for 3 minutes, and the thickness is 10
A transparent conductive film having a thickness of 0 nm was obtained. As is clear from Table 1, the process pressure for forming the transparent conductive thin film is 3 × 1.
A transparent conductive film having a sheet resistance of 45 Ω / □, a light transmittance of 79%, an oxygen gas barrier property of 0.5 cc / m 2 / day, and a water vapor barrier property of 0.5 g / m 2 / day when it is less than 0 -3 Torr. However, since the pressure of the film forming process of the transparent conductive thin film was low, peeling by alkali occurred as in Comparative Example 1, and the liquid crystal cell could not be assembled.

【0016】[0016]

【表1】 *耐アルカリテストは、5重量%NaOH水溶液に10
分間浸漬後、外観およびシート抵抗の変化(R/Ro
を観察した。
[Table 1] * Alkali resistance test is 10% for 5 wt% NaOH aqueous solution.
Changes in appearance and sheet resistance (R / R o ) after immersion for a minute
Was observed.

【0017】[0017]

【発明の効果】本発明の透明導電性フィルムは、シート
抵抗および光線透過率が透明導電性ガラスと同程度以上
の性能を有し、かつ優れたガスバリヤー性及び水蒸気バ
リヤー性を有する。更には、薄膜の成膜条件をコントロ
ールすることにより、液晶セル基板として使用した場合
などに、十分な耐アルカリ性を有する。また、透明フィ
ルム基板を使用しているため、耐衝撃性、軽量、可撓
性、大面積化のしやすさ、加工性の良さなどの特徴を有
する。
EFFECT OF THE INVENTION The transparent conductive film of the present invention has sheet resistance and light transmittance equivalent to or higher than those of transparent conductive glass, and has excellent gas barrier properties and water vapor barrier properties. Furthermore, by controlling the film forming conditions of the thin film, it has sufficient alkali resistance when used as a liquid crystal cell substrate. Further, since the transparent film substrate is used, it has features such as impact resistance, light weight, flexibility, easiness of increasing the area, and good workability.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松本 賢次 兵庫県神戸市西区学園西町7丁目1番地 737号棟205 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kenji Matsumoto 7-1, 1-1 Gakuen Nishimachi, Nishi-ku, Kobe City, Hyogo Prefecture Building 737 205

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 透明フィルム基板(A)上に、珪素酸化
物を主体とする金属酸化物または珪素窒化物を主体とす
る金属窒化物の透明バリヤー性薄膜(B)を形成し、さ
らにその上にインジウム酸化物を主体とする金属酸化物
の透明導電性薄膜(C)を形成したことを特徴とする透
明導電性フィルム。
1. A transparent barrier thin film (B) of a metal oxide mainly composed of silicon oxide or a metal nitride mainly composed of silicon nitride is formed on a transparent film substrate (A), and further thereon. A transparent conductive film comprising a transparent conductive thin film (C) of a metal oxide containing indium oxide as a main component.
【請求項2】 透明バリヤー性薄膜(B)の厚みが10
〜100nmである請求項1記載の透明導電性フィル
ム。
2. The transparent barrier thin film (B) has a thickness of 10
The transparent conductive film according to claim 1, which has a thickness of -100 nm.
【請求項3】 透明導電性薄膜(C)の厚みが10〜4
00nmである請求項1又は2記載の透明導電性フィル
ム。
3. The transparent conductive thin film (C) has a thickness of 10 to 4.
It is 00 nm, The transparent conductive film of Claim 1 or 2.
【請求項4】 透明バリヤー性薄膜(B)の酸素透過度
が1cc/m2/day 以下及び水蒸気透過度が1g/m2/day以下
である請求項1〜3記載の透明導電性フィルム。
4. The transparent conductive film according to claim 1, wherein the transparent barrier thin film (B) has an oxygen permeability of 1 cc / m 2 / day or less and a water vapor permeability of 1 g / m 2 / day or less.
【請求項5】 透明導電性薄膜(C)シート抵抗値が1
00Ω/□以下であり、かつ透明フィルム基板(A)お
よび透明バリヤー性薄膜(B)を含めた光線透過率が7
5%以上である請求項1〜4記載の透明導電性フィル
ム。
5. The transparent conductive thin film (C) having a sheet resistance value of 1
It is less than 00 Ω / □ and the light transmittance including the transparent film substrate (A) and the transparent barrier thin film (B) is 7
It is 5% or more, The transparent conductive film of Claims 1-4.
【請求項6】 透明フィルム基板(A)がポリアリレー
トフィルムからなる請求項1〜5記載の透明導電性フィ
ルム。
6. The transparent conductive film according to claim 1, wherein the transparent film substrate (A) is a polyarylate film.
【請求項7】 透明フィルム基板(A)上に、珪素酸化
物を主体とする金属酸化物または珪素窒化物を主体とす
る金属窒化物の透明バリヤー性薄膜(B)をマグネトロ
ンスパッタリング法により形成し、さらにその上にイン
ジウム酸化物を主体とする金属酸化物の透明導電性薄膜
(C)をマグネトロンスパッタリング法により形成する
ことを特徴とする透明導電性フィルムの製造法。
7. A transparent barrier thin film (B) of a metal oxide mainly composed of silicon oxide or a metal nitride mainly composed of silicon nitride is formed on a transparent film substrate (A) by a magnetron sputtering method. And a transparent conductive thin film (C) of a metal oxide mainly composed of indium oxide formed thereon by a magnetron sputtering method.
【請求項8】 ターゲット上の成膜パワー密度が、透明
バリヤー性薄膜の場合は0.5〜5.0W/cm2 、透明導
電性薄膜の場合は0.1〜2.0W/cm2 であり、成膜プ
ロセス圧力が、透明バリヤー性薄膜の場合は1×10-3
〜3×10-3Torr、透明導電性薄膜の場合は3×10-3
〜9×10-3Torrである請求項7記載の製造法。
Deposition power density of 8. on the target, 0.5~5.0W / cm 2 in the case of transparent barrier film, if the transparent conductive thin film in 0.1~2.0W / cm 2 Yes, the film forming process pressure is 1 × 10 -3 for a transparent barrier thin film
~3 × 10 -3 Torr, in the case of the transparent conductive thin film 3 × 10 -3
The production method according to claim 7, which is -9 x 10 -3 Torr.
JP4312926A 1992-10-27 1992-10-27 Transparent conductive film and its production Withdrawn JPH06136159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4312926A JPH06136159A (en) 1992-10-27 1992-10-27 Transparent conductive film and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4312926A JPH06136159A (en) 1992-10-27 1992-10-27 Transparent conductive film and its production

Publications (1)

Publication Number Publication Date
JPH06136159A true JPH06136159A (en) 1994-05-17

Family

ID=18035138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4312926A Withdrawn JPH06136159A (en) 1992-10-27 1992-10-27 Transparent conductive film and its production

Country Status (1)

Country Link
JP (1) JPH06136159A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09174747A (en) * 1995-12-25 1997-07-08 Teijin Ltd Transparent conductive film
US6136444A (en) * 1995-02-02 2000-10-24 Teijin Limited Transparent conductive sheet
JP2006088422A (en) * 2004-09-22 2006-04-06 Toppan Printing Co Ltd Transparent gas barrier laminate
US7186465B2 (en) * 1998-11-02 2007-03-06 3M Innovative Properties Company Transparent conductive oxides for plastic flat panel displays
USRE40531E1 (en) 1999-10-25 2008-10-07 Battelle Memorial Institute Ultrabarrier substrates
US7510913B2 (en) 2003-04-11 2009-03-31 Vitex Systems, Inc. Method of making an encapsulated plasma sensitive device
CN103173717A (en) * 2011-12-22 2013-06-26 三菱综合材料株式会社 Evaporation material used for formation of steam barrier film, film forming method, and steam barrier film
US8900366B2 (en) 2002-04-15 2014-12-02 Samsung Display Co., Ltd. Apparatus for depositing a multilayer coating on discrete sheets
US8904819B2 (en) 2009-12-31 2014-12-09 Samsung Display Co., Ltd. Evaporator with internal restriction
US8955217B2 (en) 1999-10-25 2015-02-17 Samsung Display Co., Ltd. Method for edge sealing barrier films
US9184410B2 (en) 2008-12-22 2015-11-10 Samsung Display Co., Ltd. Encapsulated white OLEDs having enhanced optical output
US9337446B2 (en) 2008-12-22 2016-05-10 Samsung Display Co., Ltd. Encapsulated RGB OLEDs having enhanced optical output
US9822454B2 (en) 2006-12-28 2017-11-21 3M Innovative Properties Company Nucleation layer for thin film metal layer formation
US9839940B2 (en) 2002-04-15 2017-12-12 Samsung Display Co., Ltd. Apparatus for depositing a multilayer coating on discrete sheets
US10950821B2 (en) 2007-01-26 2021-03-16 Samsung Display Co., Ltd. Method of encapsulating an environmentally sensitive device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6136444A (en) * 1995-02-02 2000-10-24 Teijin Limited Transparent conductive sheet
JPH09174747A (en) * 1995-12-25 1997-07-08 Teijin Ltd Transparent conductive film
US7186465B2 (en) * 1998-11-02 2007-03-06 3M Innovative Properties Company Transparent conductive oxides for plastic flat panel displays
US7276291B2 (en) 1998-11-02 2007-10-02 3M Innovative Properties Company Transparent conductive articles and methods of making same
US8955217B2 (en) 1999-10-25 2015-02-17 Samsung Display Co., Ltd. Method for edge sealing barrier films
USRE40531E1 (en) 1999-10-25 2008-10-07 Battelle Memorial Institute Ultrabarrier substrates
US8900366B2 (en) 2002-04-15 2014-12-02 Samsung Display Co., Ltd. Apparatus for depositing a multilayer coating on discrete sheets
US9839940B2 (en) 2002-04-15 2017-12-12 Samsung Display Co., Ltd. Apparatus for depositing a multilayer coating on discrete sheets
US7510913B2 (en) 2003-04-11 2009-03-31 Vitex Systems, Inc. Method of making an encapsulated plasma sensitive device
JP2006088422A (en) * 2004-09-22 2006-04-06 Toppan Printing Co Ltd Transparent gas barrier laminate
US9822454B2 (en) 2006-12-28 2017-11-21 3M Innovative Properties Company Nucleation layer for thin film metal layer formation
US10950821B2 (en) 2007-01-26 2021-03-16 Samsung Display Co., Ltd. Method of encapsulating an environmentally sensitive device
US9184410B2 (en) 2008-12-22 2015-11-10 Samsung Display Co., Ltd. Encapsulated white OLEDs having enhanced optical output
US9337446B2 (en) 2008-12-22 2016-05-10 Samsung Display Co., Ltd. Encapsulated RGB OLEDs having enhanced optical output
US9362530B2 (en) 2008-12-22 2016-06-07 Samsung Display Co., Ltd. Encapsulated white OLEDs having enhanced optical output
US8904819B2 (en) 2009-12-31 2014-12-09 Samsung Display Co., Ltd. Evaporator with internal restriction
CN103173717A (en) * 2011-12-22 2013-06-26 三菱综合材料株式会社 Evaporation material used for formation of steam barrier film, film forming method, and steam barrier film

Similar Documents

Publication Publication Date Title
JPH06136159A (en) Transparent conductive film and its production
JP2525475B2 (en) Transparent conductive laminate
CN111511814B (en) Organic-inorganic hybrid film
CA2202430C (en) Oxide film, laminate and methods for their production
JPWO2004065656A1 (en) ITO thin film, film forming method thereof, transparent conductive film, and touch panel
JP4784039B2 (en) Strong adhesion deposition film with antistatic performance
JP3511337B2 (en) Transparent conductive laminate and method for producing the same
JPH0957892A (en) Transparent conductive laminate
JPH02276630A (en) Transparent conductive laminate and manufacture thereof
JP3501820B2 (en) Transparent conductive film with excellent flexibility
CN108877987A (en) ZnO compound transparent electricity conductive film based on flexible substrate and preparation method thereof
KR20070084121A (en) Gas with conductive film and manufacturing method thereof
JP2001121641A (en) Transparent conductive laminate
JP2004203023A (en) High performance barrier film
JP3654841B2 (en) Transparent conductive film and method for producing the same
JP4106931B2 (en) Transparent gas barrier thin film coating film
JP3489844B2 (en) Transparent conductive film and method for producing the same
JPH09234816A (en) Transparent conductive laminate
JP3501819B2 (en) Transparent conductive film with excellent flatness
JP2002025362A (en) Manufacturing method of silver series transparent conductive thin film and transparent laminate
JP3369728B2 (en) Laminated transparent conductive substrate
JP4410846B2 (en) Laminate having SiO2 film and method for producing transparent conductive laminate
JP3334922B2 (en) Gas barrier polymer film and method for producing the same
JP2001126538A (en) Transparent, conductive stacked body
JP2006088422A (en) Transparent gas barrier laminate

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000104