JPH06124822A - R-tm-b group anisotropic ring magnet and its manufacture - Google Patents
R-tm-b group anisotropic ring magnet and its manufactureInfo
- Publication number
- JPH06124822A JPH06124822A JP4272674A JP27267492A JPH06124822A JP H06124822 A JPH06124822 A JP H06124822A JP 4272674 A JP4272674 A JP 4272674A JP 27267492 A JP27267492 A JP 27267492A JP H06124822 A JPH06124822 A JP H06124822A
- Authority
- JP
- Japan
- Prior art keywords
- ring magnet
- magnetic
- orientation
- magnetic field
- anisotropy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Hard Magnetic Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、R−TM−B(ただ
し、RはYを含む希土類金属元素の1種以上、TMは遷
移金属の1種以上)から実質的になる永久磁石のうち、
特にサーボモーター、スピンドルモーター等に用いられ
るいわゆるラジアル異方性リング磁石に関するものであ
る。BACKGROUND OF THE INVENTION The present invention relates to a permanent magnet consisting essentially of R-TM-B (where R is at least one rare earth metal element containing Y and TM is at least one transition metal). ,
In particular, the present invention relates to so-called radial anisotropic ring magnets used in servo motors, spindle motors and the like.
【0002】[0002]
【従来の技術】R−TM−Bから実質的になる永久磁石
は安価で高磁気特性を有するものとして注目されてい
る。R−TM−B系磁石は優れた磁気特性に加えて、R
−Co系磁石と比べて機械的強度が大きく、脆くなく焼
結の収縮に伴う内部応力にも耐え得る。従って、従来R
−Coでは製造が困難と考えられていた円筒状の径方向
に放射状に磁気異方性が付与されたラジアル異方性や多
極異方性等のリング異方性磁石の製造が容易となり、モ
ーターの高出力化・小型化が実現できるようになった
(特開昭61−284907号,日立金属技報6(19
90)33.参照)。2. Description of the Related Art Permanent magnets substantially composed of R-TM-B have attracted attention because they are inexpensive and have high magnetic properties. The R-TM-B system magnet has excellent magnetic characteristics and R
-Mechanical strength is higher than that of a Co-based magnet, it is not brittle, and can withstand internal stress due to shrinkage of sintering. Therefore, conventional R
-Co facilitates the production of ring anisotropic magnets such as radial anisotropy and multipole anisotropy, which are considered to be difficult to produce, and have radial magnetic anisotropy in the cylindrical radial direction. Higher output and smaller size of the motor can be realized (Japanese Patent Laid-Open No. 61-284907, Hitachi Metals Technical Report 6 (19)
90) 33. reference).
【0003】しかしラジアル異方性リング磁石をモータ
ーに使用する場合、ある種のモーター性能で不具合が生
ずる場合がある。すなわち、従来のラジアル異方性リン
グ磁石は、磁石の円周方向全周にわたって均一な肉厚で
かつ均一異方性配向(均一特性レベル)である為、多極
着磁の場合、モータとして不必要な部分、つまり極間付
近の磁力が強く図4に示すように磁束密度の変化が急峻
であるため、コギングトルクの増大という不具合が発生
する場合がある。このコギングトルクを解決する対策と
しては、モーターの巻線側またはマグネットの着磁をス
キューさせる方法、すなわち軸方向の磁極を軸線に対し
て傾斜させて配設させる方法がある。また、マグネット
が分割セグメント形状の場合は、磁石両端部近傍の厚さ
を小に形成する方法が検討されている。また、最終着磁
状態と同じ極数にあらかじめ異方性を付与した多極異方
性リングによっても、その異方性付与の金型磁気回路の
工夫で、磁束密度分布を改良できる場合がある。However, when a radial anisotropic ring magnet is used in a motor, some motor performance may fail. In other words, the conventional radial anisotropic ring magnet has a uniform wall thickness and a uniform anisotropic orientation (uniform characteristic level) over the entire circumference in the circumferential direction of the magnet. Since the magnetic force is strong near the required portion, that is, between the poles, and the magnetic flux density changes sharply as shown in FIG. 4, there may occur a problem that the cogging torque increases. As a measure for solving the cogging torque, there is a method of skewing the magnetization of the winding side of the motor or the magnetization of the magnet, that is, a method of arranging the magnetic poles in the axial direction with respect to the axis. Further, when the magnet has a divided segment shape, a method of forming a small thickness in the vicinity of both ends of the magnet has been studied. In addition, even with a multi-pole anisotropic ring in which the same number of poles as the final magnetized state is previously provided with anisotropy, the magnetic flux density distribution may be improved by devising the die magnetic circuit for providing the anisotropy. .
【0004】[0004]
【発明が解決しようとする課題】しかしモーターの巻線
またはマグネットの着磁にスキュー角度を持たせる場
合、従来の方法に対してモーターの出力(トルク)が減
少したり、モーターの巻線またはマグネットの着磁ヨー
クの巻線がやりにくくなり、コストアップするといった
問題が発生する。また、分割セグメント磁石の両端部近
傍の厚さを小とする方法は、加工コストの上昇を招く。
さらに、極異方性リングを適用する場合、そのものの効
果を出すためには充分な肉厚の確保を必要とするためコ
スト面からその適用範囲が限られるという問題がある。
そこで本発明は、従来のR−TM−B系ラジアル異方性
リング磁石と同等レベルのコストでモーターのコギング
対策に有効な磁束密度波形分布を有する、R−TM−B
系異方性リング磁石を提供することを目的とする。However, in the case where the winding of the motor or the magnetization of the magnet has a skew angle, the output (torque) of the motor is reduced as compared with the conventional method, or the winding or the magnet of the motor is reduced. The winding of the magnetizing yoke becomes difficult to perform, which causes a problem of cost increase. In addition, the method of reducing the thickness of the divided segment magnets in the vicinity of both ends causes an increase in processing cost.
Further, when the polar anisotropy ring is applied, there is a problem that the applicable range is limited in terms of cost because it is necessary to secure a sufficient thickness in order to exert its effect.
Therefore, the present invention has an R-TM-B having a magnetic flux density waveform distribution effective for countermeasures against cogging of a motor at a cost equivalent to that of the conventional R-TM-B radial anisotropic ring magnet.
An object is to provide a system anisotropic ring magnet.
【0005】[0005]
【課題を解決するための手段】本発明は、R−TM−B
(ただし、RはYを含む希土類金属元素の1種以上、T
Mは遷移金属の1種以上)から実質的になり円筒状の径
方向に放射状に磁気異方性が付与されたリング磁石にお
いて、高異方性配向と低異方性配向とを交互に付与する
ことにより前記課題を解決した。ラジアル異方性リング
磁石は焼結前の磁場中成形において径方向に放射状に配
向されるが、その磁場中成形を高配向磁場強度と低磁場
配向強度とが周方向に交互に形成された状態で行うこと
により高異方性配向と低異方性配向とが交互に付与され
た本発明リング磁石を製造することができる。このよう
な配向磁場は、磁性体からなる成形ダイスまたはコアの
周方向に等間隔で非磁性部を設けることにより形成する
ことができる。The present invention provides an R-TM-B
(However, R is one or more of rare earth metal elements including Y, T
In a ring magnet in which M is substantially one or more of transition metals and is provided with radial magnetic anisotropy in a cylindrical radial direction, high anisotropy orientation and low anisotropy orientation are alternately provided. By doing so, the above problem was solved. The radial anisotropic ring magnet is radially aligned in the radial direction in the pre-sintering magnetic field molding, but high magnetic field strength and low magnetic field strength are alternately formed in the circumferential direction in the magnetic field molding. It is possible to manufacture the ring magnet of the present invention in which the high anisotropy orientation and the low anisotropy orientation are alternately provided by performing the above step. Such an orientation magnetic field can be formed by providing non-magnetic portions at equal intervals in the circumferential direction of the molding die or core made of a magnetic material.
【0006】[0006]
【作用】ラジアル異方性リング磁石が、配向調整した特
性の低い部分を極部的に有することにより、これを最終
的に極間部分に合わせて多極着磁した時に、通常の均一
配向のラジアル異方性リング磁石使用の場合に較べ、極
間付近の着磁性及び磁気特性レベルが低いことによっ
て、表面磁束密度の極間部の変化がなめらかになり、モ
ーターのコギング対策に有効なものとなる。[Function] Since the radial anisotropic ring magnet has a portion with a low orientation-adjusted characteristic locally, when it is finally magnetized in a multi-pole manner in accordance with the inter-electrode portion, it has a normal uniform orientation. Compared to the case of using a radial anisotropic ring magnet, the lower magnetizability and magnetic property level near the gap between the poles makes the change in the surface magnetic flux density between the poles smoother, and is effective as a measure against motor cogging. Become.
【0007】[0007]
【実施例】以下本発明の実施例について説明する。図2
は本発明における磁石の成形金型の成形空間近傍の周方
向断面図の例である。図2において、1は磁性体コア、
2は磁石成形時に原料粉末を充填する成形空間(キャビ
ティ)、3はダイスを保護するスリーブ、4aは周方向
に8等配で非磁性部4bを有している磁性体ダイスであ
る。ここで従来のラジアル異方性ダイスのリングと同様
に外部の磁場コイルに通電するとコア1とダイス4aの
いずれの磁性体間で磁束が流れラジアル配向磁場が形成
されるが、成形キャビティ2における磁場強度は、ダイ
ス非磁性部4bの存在有無に実質的なギャップが変わる
ことにより非磁性部のない5aの部分と非磁性部のある
5bの部分で相違するこのキャビティ近傍の金型構造の
工夫によって任意に配向磁場強度の調整ができ、目的に
応じて特性分布(配向分布)を調整した磁石が製造でき
る。表1に図1の構造の金型で製作したリング磁石(外
径φ70mm、内径φ58mm、高さ20mmを切り出
して放射状方向の磁気特性を測定した結果を示す。EXAMPLES Examples of the present invention will be described below. Figure 2
FIG. 3 is an example of a circumferential sectional view in the vicinity of a molding space of a magnet molding die according to the present invention. In FIG. 2, 1 is a magnetic core,
Reference numeral 2 is a molding space (cavity) for filling the raw material powder during magnet molding, 3 is a sleeve for protecting the die, and 4a is a magnetic die having 8 non-magnetic portions 4b evenly arranged in the circumferential direction. Similar to the conventional radial anisotropic die ring, when an external magnetic field coil is energized, a magnetic flux flows between any magnetic bodies of the core 1 and the die 4a to form a radial orientation magnetic field. The strength is different between the portion 5a having no non-magnetic portion and the portion 5b having the non-magnetic portion because the substantial gap changes depending on the presence or absence of the die non-magnetic portion 4b. The orientation magnetic field strength can be arbitrarily adjusted, and a magnet having a characteristic distribution (orientation distribution) adjusted according to the purpose can be manufactured. Table 1 shows the results of measuring the magnetic characteristics in the radial direction by cutting out a ring magnet (outer diameter φ70 mm, inner diameter φ58 mm, height 20 mm) produced by the mold having the structure shown in FIG.
【0008】[0008]
【表1】 表1に示す如く、金型において非磁性部4bのない部分
A(通常のラジアル異方性リングの配向が得られている
部分)と非磁性部4bの存在する部分B(配向レベル調
整部分)で磁気特性レベルに差が生じる。これを図示し
たのが図1であり、高異方性配向の部分Aと低異方性配
向の部分Bとが交互に形成されている。この異方性リン
グ磁石に配向レベル調整部分を極間に合わせ外周8極着
性を行うと図3に示す様な外周表面磁束密度分布が得ら
れ、図4に示す通常のラジアル異方性リング磁石の波形
に対し、極間付近の磁束密度の変化がなめらかとなり、
モーター組立後のコギング低減に極めて高い効果が得ら
れた。なお、円周方向に不均一な配向をもったR−TM
−B系焼結磁石は、単体で焼結すると異方性度合による
焼成収縮率の著しい違いにより、焼成時の変形が大きく
なる問題があるが、焼結時に内径に円径のリングを挿入
して焼結することにより(特開平1−117003号参
照)、従来のラジアル異方性リング磁石と同レベルの真
円度の優れた焼結体を得ることができる。本実施例でも
その焼結方法を採用した。また、本実施例では金型ダイ
ス側(外周部)に極部的に非磁性部を配したが、コア側
(内周部)に非磁性部を配することも同様の効果が期待
できることは容易に想定できる。[Table 1] As shown in Table 1, in the mold, a portion A where the non-magnetic portion 4b is not present (a portion where a normal radial anisotropic ring orientation is obtained) and a portion B where the non-magnetic portion 4b is present (orientation level adjusting portion) Causes a difference in magnetic characteristic level. This is illustrated in FIG. 1, in which high anisotropic orientation portions A and low anisotropic orientation portions B are alternately formed. When the orientation level adjusting portion is placed between the poles of this anisotropic ring magnet and the outer peripheral eight poles are attached, a magnetic flux density distribution on the outer peripheral surface as shown in FIG. 3 is obtained, and the ordinary radial anisotropic ring magnet shown in FIG. 4 is obtained. For the waveform of, the change in the magnetic flux density near the gap becomes smooth,
It was extremely effective in reducing cogging after motor assembly. In addition, R-TM having a non-uniform orientation in the circumferential direction
-The B-type sintered magnet has a problem that when it is sintered alone, the deformation during firing becomes large due to the significant difference in the firing shrinkage rate depending on the degree of anisotropy. However, a circular ring is inserted in the inner diameter during sintering. By sintering (see Japanese Patent Laid-Open No. 1-117003), it is possible to obtain a sintered body having the same roundness as that of the conventional radial anisotropic ring magnet. The sintering method was also adopted in this example. Further, in the present embodiment, the non-magnetic portion is locally arranged on the die side (outer peripheral portion), but the same effect can be expected by arranging the non-magnetic portion on the core side (inner peripheral portion). You can easily assume.
【0009】[0009]
【発明の効果】本発明によれば、磁場成形金型の磁気回
路の一部の変更のみによって、従来のラジアル異方性リ
ング磁石とほとんど同レベルのコストでモーターコギン
グ対策に、より有効な表面磁束密度波形を有する、R−
TM−B系異方性リング磁石を提供することができる。According to the present invention, by only changing a part of the magnetic circuit of the magnetic field molding die, a surface more effective as a countermeasure against motor cogging at a cost almost equal to that of the conventional radial anisotropic ring magnet. R- having a magnetic flux density waveform
A TM-B system anisotropic ring magnet can be provided.
【図1】本発明によるR−TM−B系異方性リング磁石
の配向度合いを示した図である。FIG. 1 is a diagram showing an orientation degree of an R-TM-B anisotropic ring magnet according to the present invention.
【図2】本発明異方性リング磁石を成形する金型の要部
断面図である。FIG. 2 is a sectional view of an essential part of a mold for molding the anisotropic ring magnet of the present invention.
【図3】本発明異方性リング磁石の外周表面磁束密度分
布を示す図である。FIG. 3 is a view showing a magnetic flux density distribution on the outer peripheral surface of the anisotropic ring magnet of the present invention.
【図4】従来の異方性リング磁石の外周表面磁束密度分
布を示す図である。FIG. 4 is a diagram showing a magnetic flux density distribution on the outer peripheral surface of a conventional anisotropic ring magnet.
Claims (3)
土類金属元素の1種以上、TMは遷移金属の1種以上)
から実質的になり円筒状の径方向に放射状に磁気異方性
が付与されたリング磁石において、高異方性配向と低異
方性配向とが交互に付与されていることを特徴とするR
−TM−B系異方性リング磁石。1. R-TM-B (wherein R is one or more rare earth metal elements including Y, and TM is one or more transition metal).
In a ring magnet having a substantially cylindrical shape and being radially imparted with magnetic anisotropy in a radial direction, a high anisotropy orientation and a low anisotropy orientation are alternately applied.
-TM-B type anisotropic ring magnet.
土類金属元素の1種以上、TMは遷移金属の1種以上)
から実質的になり円筒状の径方向に放射状に磁気異方性
が付与されたリング磁石を製造するに際し、その磁場中
成形を高配向磁場強度と低磁場配向強度とが周方向に交
互に形成された状態で行うことを特徴とするR−TM−
B系異方性リング磁石の製造方法。2. R-TM-B (wherein R is one or more rare earth metal elements including Y, and TM is one or more transition metal).
When manufacturing a ring magnet in which the magnetic anisotropy is given radially in a cylindrical radial direction, the high magnetic field strength and the low magnetic field strength are alternately formed in the circumferential direction in the magnetic field molding. R-TM-
Method for manufacturing B-type anisotropic ring magnet.
周方向に等間隔で非磁性部を形成することにより高配向
磁場強度と低磁場配向強度とを交互に形成する請求項2
に記載のR−TM−B系異方性リング磁石の製造方法。3. A high orientation magnetic field strength and a low magnetic field orientation strength are alternately formed by forming non-magnetic portions at equal intervals in the circumferential direction of a molding die or core made of a magnetic material.
The method for manufacturing the R-TM-B anisotropic ring magnet according to item 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4272674A JPH06124822A (en) | 1992-10-12 | 1992-10-12 | R-tm-b group anisotropic ring magnet and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4272674A JPH06124822A (en) | 1992-10-12 | 1992-10-12 | R-tm-b group anisotropic ring magnet and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06124822A true JPH06124822A (en) | 1994-05-06 |
Family
ID=17517214
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4272674A Pending JPH06124822A (en) | 1992-10-12 | 1992-10-12 | R-tm-b group anisotropic ring magnet and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06124822A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7560841B2 (en) | 2003-07-22 | 2009-07-14 | Aichi Steel Corporation, Ltd. | Thin hybrid magnetization type ring magnet, yoke-equipped thin hybrid magnetization type ring magnet, and brush-less motor |
US7750776B2 (en) | 2004-04-20 | 2010-07-06 | Aichi Steel Corporation | Anisotropic bonded magnet for use in a 4-pole motor, a motor employing that magnet, and an alignment process apparatus for the anisotropic bonded magnet for use in a 4-pole motor |
US20100181859A1 (en) * | 2007-06-28 | 2010-07-22 | Hitachi Metals, Ltd. | Radially anisotropic ring r-tm-b magnet, its production method, die for producing it, and rotor for brushless motor |
WO2013044233A2 (en) * | 2011-09-22 | 2013-03-28 | The Trustees Of Dartmouth College | Systems and methods for making radially anisotropic thin-film magnetic torroidal cores, and radially anisotropic cores having radial anisotropy, and inductors having radially aniosotropic cores |
-
1992
- 1992-10-12 JP JP4272674A patent/JPH06124822A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7560841B2 (en) | 2003-07-22 | 2009-07-14 | Aichi Steel Corporation, Ltd. | Thin hybrid magnetization type ring magnet, yoke-equipped thin hybrid magnetization type ring magnet, and brush-less motor |
US7750776B2 (en) | 2004-04-20 | 2010-07-06 | Aichi Steel Corporation | Anisotropic bonded magnet for use in a 4-pole motor, a motor employing that magnet, and an alignment process apparatus for the anisotropic bonded magnet for use in a 4-pole motor |
US20100181859A1 (en) * | 2007-06-28 | 2010-07-22 | Hitachi Metals, Ltd. | Radially anisotropic ring r-tm-b magnet, its production method, die for producing it, and rotor for brushless motor |
US8937419B2 (en) * | 2007-06-28 | 2015-01-20 | Hitachi Metals, Ltd. | Radially anisotropic ring R-TM-B magnet, its production method, die for producing it, and rotor for brushless motor |
US20150048707A1 (en) * | 2007-06-28 | 2015-02-19 | Hitachi Metals, Ltd. | Radially anisotropic ring r-tm-b magnet, its production method, die for producing it, and rotor for brushless motor |
WO2013044233A2 (en) * | 2011-09-22 | 2013-03-28 | The Trustees Of Dartmouth College | Systems and methods for making radially anisotropic thin-film magnetic torroidal cores, and radially anisotropic cores having radial anisotropy, and inductors having radially aniosotropic cores |
WO2013044233A3 (en) * | 2011-09-22 | 2013-05-16 | The Trustees Of Dartmouth College | Systems and methods for making radially anisotropic thin-film magnetic torroidal cores, and radially anisotropic cores having radial anisotropy, and inductors having radially aniosotropic cores |
US9659706B2 (en) | 2011-09-22 | 2017-05-23 | The Trustees Of Dartmouth College | Methods for making radially anisotropic thin-film magnetic torroidal cores |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3864986B2 (en) | Thin hybrid magnetized ring magnet, thin hybrid magnetized ring magnet with yoke, and brushless motor | |
EP2063438B1 (en) | Production method of a radial anisotropic sintered magnet | |
US7750776B2 (en) | Anisotropic bonded magnet for use in a 4-pole motor, a motor employing that magnet, and an alignment process apparatus for the anisotropic bonded magnet for use in a 4-pole motor | |
US20100181859A1 (en) | Radially anisotropic ring r-tm-b magnet, its production method, die for producing it, and rotor for brushless motor | |
EP1956698B1 (en) | Permanent magnet rotor and motor using the same | |
JP2007214393A (en) | Annular polar anisotropic plastic magnet and rotor used for motor | |
EP1717828A1 (en) | Methods of producing radial anisotropic cylinder sintered magnet and permanent magnet motor-use cylinder multi-pole magnet | |
EP1713098B1 (en) | Radial anisotropic cylindrical sintered magnet and permanent magnet motor | |
JPH06124822A (en) | R-tm-b group anisotropic ring magnet and its manufacture | |
JP2769061B2 (en) | Extremely anisotropically oriented magnet | |
JPS6134249B2 (en) | ||
JP2004153867A (en) | Radial anisotropic sintered magnet, its manufacturing method, and magnet rotor and motor | |
JP3012067B2 (en) | Extremely anisotropic cylindrical magnet | |
JPH01129741A (en) | Magnet for rotor | |
JP2860858B2 (en) | Mold for magnetic powder molding | |
JP2010098863A (en) | Cylindrical magnet material and surface magnet type motor | |
JP4013916B2 (en) | Orientation processing device for anisotropic bonded magnet for 4-pole motor | |
JP2005312166A (en) | Anisotropic bond magnet for four magnetic pole motor and motor employing it | |
JP4069040B2 (en) | Radially oriented ring magnet molding die and manufacturing method of radial oriented ring magnet | |
JP3049134B2 (en) | 2-pole cylindrical magnet | |
JP4737202B2 (en) | Method for orienting anisotropic bonded magnet for motor | |
JP4304930B2 (en) | Magnetization method of rare earth magnet and rare earth magnet | |
KR101123169B1 (en) | Radial anisotropic cylindrical sintered magnet and permanent magnet motor | |
JP2769062B2 (en) | Notched anisotropic cylindrical magnet | |
JPS60176206A (en) | Radial direction bipolar magnet and manufacturing device thereof |