JPH06125174A - Manufacture of multilayer printed wiring board - Google Patents
Manufacture of multilayer printed wiring boardInfo
- Publication number
- JPH06125174A JPH06125174A JP4300528A JP30052892A JPH06125174A JP H06125174 A JPH06125174 A JP H06125174A JP 4300528 A JP4300528 A JP 4300528A JP 30052892 A JP30052892 A JP 30052892A JP H06125174 A JPH06125174 A JP H06125174A
- Authority
- JP
- Japan
- Prior art keywords
- printed wiring
- wiring board
- multilayer printed
- film
- insulating substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 24
- 239000000758 substrate Substances 0.000 claims abstract description 53
- 238000000034 method Methods 0.000 claims abstract description 12
- 229920005989 resin Polymers 0.000 claims abstract description 9
- 239000011347 resin Substances 0.000 claims abstract description 9
- JMMZCWZIJXAGKW-UHFFFAOYSA-N 2-methylpent-2-ene Chemical compound CCC=C(C)C JMMZCWZIJXAGKW-UHFFFAOYSA-N 0.000 claims abstract description 4
- -1 Polyethylene Polymers 0.000 claims abstract description 3
- 239000004698 Polyethylene Substances 0.000 claims abstract description 3
- 229920000573 polyethylene Polymers 0.000 claims abstract description 3
- 229920002620 polyvinyl fluoride Polymers 0.000 claims abstract description 3
- 238000010030 laminating Methods 0.000 claims description 3
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 claims description 2
- 230000008602 contraction Effects 0.000 abstract description 4
- PYVHTIWHNXTVPF-UHFFFAOYSA-N F.F.F.F.C=C Chemical compound F.F.F.F.C=C PYVHTIWHNXTVPF-UHFFFAOYSA-N 0.000 abstract 1
- 239000004020 conductor Substances 0.000 description 8
- 238000003825 pressing Methods 0.000 description 7
- 239000011521 glass Substances 0.000 description 6
- 238000006073 displacement reaction Methods 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000010485 coping Effects 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
Landscapes
- Laminated Bodies (AREA)
- Production Of Multi-Layered Print Wiring Board (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は,加熱圧着時における絶
縁基板の収縮変化を抑制でき,かつ高密度回路形成が可
能な多層プリント配線板の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a multilayer printed wiring board capable of suppressing a change in shrinkage of an insulating substrate during thermocompression bonding and capable of forming a high density circuit.
【0002】[0002]
【従来技術】多層プリント配線板は,例えば,図9に示
すごとく,内面に内層回路52を形成した複数の絶縁基
板91,99を,プリプレグ7を介して積層されてい
る。また,絶縁基板91,99の外面には外層回路形成
用の導体層510が貼着している。上記絶縁基板には,
スルーホール90が貫通して設けられている。2. Description of the Related Art In a multilayer printed wiring board, for example, as shown in FIG. 9, a plurality of insulating substrates 91 and 99 having an inner layer circuit 52 formed on the inner surface thereof are laminated via a prepreg 7. Further, a conductor layer 510 for forming an outer layer circuit is attached to the outer surfaces of the insulating substrates 91 and 99. The insulating substrate is
A through hole 90 is provided so as to penetrate therethrough.
【0003】上記多層プリント配線板9を積層するに当
たっては,従来,図7に示すごとく,上記絶縁基板9
1,99を,プリプレグ7を介して積層する。該積層時
には,最外層の絶縁基板91,99の上下両面に押圧板
3を配置し,これらを押圧し,加熱圧着を行う。これに
より,図8に示すごとき積層板95を得る。Prior to stacking the multilayer printed wiring boards 9, as shown in FIG. 7, the insulating substrate 9 is conventionally used.
1, 99 are laminated via the prepreg 7. At the time of stacking, the pressing plates 3 are arranged on the upper and lower surfaces of the outermost insulating substrates 91 and 99, and these are pressed to perform thermocompression bonding. As a result, the laminated plate 95 as shown in FIG. 8 is obtained.
【0004】[0004]
【解決しようとする課題】しかしながら,該積層板95
を加熱圧着する際には,プリプレグ7に含まれる樹脂の
熱硬化収縮作用により収縮し,それに伴って絶縁基板9
1,99が収縮変化してしまう。そのため,内層回路5
2の位置ずれが発生する。それ故,図9に示すごとく,
本来のスルーホールの正位置にスルーホール90が穿設
されず,内層回路52とスルーホール90とが接続され
なくなる。[Problems to be Solved] However, the laminated plate 95
At the time of thermocompression bonding, the resin contained in the prepreg 7 shrinks due to the thermosetting shrinkage action, and accordingly the insulating substrate 9
1,99 contracts and changes. Therefore, the inner layer circuit 5
A displacement of 2 occurs. Therefore, as shown in FIG.
The through hole 90 is not formed in the correct position of the original through hole, and the inner layer circuit 52 and the through hole 90 are not connected.
【0005】従って,図10に示すごとく,上記位置ズ
レを見込んで内層回路52の線幅Aを太くしておく必要
がある。このことは,内層回路52のピッチBを広げる
こととなり,多層プリント配線板の高密度実装化を阻害
することになる。そこで,上記絶縁基板の収縮変化への
対処法として,内層回路形成時に上記収縮変化量を補正
して内層回路設計を行うことが考えられる。しかし,こ
の方法では,回路設計に多大の困難性を伴う。また,複
数の絶縁基板を用いた場合,或いは各絶縁基板の収縮変
化量が大きい場合には,内層回路の位置を調整すること
が困難となる。Therefore, as shown in FIG. 10, it is necessary to increase the line width A of the inner layer circuit 52 in consideration of the positional deviation. This widens the pitch B of the inner layer circuit 52 and hinders high-density mounting of the multilayer printed wiring board. Therefore, as a method for coping with the contraction change of the insulating substrate, it is possible to design the inner layer circuit by correcting the contraction change amount when forming the inner layer circuit. However, this method involves great difficulty in circuit design. Further, when a plurality of insulating substrates are used, or when the amount of shrinkage change of each insulating substrate is large, it becomes difficult to adjust the position of the inner layer circuit.
【0006】また,上記収縮変化に伴う位置ズレを防止
するため,ガイドピンを用いて積層し,加熱圧着する方
法が提案されている(特開昭54−115766号,特
開昭55−53495号)。しかし,この方法は,積
層,加熱の前後にガイドピンを挿入,引き抜きをする必
要があり繁雑である。本発明はかかる問題点に鑑み,簡
単な作業で,加熱圧着時における絶縁基板の収縮変化を
抑制でき,かつ高密度回路形成が可能な多層プリント配
線板の製造方法を提供しようとするものである。In order to prevent the displacement due to the change in shrinkage, there has been proposed a method of laminating with a guide pin and thermocompression bonding (Japanese Patent Laid-Open Nos. 54-115766 and 55-53495). ). However, this method is complicated because it is necessary to insert and pull out guide pins before and after stacking and heating. In view of the above problems, the present invention aims to provide a method for manufacturing a multilayer printed wiring board, which is capable of suppressing shrinkage change of an insulating substrate during thermocompression bonding and capable of forming a high-density circuit by a simple operation. .
【0007】[0007]
【課題の解決手段】本発明は,内層回路が形成された絶
縁基板をプリプレグを介して複数枚積層し,これらを加
熱圧着して多層プリント配線板を製造する方法におい
て,上記積層時には,最外層の絶縁基板の上下両面に高
熱膨張係数を有するフィルムを配置し,更にその上下両
面に挟着板を配置し,次いで上記加熱圧着を行うことを
特徴とする多層プリント配線板の製造方法にある。The present invention is a method for producing a multilayer printed wiring board by laminating a plurality of insulating substrates having inner layer circuits formed thereon via a prepreg, and thermocompression-bonding these layers to each other. In the method for producing a multilayer printed wiring board, films having a high coefficient of thermal expansion are arranged on the upper and lower surfaces of the insulating substrate, sandwiching plates are arranged on the upper and lower surfaces thereof, and then the above-mentioned thermocompression bonding is performed.
【0008】本発明において最も注目すべきことは,最
外層の絶縁基板の上下両面に高熱膨張係数を有するフィ
ルムを配置したことである。本発明において,フィルム
の熱膨張係数は,1.0×10-4mm/mm/℃(20
℃)以上であることが好ましい。1.0×10-4mm/
mm/℃(20℃)未満の場合には,絶縁基板の収縮変
化を抑制することが困難である。フィルムは,耐熱温度
が180℃以上のものであることが好ましい。180℃
未満の場合には,加熱圧着時に,フィルムが破損するお
それがある。What is most noticeable in the present invention is that films having a high coefficient of thermal expansion are arranged on the upper and lower surfaces of the outermost insulating substrate. In the present invention, the coefficient of thermal expansion of the film is 1.0 × 10 −4 mm / mm / ° C. (20
C.) or higher. 1.0 x 10 -4 mm /
If it is less than mm / ° C. (20 ° C.), it is difficult to suppress shrinkage change of the insulating substrate. The heat-resistant temperature of the film is preferably 180 ° C. or higher. 180 ° C
If it is less than the range, the film may be damaged during thermocompression bonding.
【0009】フィルムの厚さは,30μm〜200μm
であることが好ましい。30μm未満では,絶縁基板が
フィルムへ追従することが困難である。また,200μ
mを越える場合には,加熱圧着後の絶縁基板の平滑性を
損うという問題がある。上記フィルムとしては,ポリエ
チレン,ポリフッ化ビニル,メチルペンテン樹脂,四フ
ッ化エチレン樹脂等がある。このフィルムは,加熱圧着
後に除去する。The thickness of the film is 30 μm to 200 μm
Is preferred. If it is less than 30 μm, it is difficult for the insulating substrate to follow the film. Also, 200μ
If it exceeds m, there is a problem that the smoothness of the insulating substrate after thermocompression bonding is impaired. Examples of the film include polyethylene, polyvinyl fluoride, methylpentene resin, and tetrafluoroethylene resin. This film is removed after thermocompression bonding.
【0010】挟着板は,表面が平滑な板,例えば鏡面板
を用いることが好ましい。これによりフィルムと挟着板
との間の滑りが良く,フィルムの熱膨張が妨げられず,
絶縁基板の収縮変化を一層防止できる。挟着板として
は,ステンレス板,アルミ板等がある。また,挟着板の
厚みは1.0〜2.0mmが好ましい。1.0mm未満
の場合には,挟着板が損傷するおそれがある。また,
2.0mmを越える場合には,加熱圧着時の絶縁基板へ
の熱伝導性が悪くなるおそれがある。The sandwiching plate is preferably a plate having a smooth surface, for example, a mirror plate. As a result, the slip between the film and the sandwich plate is good, the thermal expansion of the film is not hindered,
The shrinkage change of the insulating substrate can be further prevented. Examples of the sandwich plate include a stainless plate and an aluminum plate. The thickness of the sandwich plate is preferably 1.0 to 2.0 mm. If it is less than 1.0 mm, the sandwich plate may be damaged. Also,
If it exceeds 2.0 mm, the thermal conductivity to the insulating substrate during thermocompression bonding may deteriorate.
【0011】挟着板はフィルムを介して積層板を挟持す
る。また,挟着板は,加熱圧着時の押圧板からの押圧力
を積層板に均等に伝達する。絶縁基板としては,ガラス
エポキシ樹脂,ガラストリアジン樹脂,ガラスポリイミ
ド樹脂等がある。The sandwich plate sandwiches the laminated plate through the film. Further, the sandwiching plate evenly transmits the pressing force from the pressing plate during thermocompression bonding to the laminated plates. Examples of the insulating substrate include glass epoxy resin, glass triazine resin, glass polyimide resin and the like.
【0012】また,上記積層時には,最外層の絶縁基板
の上下両面,即ち最上層の絶縁基板の上面及び最下層の
絶縁基板の下面に高熱膨張係数を有するフィルムを配置
して,仕込み品を得る。また,積層板を複数個同時に加
熱圧着する際には,上記仕込み品の上下両面に挟着板を
配置して,これらを1セットとしたものを数段積層し,
更に最外層の仕込み品の上下両面に押圧板を配置するこ
とが好ましい。これにより,一度に多数の仕込み品を加
熱圧着することができる。Further, at the time of stacking, a film having a high coefficient of thermal expansion is arranged on both upper and lower surfaces of the outermost insulating substrate, that is, the upper surface of the uppermost insulating substrate and the lower surface of the lowermost insulating substrate to obtain a prepared product. . Also, when a plurality of laminated plates are heated and pressed at the same time, sandwich plates are arranged on the upper and lower surfaces of the above-mentioned prepared product, and a set of these plates is laminated in several stages.
Further, it is preferable to dispose the pressing plates on both the upper and lower sides of the outermost layered product. As a result, a large number of charged products can be thermocompression bonded at one time.
【0013】[0013]
【作用及び効果】本発明の製造方法においては,加熱圧
着時に,高熱膨張係数を有するフィルムが熱膨張する。
そのため,該フィルムと接触している絶縁基板は,フィ
ルムの膨張に追従して,外方に引っ張られる。よって,
プリプレグの熱収縮に伴う絶縁基板の収縮変化が妨げら
れる。それ故,加熱圧着時の多層プリント配線板の収縮
を抑制できる。従って,内層回路の位置ずれを防止する
ことができ,位置ずれを見込んだ内層回路設計をする必
要もなく,また,高密度回路形成が可能である。In the manufacturing method of the present invention, a film having a high coefficient of thermal expansion thermally expands during thermocompression bonding.
Therefore, the insulating substrate that is in contact with the film follows the expansion of the film and is pulled outward. Therefore,
The shrinkage change of the insulating substrate due to the heat shrinkage of the prepreg is prevented. Therefore, the shrinkage of the multilayer printed wiring board at the time of thermocompression bonding can be suppressed. Therefore, the displacement of the inner layer circuit can be prevented, it is not necessary to design the inner layer circuit in consideration of the displacement, and the high-density circuit can be formed.
【0014】また,本発明によれば,積層した絶縁基板
の最上層及び最下層にフィルムを載置し,加熱圧着後に
これを除去するのみであるから,その作業は簡単であ
る。また,そのため,製造時間の短縮化を図ることがで
きる。本発明によれば,簡単な作業で,加熱圧着時にお
ける絶縁基板の収縮変化を抑制でき,かつ高密度回路形
成が可能な多層プリント配線板の製造方法を提供するこ
とができる。Further, according to the present invention, the film is placed on the uppermost layer and the lowermost layer of the laminated insulating substrates, and the film is simply removed after thermocompression bonding, so that the work is simple. Therefore, the manufacturing time can be shortened. ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the multilayer printed wiring board which can suppress the shrinkage | contraction change of the insulating substrate at the time of thermocompression-bonding and can form a high-density circuit can be provided by simple operation.
【0015】[0015]
【実施例】本発明における実施例について,図1〜図6
を用いて説明する。本例の多層プリント配線板9は,図
6に示すごとく,片面に内層回路52を形成した複数の
絶縁基板91,99が,プリプレグ7を介して積層され
ている。絶縁基板91,99の他面には,外層回路形成
用の導体層510が貼着している。上記絶縁基板には,
スルーホール90が貫通して設けられている。Embodiments of the present invention will be described with reference to FIGS.
Will be explained. As shown in FIG. 6, the multilayer printed wiring board 9 of the present example has a plurality of insulating substrates 91 and 99 having an inner layer circuit 52 formed on one surface thereof, which are laminated via a prepreg 7. A conductor layer 510 for forming an outer layer circuit is attached to the other surface of the insulating substrates 91 and 99. The insulating substrate is
A through hole 90 is provided so as to penetrate therethrough.
【0016】上記多層プリント配線板の製造方法につい
て説明する。まず,図1(a)に示すごとく,絶縁基板
91を用意し,その片面には内層回路形成用の導体層5
20を,他面には外層回路形成用の導体層510を,そ
れぞれ貼着する。次に,図1(b)に示すごとく,導体
層520の不要な部分を除去して内層回路52を形成す
る。次いで,図1(c)に示すごとく,絶縁基板91と
プリプレグとの接合性向上のために,絶縁基板91に黒
化処理膜6を施す。また,絶縁基板99についても,上
記絶縁基板91と同様のものを形成する。A method for manufacturing the above-mentioned multilayer printed wiring board will be described. First, as shown in FIG. 1A, an insulating substrate 91 is prepared, and one surface thereof has a conductor layer 5 for forming an inner layer circuit.
20 and a conductor layer 510 for forming an outer layer circuit on the other surface. Next, as shown in FIG. 1B, unnecessary portions of the conductor layer 520 are removed to form the inner layer circuit 52. Next, as shown in FIG. 1C, a blackening treatment film 6 is applied to the insulating substrate 91 to improve the bondability between the insulating substrate 91 and the prepreg. The insulating substrate 99 is also the same as the insulating substrate 91.
【0017】次に,図2,図3に示すごとく,上記絶縁
基板91,99を,プリプレグ7を介して積層する。こ
のとき,内層回路52がプリプレグ7側を向くように,
絶縁基板91,99を積層する。該積層時には,最外層
の絶縁基板91の上面及び最外層の絶縁基板99の下
に,高熱膨張係数を有するフィルム1を配置して,仕込
み品10を得る。更に,該仕込み品10の上下両面に挟
着板2を配置する。次に,図4に示すごとく,該挟着板
2を介在させて,仕込み品10を数段積層する。更に,
最外層の仕込み品10の上下両面に,押圧板3を配置す
る。Next, as shown in FIGS. 2 and 3, the insulating substrates 91 and 99 are laminated via the prepreg 7. At this time, so that the inner layer circuit 52 faces the prepreg 7 side,
The insulating substrates 91 and 99 are laminated. At the time of stacking, the film 1 having a high coefficient of thermal expansion is arranged on the upper surface of the outermost insulating substrate 91 and below the outermost insulating substrate 99 to obtain the preparation 10. Further, the sandwich plates 2 are arranged on both upper and lower surfaces of the prepared product 10. Next, as shown in FIG. 4, the prepared product 10 is laminated in several stages with the sandwiching plate 2 interposed. Furthermore,
The pressing plates 3 are arranged on the upper and lower surfaces of the outermost layered product 10.
【0018】次に,押圧板3により,仕込み品10を押
圧すると共に加熱する。これにより,絶縁基板91,9
9がプリプレグ7を介して熱圧着され,図5に示すよう
な積層板95が得られる。尚,上記加熱圧着の条件は,
30torr以下の真空状態で圧力30kg/cm2 ,
加熱最高温度177℃,2時間である。その後,積層板
95にスルーホール90を穿設し,図6に示した多層プ
リント配線板9を得る。Next, the charged product 10 is pressed and heated by the pressing plate 3. As a result, the insulating substrates 91, 9
9 is thermocompression bonded via the prepreg 7 to obtain a laminated plate 95 as shown in FIG. The conditions of the above-mentioned thermocompression bonding are
A pressure of 30 kg / cm 2 in a vacuum state of 30 torr or less,
The maximum heating temperature is 177 ° C. for 2 hours. After that, through holes 90 are formed in the laminated board 95 to obtain the multilayer printed wiring board 9 shown in FIG.
【0019】尚,フィルム1は,熱膨張係数1.5×1
0-4mm/mm/℃(20℃),耐熱温度180℃以上
であり,厚み150μmのメチルペンテン樹脂(三井石
油化学(株)製)を用いる。絶縁基板91,99は,厚
み0.2mmのガラスエポキシ樹脂(松下電工(株)
製)を用いる。The film 1 has a coefficient of thermal expansion of 1.5 × 1.
0 -4 mm / mm / ℃ ( 20 ℃), and the heat resistance temperature 180 ° C. or higher, using a thickness 150μm methylpentene resin (manufactured by Mitsui Petrochemical Co.). The insulating substrates 91 and 99 are made of glass epoxy resin having a thickness of 0.2 mm (Matsushita Electric Works, Ltd.).
Manufactured) is used.
【0020】導体層510,520の厚みは,それぞれ
18μm,35μmである。両導体層は銅箔である。挟
着板2としては,厚み1mmの鏡面仕上げステンレス板
を用いる。プリプレグ7は,ガラスエポキシ樹脂を用い
る。The conductor layers 510 and 520 have thicknesses of 18 μm and 35 μm, respectively. Both conductor layers are copper foil. As the sandwich plate 2, a mirror-finished stainless plate having a thickness of 1 mm is used. A glass epoxy resin is used for the prepreg 7.
【0021】次に,本例の作用効果について説明する。
本例の製造方法においては,加熱圧着時に,高熱膨張係
数を有するフィルム1が熱膨張する。そのため,該フィ
ルム1と接触している絶縁基板91,99は,フィルム
1の膨張に追従して,外方に引っ張られる。それ故,プ
リプレグ7の熱収縮に伴う絶縁基板91,99の収縮変
化が妨げられる。よって,加熱圧着時の多層プリント配
線板9の収縮を抑制できる。Next, the function and effect of this example will be described.
In the manufacturing method of this example, the film 1 having a high coefficient of thermal expansion thermally expands during thermocompression bonding. Therefore, the insulating substrates 91 and 99 in contact with the film 1 follow the expansion of the film 1 and are pulled outward. Therefore, the shrinkage change of the insulating substrates 91 and 99 due to the heat shrinkage of the prepreg 7 is prevented. Therefore, the shrinkage of the multilayer printed wiring board 9 at the time of thermocompression bonding can be suppressed.
【0022】従って,内層回路52の位置ずれを防止す
ることができ,位置ずれを見込んだ内層回路設計をする
必要もなく,高密度回路形成が可能である。また,本例
によれば,積層した絶縁基板91の上面及び絶縁基板9
9の下面にフィルム1を載置し,加熱圧着後にこれを除
去するのみであるから,その作業は簡単である。また,
そのため,製造時間の短縮化を図ることができる。Therefore, it is possible to prevent the position shift of the inner layer circuit 52, and it is not necessary to design the inner layer circuit in consideration of the position shift, and it is possible to form a high density circuit. Further, according to this example, the upper surface of the insulating substrate 91 and the insulating substrate 9 that are stacked are
The work is simple because the film 1 is placed on the lower surface of 9 and only removed after thermocompression bonding. Also,
Therefore, the manufacturing time can be shortened.
【0023】また,挟着板2としては鏡面板を用いてい
るので,フィルム1と挟着板2との間の滑りが良く,フ
ィルム1の熱膨張が妨げられず,絶縁基板91,99の
収縮変化を一層防止できる。また,本例においては,挟
着板2を介して,複数の仕込み品10を積層し,これら
を同時に熱圧着している。そのため,多数の仕込み品1
0を同時に加熱圧着でき,製造時間の短縮化及び多層プ
リント配線板9の量産性を図ることができる。Further, since the mirror plate is used as the sandwiching plate 2, the slip between the film 1 and the sandwiching plate 2 is good, the thermal expansion of the film 1 is not hindered, and the insulating substrates 91 and 99 are prevented. The change in shrinkage can be further prevented. In addition, in this example, a plurality of preparations 10 are laminated via the sandwiching plate 2, and these are simultaneously thermocompression bonded. Therefore, a large number of preparations 1
It is possible to simultaneously heat-bond 0, and it is possible to shorten the manufacturing time and mass-produce the multilayer printed wiring board 9.
【0024】次に,本例の多層プリント配線板における
絶縁基板の収縮変化率について測定した。尚,比較のた
めに,上記熱圧着時に高熱膨張係数を有するフィルムを
用いる点を除いては,実施例と同様にして作製した多層
プリント配線板(比較例)を用いて,上記と同様の測定
を行った。Next, the shrinkage change rate of the insulating substrate in the multilayer printed wiring board of this example was measured. For comparison, a multilayer printed wiring board (comparative example) produced in the same manner as the example was used, except that a film having a high coefficient of thermal expansion was used during the thermocompression bonding, and the same measurement as above was performed. I went.
【0025】該収縮変化率は,絶縁基板を構成している
ガラスクロスの縦糸方向と横糸方向について測定した。
その結果を表1に示す。同表より知られるごとく,本例
の方法により作製された多層プリント配線板は,縦糸方
向及び横糸方向のいずれにも,収縮変化がなかった。一
方,比較例にかかる多層プリント配線板は,縦糸方向に
0.03%収縮した。The shrinkage change rate was measured in the warp and weft directions of the glass cloth constituting the insulating substrate.
The results are shown in Table 1. As is known from the table, the multilayer printed wiring board manufactured by the method of this example did not show shrinkage change in both the warp direction and the weft direction. On the other hand, the multilayer printed wiring board according to the comparative example contracted 0.03% in the warp direction.
【0026】[0026]
【表1】 [Table 1]
【図1】実施例にかかる,多層プリント配線板の製造工
程説明図。FIG. 1 is an explanatory view of a manufacturing process of a multilayer printed wiring board according to an embodiment.
【図2】図1に続く製造工程説明図。FIG. 2 is an explanatory view of the manufacturing process subsequent to FIG.
【図3】図2に続く製造工程説明図。3 is an explanatory view of the manufacturing process following FIG. 2. FIG.
【図4】図3に続く製造工程説明図。FIG. 4 is an explanatory view of the manufacturing process following FIG.
【図5】図4に続く製造工程説明図。5 is an explanatory view of the manufacturing process following FIG. 4. FIG.
【図6】実施例にかかる,多層プリント配線板の断面
図。FIG. 6 is a cross-sectional view of a multilayer printed wiring board according to an example.
【図7】従来例にかかる,多層プリント配線板の製造工
程説明図。FIG. 7 is an explanatory view of a manufacturing process of a multilayer printed wiring board according to a conventional example.
【図8】図7に続く製造工程説明図。8 is an explanatory view of the manufacturing process following FIG. 7. FIG.
【図9】従来例にかかる多層プリント配線板の問題点を
示す説明図。FIG. 9 is an explanatory view showing a problem of the multilayer printed wiring board according to the conventional example.
【図10】従来例にかかる,内層回路の問題点を示す説
明図。FIG. 10 is an explanatory diagram showing a problem of an inner layer circuit according to a conventional example.
1...フィルム, 10...仕込み品, 2...挟着板, 3...押圧板, 510,520...導体層, 52...内層回路, 7...プリプレグ, 9...多層プリント配線板, 91,99...絶縁基板, 95...積層板, 1. . . Film, 10. . . Preparations, 2. . . Sandwich plate, 3. . . Pressing plate, 510, 520. . . Conductor layer, 52. . . Inner layer circuit, 7. . . Prepreg, 9. . . Multilayer printed wiring board, 91, 99. . . Insulating substrate, 95. . . Laminated board,
Claims (3)
レグを介して複数枚積層し,これらを加熱圧着して多層
プリント配線板を製造する方法において,上記積層時に
は,最外層の絶縁基板の上下両面に高熱膨張係数を有す
るフィルムを配置し,更にその上下両面に挟着板を配置
し,次いで上記加熱圧着を行うことを特徴とする多層プ
リント配線板の製造方法。1. A method for manufacturing a multilayer printed wiring board by laminating a plurality of insulating substrates having an inner layer circuit formed thereon via a prepreg, and thermocompression-bonding these to each other. A method for producing a multilayer printed wiring board, characterized in that films having a high coefficient of thermal expansion are arranged on both sides, sandwiching plates are arranged on both upper and lower sides thereof, and then the above-mentioned thermocompression bonding is carried out.
膨張係数が1.0×10-4mm/mm/℃(20℃)以
上であることを特徴とする多層プリント配線板の製造方
法。2. The method for manufacturing a multilayer printed wiring board according to claim 1, wherein the film has a coefficient of thermal expansion of 1.0 × 10 −4 mm / mm / ° C. (20 ° C.) or more.
リエチレン,ポリフッ化ビニル,メチルペンテン樹脂,
四フッ化エチレン樹脂であることを特徴とする多層プリ
ント配線板の製造方法。3. The film according to claim 1, wherein the film is polyethylene, polyvinyl fluoride, methylpentene resin,
A method for manufacturing a multilayer printed wiring board, which is a tetrafluoroethylene resin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4300528A JPH06125174A (en) | 1992-10-12 | 1992-10-12 | Manufacture of multilayer printed wiring board |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4300528A JPH06125174A (en) | 1992-10-12 | 1992-10-12 | Manufacture of multilayer printed wiring board |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06125174A true JPH06125174A (en) | 1994-05-06 |
Family
ID=17885911
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4300528A Pending JPH06125174A (en) | 1992-10-12 | 1992-10-12 | Manufacture of multilayer printed wiring board |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06125174A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1264685A1 (en) * | 2000-09-20 | 2002-12-11 | Mitsui Chemicals, Inc. | Multilayered 4-methyl-1-pentene copolymer film and process for producing the same |
-
1992
- 1992-10-12 JP JP4300528A patent/JPH06125174A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1264685A1 (en) * | 2000-09-20 | 2002-12-11 | Mitsui Chemicals, Inc. | Multilayered 4-methyl-1-pentene copolymer film and process for producing the same |
EP1264685A4 (en) * | 2000-09-20 | 2003-05-21 | Mitsui Chemicals Inc | Multilayered 4-methyl-1-pentene copolymer film and process for producing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2551224B2 (en) | Multilayer wiring board and method for manufacturing multilayer wiring board | |
US5719354A (en) | Monolithic LCP polymer microelectronic wiring modules | |
JP4029759B2 (en) | Multilayer circuit board and manufacturing method thereof | |
JPH06125174A (en) | Manufacture of multilayer printed wiring board | |
JPH07273424A (en) | Manufacture of single-sided printed wiring board | |
JP3165890B2 (en) | Lay-up method of printed wiring board | |
GB2080729A (en) | A multi-layer metal core circuit board laminate with a controlled thermal coefficient of expansion and method for making same. | |
JPH0379343A (en) | Metal-foiled laminated sheet and preparation thereof | |
JP3883744B2 (en) | Method for manufacturing printed wiring board | |
JP2001036237A (en) | Method for manufacturing multilayer printed circuit board | |
JP4201893B2 (en) | Laminate production method | |
JP2699958B2 (en) | Manufacturing method of multilayer board | |
JPH05152762A (en) | Manufacture of multilayered flexible circuit board | |
JP2000216543A (en) | Manufacturing method of multilayer printed wiring board | |
JP2003318539A (en) | Multilayered laminated board and method of manufacturing the same | |
JP2514667B2 (en) | Method for manufacturing multilayer substrate | |
JP2001203453A (en) | Manufacturing method for multilayer laminated board | |
JP2008177243A (en) | Manufaturing method for multilayer printed board | |
JPH0417385A (en) | Manufacture of compound circuit board | |
JPH04337697A (en) | Manufacture of flexible rigid circuit board | |
JPH11112146A (en) | Formation of buried surface via hole in manufacture of printed wiring board | |
JPH0634449B2 (en) | Multilayer printed circuit board | |
JP2000286560A (en) | Multilayer fluororesin substrate and method of manufacturing the same | |
JPS60241295A (en) | Method of producing multilayer printed circuit board | |
JP2003249753A (en) | Method for producing multilayer printed wiring board |