JPH06120086A - Method for manufacturing solid electrolytic capacitor - Google Patents
Method for manufacturing solid electrolytic capacitorInfo
- Publication number
- JPH06120086A JPH06120086A JP4265208A JP26520892A JPH06120086A JP H06120086 A JPH06120086 A JP H06120086A JP 4265208 A JP4265208 A JP 4265208A JP 26520892 A JP26520892 A JP 26520892A JP H06120086 A JPH06120086 A JP H06120086A
- Authority
- JP
- Japan
- Prior art keywords
- porous element
- electrode layer
- electrolytic
- solid electrolytic
- electrolytic capacitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 46
- 239000007787 solid Substances 0.000 title claims abstract description 30
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 17
- 238000000034 method Methods 0.000 title claims abstract description 13
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 claims abstract description 30
- 238000006116 polymerization reaction Methods 0.000 claims abstract description 28
- 239000000243 solution Substances 0.000 claims abstract description 16
- 239000004094 surface-active agent Substances 0.000 claims abstract description 15
- 239000007864 aqueous solution Substances 0.000 claims abstract description 14
- 229920001940 conductive polymer Polymers 0.000 claims abstract description 10
- 239000008151 electrolyte solution Substances 0.000 claims abstract description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 7
- 239000000178 monomer Substances 0.000 claims abstract description 7
- 239000003115 supporting electrolyte Substances 0.000 claims abstract description 7
- 229910052751 metal Inorganic materials 0.000 claims abstract description 5
- 239000002184 metal Substances 0.000 claims abstract description 5
- 230000001590 oxidative effect Effects 0.000 claims abstract description 5
- 239000011347 resin Substances 0.000 claims abstract description 4
- 229920005989 resin Polymers 0.000 claims abstract description 4
- 229910052709 silver Inorganic materials 0.000 claims abstract description 4
- 239000004332 silver Substances 0.000 claims abstract description 4
- 239000011248 coating agent Substances 0.000 claims abstract 4
- 238000000576 coating method Methods 0.000 claims abstract 4
- 239000003973 paint Substances 0.000 claims description 10
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 3
- 239000000463 material Substances 0.000 abstract description 4
- 229920000642 polymer Polymers 0.000 abstract 1
- 239000010408 film Substances 0.000 description 20
- 229920000128 polypyrrole Polymers 0.000 description 18
- 229920000767 polyaniline Polymers 0.000 description 14
- 239000000126 substance Substances 0.000 description 7
- 239000002904 solvent Substances 0.000 description 5
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 4
- KVCGISUBCHHTDD-UHFFFAOYSA-M sodium;4-methylbenzenesulfonate Chemical compound [Na+].CC1=CC=C(S([O-])(=O)=O)C=C1 KVCGISUBCHHTDD-UHFFFAOYSA-M 0.000 description 4
- 238000005476 soldering Methods 0.000 description 4
- 239000007784 solid electrolyte Substances 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- -1 for example Chemical compound 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 150000002894 organic compounds Chemical group 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 229920000123 polythiophene Polymers 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical group [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- 229940092714 benzenesulfonic acid Drugs 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical compound [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical compound C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- WFMGQHBNGMIKCM-UHFFFAOYSA-M phenylmethanesulfonate;tetrabutylazanium Chemical compound [O-]S(=O)(=O)CC1=CC=CC=C1.CCCC[N+](CCCC)(CCCC)CCCC WFMGQHBNGMIKCM-UHFFFAOYSA-M 0.000 description 1
- 229920000414 polyfuran Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920000259 polyoxyethylene lauryl ether Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- PCCVSPMFGIFTHU-UHFFFAOYSA-N tetracyanoquinodimethane Chemical compound N#CC(C#N)=C1C=CC(=C(C#N)C#N)C=C1 PCCVSPMFGIFTHU-UHFFFAOYSA-N 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/48—Conductive polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/54—Electrolytes
- H01G11/56—Solid electrolytes, e.g. gels; Additives therein
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
Abstract
(57)【要約】
【目的】 固体電解コンデンサの製造方法に関し、低損
失なコンデンサの製造方法を確立することを目的とす
る。
【構成】 弁作用金属よりなる多孔性素子を電解酸化
し、多孔性素子の表面に酸化皮膜を形成する工程と、多
孔性素子を導電性高分子溶液に浸漬した後、ドーピング
処理を施して予備電極層を形成する工程と、予備電極層
を備えた多孔性素子を陽極として電解重合を行い、予備
電極層の上に陰極導電層を形成する工程と、陰極導電層
の上にカーボン塗料と銀塗料を塗布し、陰極リードの取
り出しを行なった後、樹脂外装を行なう工程とよりなる
固体電解コンデンサの製造工程において、予備電極層を
備えた多孔性素子を陽極とし、ピロールで代表される導
電性高分子単量体と支持電解質を含む水溶液を電解液と
して電解重合を行なう処理工程において、電解液に界面
活性剤を添加することを特徴として固体電解コンデンサ
の製造方法を構成する。
(57) [Abstract] [Purpose] With regard to a method for manufacturing a solid electrolytic capacitor, an object thereof is to establish a method for manufacturing a low-loss capacitor. [Structure] A step of electrolytically oxidizing a porous element made of a valve metal to form an oxide film on the surface of the porous element, and immersing the porous element in a conductive polymer solution, and then performing a doping treatment to make a preliminary A step of forming an electrode layer, a step of performing electrolytic polymerization using a porous element having a preliminary electrode layer as an anode to form a cathode conductive layer on the preliminary electrode layer, and a carbon coating and silver on the cathode conductive layer. In the manufacturing process of a solid electrolytic capacitor, which consists of applying a coating material, taking out the cathode lead, and then applying a resin coating, the porous element equipped with a preliminary electrode layer is used as the anode, and the conductivity represented by pyrrole is used. A method for producing a solid electrolytic capacitor is characterized in that a surfactant is added to an electrolytic solution in a treatment step in which electrolytic polymerization is carried out using an aqueous solution containing a polymer monomer and a supporting electrolyte as an electrolytic solution. .
Description
【0001】[0001]
【産業上の利用分野】本発明は固体電解コンデンサの新
規な製造方法に関する。電解コンデンサには乾式電解コ
ンデンサと固体電解コンデンサがあり、通信機器の構成
部品として使用されている。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel method for manufacturing a solid electrolytic capacitor. Electrolytic capacitors include dry electrolytic capacitors and solid electrolytic capacitors, which are used as components of communication equipment.
【0002】すなわち、電解コンデンサはアルミニウム
(Al)やタンタル(Ta)のように電解酸化により表面に高抵
抗の酸化皮膜を形成する弁作用金属(Valve-metal) を陽
極とするもので、誘電体として働く酸化皮膜の厚さが電
解酸化を行う印加電圧により決まり、数100 〜数1000Å
の微小厚が形成できるため、陰極を対向させてコンデン
サを形成することができ、大容量化を実現することがで
きる。That is, the electrolytic capacitor is aluminum
(Al) or tantalum (Ta), which uses a valve-metal that forms a high resistance oxide film on the surface by electrolytic oxidation as the anode, and the thickness of the oxide film that works as a dielectric is electrolytic. Depending on the applied voltage for oxidation, several hundred to several thousand Å
Since a very small thickness can be formed, a capacitor can be formed with the cathodes facing each other, and a large capacity can be realized.
【0003】こゝで、乾式電解コンデンサは酸化膜を備
えた陽極箔を電解液を含んだセパレータを介して陰極箔
と対向させて捲回したもので、大きな静電容量を必要と
する平滑回路用コンデンサとして使用されている。Here, the dry electrolytic capacitor is formed by winding an anode foil provided with an oxide film so as to face a cathode foil with a separator containing an electrolytic solution in between, and a smoothing circuit requiring a large capacitance. It is used as a capacitor.
【0004】然し、棚置き寿命(Shelf-life)が短く、ま
た、誘電体損失角(tanδ) と高周波領域における等価直
列抵抗(ESR)が大きいなどの問題がある。一方、固
体電解コンデンサは電解液の代わりに二酸化マンガン(M
nO2)などの固体電解質を使用するもので、棚置き寿命の
問題が解決され、数μF 以上の比較的大きな容量素子は
通信回路のフィルタ回路などに広く使用されている。However, there are problems that the shelf life is short, the dielectric loss angle (tan δ) and the equivalent series resistance (ESR) in the high frequency region are large. On the other hand, solid electrolytic capacitors use manganese dioxide (M
Since solid electrolytes such as nO 2 ) are used, the problem of shelf life is solved, and relatively large capacitive elements of several μF or more are widely used in communication circuits such as filter circuits.
【0005】[0005]
【従来の技術】固体電解コンデンサにはAlを用いるもの
とTaを用いるものとがあるが、Ta固体コンデンサについ
て製造方法を説明すると次のようになる。2. Description of the Related Art There are solid electrolytic capacitors using Al and Ta using solid electrolytic capacitors. The manufacturing method of Ta solid capacitors is as follows.
【0006】単位体積当たりの電極の表面積を増大する
ために、粒度が100 〜350 メッシュの高純度のTa粉をプ
レス圧力1000〜1500kg/cm2の条件でプレスし、陽極リー
ドのついたペレットを作り、このペレットを1×10-5 t
orr 以下の高真空中で1900〜2100℃の高温で焼結して焼
結体を作る。In order to increase the surface area of the electrode per unit volume, high-purity Ta powder having a particle size of 100 to 350 mesh is pressed under a pressing pressure of 1000 to 1500 kg / cm 2 to form a pellet with an anode lead. Make and pellet this 1 × 10 -5 t
Sinter at a high temperature of 1900 to 2100 ℃ in a high vacuum below orr to make a sintered body.
【0007】次に、この焼結体よりなるペレットを燐酸
(H3PO4) 水溶液などの電解液に浸漬して陽極とし、必要
とする耐圧に見合った直流電圧を印加して化成( 電解酸
化)を行い、五酸化二タンタル(Ta2O5) よりなる酸化膜
を焼結体の全表面積に亙って形成する。Next, the pellets made of this sintered body were treated with phosphoric acid.
(H 3 PO 4 ) Soak in an electrolytic solution such as an aqueous solution to form an anode, apply a DC voltage corresponding to the required withstand voltage to perform chemical conversion (electrolytic oxidation), and remove it from ditantalum pentoxide (Ta 2 O 5 ). Forming an oxide film over the entire surface area of the sintered body.
【0008】次に、この酸化膜の付いたTa焼結体に硝酸
マンガン[Mn(NO3)2]溶液を真空含浸し、これを熱分解し
て二酸化マンガン(Mn02)とする工程を繰り返すことによ
り焼結体の内部に亙ってMn02を充填する。Next, the Ta sintered body with the oxide film is vacuum impregnated with a manganese nitrate [Mn (NO 3 ) 2 ] solution, and pyrolyzed to obtain manganese dioxide (Mn0 2 ) is repeated. As a result, MnO 2 is filled inside the sintered body.
【0009】次に、このMn02層の上にカーボンの導電性
塗料を塗布して低抵抗化し拡がり抵抗を減少させた後、
この上に銀(Ag)塗料を塗布することで半田付け可能の状
態とし、これに陰極リードを半田付けした後、樹脂モー
ルド外装を施すことにより固体コンデンサが完成してい
る。Next, a carbon conductive paint is applied on the MnO 2 layer to reduce the resistance and spread resistance, and
A solid state capacitor is completed by applying a silver (Ag) paint on this to make it ready for soldering, soldering the cathode lead to this, and then applying a resin mold exterior.
【0010】こゝで、Mn02は比較的低抵抗な酸化物であ
り、Taを陽極として電圧を印加すると、焼結体の表面に
形成されている酸化膜(Ta2O5) にある弱点部( 漏洩電流
源)を通って電流が流れる結果、発生するジュール熱に
よりMn02が分解して酸素(O)を発生して弱点部を酸化し
て自己回復(Self-healing) が行われると共に高抵抗化
したMn酸化物(Mn2O3, MnO など) により封止(Seal)が行
われる結果、漏洩電流の少ない電解コンデンサを得るこ
とができる。Here, Mn0 2 is an oxide having a relatively low resistance, and when Ta is used as an anode and a voltage is applied, a weak point in the oxide film (Ta 2 O 5 ) formed on the surface of the sintered body. As a result of the current flowing through the part (leakage current source), the generated Joule heat decomposes Mn0 2 to generate oxygen (O), oxidize the weak point and perform self-healing. As a result of performing sealing with Mn oxides (Mn 2 O 3, MnO, etc.) having high resistance, it is possible to obtain an electrolytic capacitor with a small leakage current.
【0011】かゝる固体電解コンデンサは通信回路の構
成部品として使用されているが、Mn02層やカーボン層が
存在することから等価直列抵抗は他のコンデンサ例えば
プラスチックコンデンサなどに較べると格段に大きい。Although such a solid electrolytic capacitor is used as a component of a communication circuit, its equivalent series resistance is remarkably large as compared with other capacitors such as a plastic capacitor due to the presence of Mn0 2 layer and carbon layer. .
【0012】さて、近年デジタル機器の発展に伴い、高
周波領域において低インピーダンスで且つ大容量コンデ
ンサが要望されており、この見地からMn02に代わる導電
材料を用いた固体電解コンデンサの研究が行われてい
る。With the recent development of digital equipment, there is a demand for low impedance and large capacitance capacitors in the high frequency region. From this viewpoint, solid electrolytic capacitors using conductive materials instead of Mn0 2 have been studied. There is.
【0013】例えば、有機導電材料としてアルキルキノ
リウム・テトラシアノキノジメタン( 略称TCNQ) 錯体な
どの電荷移動錯体を用いたものが提案されている。( 例
えば特開昭58-17609号公報, 特開昭58-191414 公報な
ど) 然し、有機電荷移動錯体は一般的に融点が低いために半
田付け耐性が低く、チップ部品を形成することは困難で
ある。For example, it has been proposed to use a charge transfer complex such as an alkylquinolium / tetracyanoquinodimethane (abbreviated as TCNQ) complex as an organic conductive material. (For example, JP-A-58-17609 and JP-A-58-191414) However, since the organic charge transfer complex generally has a low melting point, soldering resistance is low, and it is difficult to form a chip component. is there.
【0014】また、熱安定性が乏しいことから陰極層形
成時の熱処理によって錯体の一部が分解して高抵抗化す
ると云う問題があり、等価直列抵抗の低減は困難であ
る。そこで、有機導電材料として、耐熱性の優れたポリ
ピロール, ポリチオフェンなどの導電性高分子材料を用
いたものが提案されている。( 例えば、特開昭63-17331
3 など) この方法は酸化皮膜を備えた皮膜形成金属上に化学酸化
重合法により導電性高分子膜を形成した後、この上に電
解重合法により導電性高分子膜を作り、これを固体電解
質の代わりに用いるものである。Further, since the thermal stability is poor, there is a problem that a part of the complex is decomposed by the heat treatment at the time of forming the cathode layer to increase the resistance, and it is difficult to reduce the equivalent series resistance. Therefore, as an organic conductive material, a material using a conductive polymer material such as polypyrrole or polythiophene having excellent heat resistance has been proposed. (For example, JP-A-63-17331
(3 etc.) In this method, a conductive polymer film is formed by a chemical oxidative polymerization method on a film forming metal having an oxide film, and then a conductive polymer film is formed by an electrolytic polymerization method on this, and this is used as a solid electrolyte. Is used instead of.
【0015】具体的には、過硫酸アンモニウムや沃素な
どの酸化剤を溶解させた溶液に酸化皮膜を備えた皮膜形
成金属( 以下陽極体)を浸漬して酸化皮膜の表面に酸化
剤を付着させた後、この陽極体を例えばピロール単量体
を含む溶液に浸漬すると、化学酸化重合により酸化皮膜
の上にポリピロール薄膜が形成される。Specifically, a film-forming metal having an oxide film (hereinafter referred to as "anode body") is immersed in a solution in which an oxidizing agent such as ammonium persulfate or iodine is dissolved to adhere the oxidizing agent to the surface of the oxide film. After that, when this anode body is immersed in a solution containing a pyrrole monomer, for example, a polypyrrole thin film is formed on the oxide film by chemical oxidative polymerization.
【0016】次に、このピロール単量体と支持電解質(
例えばトルエンスルホン酸テトラブチルアンモニウム)
を含む水溶液に浸漬し、陽極体を陽極として電解を行う
と、電解重合により黒色をしたポリピロールの導電性高
分子膜を得るものである。Next, the pyrrole monomer and supporting electrolyte (
(For example, tetrabutylammonium toluenesulfonate)
When electrolyzed by immersing it in an aqueous solution containing a and using the anode body as an anode, a black electroconductive polymer film of polypyrrole is obtained by electrolytic polymerization.
【0017】然し、このような化学酸化重合法の問題点
はエッチング箔など表面倍率がそれほど大きくない陽極
体には適用できるものゝ、Ta焼結体のような多孔質で表
面倍率の高い陽極体に対しては溶液の含浸が不充分であ
り、均一なポリピロール薄膜ができないことである。However, the problem of such a chemical oxidative polymerization method is that it can be applied to an anode body such as an etching foil which does not have a large surface magnification, a porous body having a high surface magnification such as a Ta sintered body. On the other hand, the impregnation of the solution is insufficient and a uniform polypyrrole thin film cannot be formed.
【0018】これらのことから、焼結体の内部にも充分
に含浸して低抵抗の導電性高分子膜を形成できる製造方
法を開発する必要がある。発明者等はこの問題を解決す
る方法として溶剤に可溶な有機化合物であって焼結素子
のような多孔性素子の内部まで容易に浸透し、加熱によ
り導電性高分子となる材料を選択した結果、一般式
(1)で示されるポリアニリンをを見出し、この有機化
合物を含浸して多孔性素子の内部にまでポリアニリンよ
りなる導電性の予備電極層を形成した後、ピロール単量
体と支持電解質を含む水溶液に浸漬し、電解重合を行な
って陰極導電層を形成する方法を提案している。For these reasons, it is necessary to develop a manufacturing method capable of forming a low-resistance conductive polymer film by sufficiently impregnating the inside of the sintered body. As a method for solving this problem, the inventors have selected a material that is an organic compound soluble in a solvent and easily penetrates into a porous element such as a sintered element and becomes a conductive polymer by heating. As a result, the polyaniline represented by the general formula (1) was found, and after impregnating this organic compound to form a conductive preliminary electrode layer made of polyaniline even inside the porous element, a pyrrole monomer and a supporting electrolyte were formed. It is proposed that the cathode conductive layer be formed by immersing in an aqueous solution containing and performing electrolytic polymerization.
【0019】具体的にはポリアニリンをN-メチル-2- ピ
ロリドンのような溶剤に溶解し、この溶液中に多孔性素
子を浸漬した後に引上げ、減圧乾燥することにより焼結
体の内部にまでポリアニリンを析出させる。Specifically, polyaniline is dissolved in a solvent such as N-methyl-2-pyrrolidone, the porous element is immersed in this solution, and then pulled up and dried under reduced pressure to obtain polyaniline even inside the sintered body. To precipitate.
【0020】然し、このようにして得たポリアニリンは
高抵抗であり、そのまゝでは電解重合を行なう陽極素子
としては不適当であるので、パラトルエンスルフォン酸
( 略称pTS),ナフタレンスルフォン酸( 略称N
S),アルキルナフタレンスルフォン酸( 略称AN
S),ベンゼンスルフォン酸( 略称BS),n-アルキル
ベンゼンスルフォン酸( 略称 nABS),スチレンスル
フォン酸( 略称SS)などの水溶液に浸漬してドーピン
グ処理することにより低抵抗化する。However, the polyaniline thus obtained has a high resistance and is unsuitable as an anode element for carrying out electrolytic polymerization, so that paratoluenesulfonic acid is used.
(Abbreviation pTS), naphthalene sulfonic acid (abbreviation N
S), alkylnaphthalene sulfonic acid (abbreviated to AN
S), benzene sulfonic acid (abbreviated as BS), n-alkylbenzene sulfonic acid (abbreviated as nABS), styrene sulfonic acid (abbreviated as SS) and the like, and the doping treatment is performed to lower the resistance.
【0021】次に、この多孔性素子をピロールと支持電
解質例えばp-トルエンスルフォン酸ナトリウムよりなる
水溶液に浸漬し、素子を陽極として定電流電解を行い、
焼結体の内部にまでポリピロールを充填して陰極導電層
とするものである。Next, this porous element is immersed in an aqueous solution of pyrrole and a supporting electrolyte, for example, sodium p-toluenesulfonate, and constant current electrolysis is performed using the element as an anode.
The inside of the sintered body is filled with polypyrrole to form a cathode conductive layer.
【0022】[0022]
【発明が解決しようとする課題】図2は固体電解コンデ
ンサの構成を示す断面図であるが、発明者等は低損失で
また高周波領域でのESRの少ないTa固体電解コンデン
サを実現する方法として、化成により必要とする厚さの
酸化皮膜1を備えた多孔性素子2の内部にまでポリアニ
リンを含浸させて、導電性の予備電極層3を形成した
後、ピロール単量体を含む溶液に浸漬し、電解重合を行
なってポリピロールよりなる陰極導電層4を形成する方
法を提案しており、これにより、焼結体の内部にまで低
抵抗のポリピロールを充填することができる。FIG. 2 is a cross-sectional view showing the structure of a solid electrolytic capacitor. As a method of realizing a Ta solid electrolytic capacitor having low loss and low ESR in the high frequency region, the inventors have Polyaniline is impregnated even into the inside of the porous element 2 having the oxide film 1 of the required thickness by chemical conversion to form a conductive preliminary electrode layer 3 and then immersed in a solution containing a pyrrole monomer. , A method of forming the cathode conductive layer 4 made of polypyrrole by electrolytic polymerization is proposed, whereby the low resistance polypyrrole can be filled even inside the sintered body.
【0023】次に、従来と同様に、この陰極導電層4の
上にカーボン塗料を塗布してカーボン層5を作り、更に
銀 (Ag) 塗料を塗布してAg塗料層6を作り、このAg塗料
層6に陰極リード7を半田付けし、樹脂外装8を行なう
ことにより固体電解コンデンサが完成している。Next, as in the conventional case, a carbon paint is applied on the cathode conductive layer 4 to form a carbon layer 5, and then a silver (Ag) paint is applied to form an Ag paint layer 6. The solid electrolytic capacitor is completed by soldering the cathode lead 7 to the paint layer 6 and applying the resin sheath 8.
【0024】然し、このようにして形成したコンデンサ
は従来のMnO2を固体電解質として使用した固体電解コン
デンサに較べると誘電正接と高周波領域におけるESR
が大きい。However, the capacitor thus formed has a dielectric loss tangent and an ESR in a high frequency region as compared with a conventional solid electrolytic capacitor using MnO 2 as a solid electrolyte.
Is big.
【0025】そこで、この低減が課題である。Therefore, this reduction is an issue.
【0026】[0026]
【課題を解決するための手段】上記の課題は予備電極層
を備えた多孔性素子を陽極とし、ピロールで代表される
導電性高分子単量体とパラトルエンスルフォン酸ナトリ
ウムで代表される支持電解質を含む水溶液を電解液とし
て電解重合を行なう処理工程において、この電解液に界
面活性剤を添加することを特徴として固体電解コンデン
サの製造方法を構成することにより解決することができ
る。[Means for Solving the Problems] The above-mentioned problems are solved by using a porous element provided with a preliminary electrode layer as an anode, a conductive polymer monomer represented by pyrrole, and a supporting electrolyte represented by sodium paratoluenesulfonate. This can be solved by configuring a method for producing a solid electrolytic capacitor, which is characterized in that a surfactant is added to the electrolytic solution in a treatment step of carrying out electrolytic polymerization using an aqueous solution containing the above as an electrolytic solution.
【0027】[0027]
【作用】固体電解コンデンサを低損失化するには焼結体
の内部まで如何にして低抵抗な陰極導電層を充填するか
にかゝっている。How to reduce the loss of the solid electrolytic capacitor depends on how to fill the inside of the sintered body with the low-resistance cathode conductive layer.
【0028】こゝで、ポリピロール,ポリチオフェン,
ポリアニリン,ポリフランなどの導電性高分子化合物は
電解重合により作ることができるが、化成が終わり酸化
皮膜を表面に設けた多孔性素子をそのまゝ、例えばピロ
ール溶液に浸漬して電解重合を行なっても内部にまで充
分にポリピロールを析出することはできない。Here, polypyrrole, polythiophene,
Conductive polymer compounds such as polyaniline and polyfuran can be produced by electrolytic polymerization. However, after the chemical conversion is completed, the porous element provided with an oxide film on the surface is immersed in, for example, a pyrrole solution for electrolytic polymerization. However, polypyrrole cannot be sufficiently deposited inside.
【0029】そこで、発明者等はポリアニリンが溶剤に
溶けることに着目し、溶剤に溶解したポリアニリン溶液
に多孔性素子を含浸し、減圧乾燥することによりポリア
ニリンを粗く酸化皮膜上に析出させて次ぎに行なう陰極
導電層の形成工程においてピロール水溶液の浸透を容易
にしている。Then, the inventors paid attention to the fact that polyaniline is soluble in a solvent, impregnating a porous element in a solution of polyaniline dissolved in the solvent, and drying it under reduced pressure to roughly deposit polyaniline on an oxide film, and then In the step of forming the cathode conductive layer, the penetration of the aqueous solution of pyrrole is facilitated.
【0030】なお、溶液から乾燥により生じたポリアニ
リンだけでは高抵抗であり、電解重合において電流通路
として働くには不充分であることからドーパントを添加
して低抵抗化しておく。It should be noted that polyaniline generated by drying from the solution alone has a high resistance and is insufficient to function as a current path in electrolytic polymerization, so a dopant is added to reduce the resistance.
【0031】次に、陰極導電層の形成は例えばピロール
を電解重合してポリピロールとし、焼結体の内部にまで
充填することにより行なうが、この電解重合を行なうに
はイオンに電離した電解質が必要であり、また、電解重
合して生じたポリピロールはそのまゝでは抵抗値が高い
ことからドーパントを添加して低抵抗化することが必要
である。Next, the cathode conductive layer is formed by, for example, electrolytically polymerizing pyrrole to form polypyrrole, and filling the inside of the sintered body. An ionized electrolyte is required to carry out this electrolytic polymerization. Further, since the polypyrrole produced by electrolytic polymerization has a high resistance value until then, it is necessary to add a dopant to reduce the resistance.
【0032】こゝで、芳香族スルフォン酸または脂肪族
スルフォン酸はドーパントとして働くことから、そのナ
トリウム塩やアンモニウム塩を支持電解質とし、例えば
ピロールと芳香族スルフォン酸塩を溶質とする水溶液を
使用して電解重合を行い、ポリピロールよりなる陰極導
電層を形成している。Here, since aromatic sulfonic acid or aliphatic sulfonic acid acts as a dopant, a sodium salt or ammonium salt thereof is used as a supporting electrolyte, and for example, an aqueous solution containing pyrrole and aromatic sulfonate as a solute is used. Electrolytic polymerization is performed to form a cathode conductive layer made of polypyrrole.
【0033】然し、それでも多孔性素子の内部までポリ
ピロールを充填することは容易ではない。こゝで、従来
より更に内部までポリピロールを充填するためには、 電解重合を行なう電解液の中に界面活性剤を添加す
ること、 溶媒として水よりも表面張力の少ない材料を使用す
ること、 などが考えられるが、アルコールなど有機溶剤の使用は
焼結体の内部に残存すると洗浄などによっても取り除く
ことができないことゝ、加熱分解する際に還元性雰囲気
を生ずることから好ましくない。However, it is still not easy to fill the inside of the porous element with polypyrrole. Here, in order to further fill the interior with polypyrrole, it is necessary to add a surfactant to the electrolytic solution for electrolytic polymerization, use a material with a surface tension lower than that of water as the solvent, etc. However, if an organic solvent such as alcohol is used, it cannot be removed by washing if it remains inside the sintered body, and a reducing atmosphere is generated during thermal decomposition, which is not preferable.
【0034】そこで、発明者等は界面活性剤を添加する
ことで好結果を得ることができた。すなわち、界面活性
剤の少量添加によってピロールの浸透が容易になり、孔
の内部までポリピロールを析出させることができる。Therefore, the inventors have been able to obtain good results by adding a surfactant. That is, the addition of a small amount of a surfactant facilitates the penetration of pyrrole, and polypyrrole can be deposited even inside the pores.
【0035】こゝで、界面活性剤には陰イオン性界面活
性剤, 陽イオン性界面活性剤, 非イオン性界面活性剤が
あるが何れを用いても差支えない。なお、界面活性剤は
ポリピロールと共に多孔性素子内に残留するが、少量で
あるためにポリピロールの特性および固体電解コンデン
サの品質への影響は無視することができる。Here, there are anionic surfactants, cationic surfactants and nonionic surfactants as the surfactants, but any of these may be used. Although the surfactant remains in the porous element together with the polypyrrole, its effect on the characteristics of the polypyrrole and the quality of the solid electrolytic capacitor can be neglected because of its small amount.
【0036】[0036]
実施例1:実効表面積が10cm2 のTa焼結体を濃度が0.05
%のH3PO4 水溶液中に浸漬して60Vに化成して酸化皮膜
を設けたTa素子を、図1に構造式を示すポリアニリンの
5%N-メチル-2- ピロリドン溶液に浸漬して含浸させた
後、減圧して80℃で30分乾燥することにより酸化皮膜上
にポリアニリンよりなる導電層を形成した。Example 1: A Ta sintered body having an effective surface area of 10 cm 2 and a concentration of 0.05
% Of H 3 PO 4 aqueous solution for chemical conversion to 60 V to form an oxide film on the Ta device, which is immersed in a 5% N-methyl-2-pyrrolidone solution of polyaniline whose structural formula is shown in FIG. After that, the pressure was reduced and the product was dried at 80 ° C. for 30 minutes to form a conductive layer made of polyaniline on the oxide film.
【0037】次に、このTa素子をp-トルエンスルフォン
酸の1%水溶液に10分間浸漬してドーピング処理を行
い、低抵抗化した予備電極層とした。次に、1リットル
当たり0.06モルのピロールと0.06モルのp-トルエンスル
フォン酸ナトリウムの水溶液に界面活性剤としてポリオ
キシエチレンオクチルフェノールエーテルを0.1 %加え
て電解重合液を作った。Next, this Ta element was dipped in a 1% aqueous solution of p-toluenesulfonic acid for 10 minutes to perform a doping treatment to form a preliminary electrode layer having a low resistance. Next, 0.1% of polyoxyethylene octylphenol ether as a surfactant was added to an aqueous solution of 0.06 mol of pyrrole and 0.06 mol of sodium p-toluenesulfonate per liter to prepare an electrolytic polymerization solution.
【0038】この水溶液にTa素子を浸漬し、素子当たり
0.5mA の電流を通じて1時間に亙って電解重合を行いポ
リピロールよりなる陰極導電層を形成した。この上に従
来と同様にカーボン塗料とAg塗料を塗布し、120 ℃で20
分間乾燥した後、エポキシモールドを行うことによりTa
固体電解コンデンサが完成した。The Ta element was immersed in this aqueous solution to
Electrolytic polymerization was carried out for 1 hour at a current of 0.5 mA to form a cathode conductive layer made of polypyrrole. On top of this, apply carbon paint and Ag paint in the same manner as before, and apply 20 ° C at 120 ° C.
After drying for a minute, Ta
The solid electrolytic capacitor was completed.
【0039】このコンデンサの静電容量(120Hz)は2.3
μF,tan δ(120Hz) は1.6 %, 等価直列抵抗(ESR) は1
MHzで0.2 Ω, また、製造に要した工数は4時間であっ
た。 実施例2:実施例1において電解重合液に加える界面活
性剤にドデシル硫酸ナトリウムを用いた以外は全く同様
にしてTa固体電解コンデンサを形成した。The capacitance (120 Hz) of this capacitor is 2.3
μF, tan δ (120Hz) is 1.6%, equivalent series resistance (ESR) is 1
It was 0.2 Ω at MHz, and the man-hour required for manufacturing was 4 hours. Example 2: A Ta solid electrolytic capacitor was formed in exactly the same manner as in Example 1 except that sodium dodecyl sulfate was used as the surfactant added to the electrolytic polymerization solution.
【0040】このコンデンサの静電容量(120Hz)は2.3
μF,tan δ(120Hz) は1.3 %, 等価直列抵抗(ESR) は1
MHzで0.3 Ω, また、製造に要した工数は4時間であっ
た。 実施例3:実施例1において電解重合液に加える界面活
性剤にポリオキシエチレンラウリルエーテルを用いた以
外は全く同様にしてTa固体電解コンデンサを形成した。The capacitance (120Hz) of this capacitor is 2.3
μF, tan δ (120Hz) is 1.3%, equivalent series resistance (ESR) is 1
It was 0.3 Ω at MHz, and the man-hour required for manufacturing was 4 hours. Example 3: A Ta solid electrolytic capacitor was formed in exactly the same manner as in Example 1, except that polyoxyethylene lauryl ether was used as the surfactant added to the electrolytic polymerization solution.
【0041】このコンデンサの静電容量(120Hz)は2.1
μF,tan δ(120Hz) は1.4 %, 等価直列抵抗(ESR) は1
MHzで0.2 Ω, また、製造に要した工数は4時間であっ
た。 比較例1:実施例1において、電解重合液を1リットル
当たり0.06モルのピロールと0.06モルのp-トルエンスル
フォン酸ナトリウムの水溶液で形成し、界面活性剤を加
えないで電解重合を行なった以外は全く同様にしてTa固
体電解コンデンサを形成したが、電解重合工程で界面活
性剤を加えた場合の二倍の時間を要した。The capacitance (120 Hz) of this capacitor is 2.1
μF, tan δ (120Hz) is 1.4%, equivalent series resistance (ESR) is 1
It was 0.2 Ω at MHz, and the man-hour required for manufacturing was 4 hours. Comparative Example 1: except that the electropolymerization liquid was formed from an aqueous solution of 0.06 mol of pyrrole and 0.06 mol of sodium p-toluenesulfonate per liter in Example 1 and electropolymerization was performed without adding a surfactant. A Ta solid electrolytic capacitor was formed in exactly the same manner, but it took twice as long as when a surfactant was added in the electrolytic polymerization step.
【0042】このコンデンサの静電容量(120Hz)は2.0
μF,tan δ(120Hz) は3.5 %, 等価直列抵抗(ESR) は1
MHzで0.7 Ω, また、製造に要した工数は7時間であっ
た。 比較例2:実施例2において、電解重合液に界面活性剤
を加えないで電解重合を行なった以外は全く同様にして
Ta固体電解コンデンサを形成したが、電解重合工程で界
面活性剤を加えた場合の二倍の時間を要した。The capacitance (120 Hz) of this capacitor is 2.0
μF, tan δ (120Hz) is 3.5%, equivalent series resistance (ESR) is 1
It was 0.7 Ω at MHz, and the man-hour required for manufacturing was 7 hours. Comparative Example 2: The same procedure as in Example 2 was carried out except that electrolytic polymerization was carried out without adding a surfactant to the electrolytic polymerization solution.
A Ta solid electrolytic capacitor was formed, but it took twice as long as when a surfactant was added in the electrolytic polymerization process.
【0043】このコンデンサの静電容量(120Hz)は2.3
μF,tan δ(120Hz) は3.5 %, 等価直列抵抗(ESR) は1
MHzで0.6 Ω, また、製造に要した工数は7時間であっ
た。The capacitance (120 Hz) of this capacitor is 2.3
μF, tan δ (120Hz) is 3.5%, equivalent series resistance (ESR) is 1
It was 0.6 Ω at MHz, and the number of man-hours required for production was 7 hours.
【0044】[0044]
【発明の効果】本発明の実施により、誘電正接値と高周
波領域での等価直列抵抗値が少なく、固体電解質を使用
する従来の固体電解コンデンサに近い特性をもつ新しい
タイプの固体電解コンデンサの製造が可能となる。As a result of the practice of the present invention, it is possible to manufacture a new type of solid electrolytic capacitor which has a small dielectric loss tangent value and an equivalent series resistance value in a high frequency region and has characteristics close to those of a conventional solid electrolytic capacitor using a solid electrolyte. It will be possible.
【図1】ポリアニリンの構造式である。FIG. 1 is a structural formula of polyaniline.
【図2】固体電解コンデンサの構成を示す断面図であ
る。FIG. 2 is a cross-sectional view showing the configuration of a solid electrolytic capacitor.
1 酸化皮膜 2 多孔性素子 3 予備電極層 4 陰極導電層 1 Oxide film 2 Porous element 3 Preliminary electrode layer 4 Cathode conductive layer
Claims (1)
化し、該多孔性素子の表面に酸化皮膜を形成する工程
と、該多孔性素子を導電性高分子溶液に浸漬した後、ド
ーピング処理を施して予備電極層を形成する工程と、該
予備電極層を備えた多孔性素子を陽極として電解重合を
行い、該予備電極層の上に陰極導電層を形成する工程
と、該陰極導電層の上にカーボン塗料と銀塗料を塗布
し、陰極リードの取り出しを行なった後、樹脂外装を行
なう工程とよりなる固体電解コンデンサの製造工程にお
いて、 前記予備電極層を備えた多孔性素子を陽極とし、ピロー
ルで代表される導電性高分子単量体と支持電解質を含む
水溶液を電解液として電解重合を行なう処理工程におい
て、該電解液に界面活性剤を添加することを特徴とする
固体電解コンデンサの製造方法。1. A step of electrolytically oxidizing a porous element made of a valve metal to form an oxide film on the surface of the porous element, and a doping treatment after immersing the porous element in a conductive polymer solution. To form a preliminary electrode layer, a step of electrolytic polymerization using a porous element provided with the preliminary electrode layer as an anode, and forming a cathode conductive layer on the preliminary electrode layer, and the cathode conductive layer. In a manufacturing process of a solid electrolytic capacitor, which comprises a step of applying a carbon paint and a silver paint on the above, taking out a cathode lead, and then applying a resin coating, the porous element having the preliminary electrode layer is used as an anode. , A solid electrolytic condensate characterized by adding a surfactant to the electrolytic solution in a treatment step of performing electrolytic polymerization using an aqueous solution containing a conductive polymer monomer represented by pyrrole and a supporting electrolyte as an electrolytic solution. The method of production.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4265208A JPH06120086A (en) | 1992-10-05 | 1992-10-05 | Method for manufacturing solid electrolytic capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4265208A JPH06120086A (en) | 1992-10-05 | 1992-10-05 | Method for manufacturing solid electrolytic capacitor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06120086A true JPH06120086A (en) | 1994-04-28 |
Family
ID=17414034
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4265208A Withdrawn JPH06120086A (en) | 1992-10-05 | 1992-10-05 | Method for manufacturing solid electrolytic capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06120086A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1093136A2 (en) * | 1999-10-12 | 2001-04-18 | Nec Corporation | Solid electrolytic capacitor |
WO2002003396A1 (en) * | 2000-07-05 | 2002-01-10 | Commissariat A L'energie Atomique | Method for preparing conductive composite materials by deposition of a conductive polymer in an insulating porous substrate and solution for use in said preparation |
US6671168B2 (en) | 2001-11-30 | 2003-12-30 | Matsushita Electric Industrial Co., Ltd. | Solid electrolytic capacitor and method for manufacturing the same |
JP2018117123A (en) * | 2017-01-13 | 2018-07-26 | 日本ケミコン株式会社 | Electrolytic capacitor polymerization solution, electrolytic capacitor cathode using the same and method for manufacturing electrolytic capacitor |
-
1992
- 1992-10-05 JP JP4265208A patent/JPH06120086A/en not_active Withdrawn
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1093136A2 (en) * | 1999-10-12 | 2001-04-18 | Nec Corporation | Solid electrolytic capacitor |
US6327138B1 (en) | 1999-10-12 | 2001-12-04 | Nec Corporation | Solid electrolytic capacitor |
EP1093136A3 (en) * | 1999-10-12 | 2006-04-12 | Nec Tokin Corporation | Solid electrolytic capacitor |
WO2002003396A1 (en) * | 2000-07-05 | 2002-01-10 | Commissariat A L'energie Atomique | Method for preparing conductive composite materials by deposition of a conductive polymer in an insulating porous substrate and solution for use in said preparation |
FR2811466A1 (en) * | 2000-07-05 | 2002-01-11 | Commissariat Energie Atomique | PREPARATION OF CONDUCTIVE MATERIALS BY DEPOSITION OF A CONDUCTIVE POLYMER IN A POROUS INSULATING SUBSTRATE AND SOLUTION USEFUL FOR THIS PREPARATION |
JP2004502286A (en) * | 2000-07-05 | 2004-01-22 | コミツサリア タ レネルジー アトミーク | Method for producing conductive composite material by attaching conductive polymer to insulating porous substrate and solution used in the method |
US6753041B2 (en) * | 2000-07-05 | 2004-06-22 | Commissariat A L'energie | Method for preparing conductive composite materials by deposition of a conductive polymer in an insulating porous substrate and solution for use in said preparation |
US6671168B2 (en) | 2001-11-30 | 2003-12-30 | Matsushita Electric Industrial Co., Ltd. | Solid electrolytic capacitor and method for manufacturing the same |
JP2018117123A (en) * | 2017-01-13 | 2018-07-26 | 日本ケミコン株式会社 | Electrolytic capacitor polymerization solution, electrolytic capacitor cathode using the same and method for manufacturing electrolytic capacitor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100334918B1 (en) | Solid electrolytic capacitor using a conducting polymer and method of making same | |
US6136176A (en) | Capacitor with conductive polymer | |
JP2765462B2 (en) | Solid electrolytic capacitor and method of manufacturing the same | |
WO1997041577A1 (en) | Solid electrolyte capacitor and its manufacture | |
JP3202668B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JP2765453B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JPH04112519A (en) | Manufacture of solid electrolytic capacitor | |
JPH06310380A (en) | Manufacture of solid electrolytic capacitor | |
JP3671828B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JPH06120086A (en) | Method for manufacturing solid electrolytic capacitor | |
JPH0494110A (en) | Manufacture of solid electrolytic capacitor | |
JPH05159979A (en) | Manufacture of solid electrolytic capacitor | |
JP2001110685A (en) | Solid electrolytic capacitor | |
JP3568382B2 (en) | Organic solid electrolytic capacitor and method of manufacturing the same | |
JP3911785B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JP3978544B2 (en) | Solid electrolytic capacitor | |
KR970005086B1 (en) | Tantalium electrolytic condenser producing method | |
JP3750476B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JP3800913B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JPH06252002A (en) | Method for manufacturing solid electrolytic capacitor | |
JP2000040642A (en) | Manufacture of solid electrolytic capacitor | |
JPH05326337A (en) | Manufacture of solid electrolytic capacitor | |
JP2001237146A (en) | Solid-state electrolytic capacitor and its manufacturing method | |
JPH0419688B2 (en) | ||
JP2000297142A (en) | Polymerization liquid for forming solid electrolyte, its preparation, and preparation of solid electrolytic capacitor using same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20000104 |