[go: up one dir, main page]

JPH06119929A - Fuel electrode of solid oxide fuel cell and manufacturing method thereof - Google Patents

Fuel electrode of solid oxide fuel cell and manufacturing method thereof

Info

Publication number
JPH06119929A
JPH06119929A JP4284926A JP28492692A JPH06119929A JP H06119929 A JPH06119929 A JP H06119929A JP 4284926 A JP4284926 A JP 4284926A JP 28492692 A JP28492692 A JP 28492692A JP H06119929 A JPH06119929 A JP H06119929A
Authority
JP
Japan
Prior art keywords
fuel electrode
thin film
electrode
solid electrolyte
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4284926A
Other languages
Japanese (ja)
Inventor
Hideto Koide
秀人 小出
Yoshiyuki Someya
喜幸 染谷
Motoaki Andou
基朗 安藤
Toshihiko Yoshida
利彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Sakai Chemical Industry Co Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
Petroleum Energy Center PEC
Sakai Chemical Industry Co Ltd
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petroleum Energy Center PEC, Sakai Chemical Industry Co Ltd, Tonen Corp filed Critical Petroleum Energy Center PEC
Priority to JP4284926A priority Critical patent/JPH06119929A/en
Publication of JPH06119929A publication Critical patent/JPH06119929A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • H01M4/905Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

(57)【要約】 【構成】 固体電解質板を挟んで片面に空気極を、他方
の面に燃料極をそれぞれ形成させた固体電解質型燃料電
池において、燃料極側固体電解質表面に密着した多孔質
金属薄膜上に積層一体化されて成る燃料極。該燃料極は
固体電解質上に金属薄膜又は金属化合物薄膜を形成した
のち、該薄膜を金属酸化膜とし、次いでこの膜上に燃料
極用組成物の塗布後還元処理し、酸化膜を多孔質金属薄
膜とするとともに燃料極を形成させて得る。 【効果】 上記燃料極を用いた燃料電池について、その
分極抵抗は電流が大きくなっても分極電圧自体増加する
こともないことから、電極反応に起因する抵抗がほとん
どないし、また所定の定電流下の分極抵抗が経時的にも
極めて少ない。
(57) [Summary] [Structure] In a solid oxide fuel cell in which an air electrode is formed on one side and a fuel electrode is formed on the other side with a solid electrolyte plate sandwiched between the solid electrolyte plate and the solid electrolyte plate A fuel electrode that is integrally laminated on a metal thin film. In the fuel electrode, a metal thin film or a metal compound thin film is formed on a solid electrolyte, and then the thin film is used as a metal oxide film, and then the fuel electrode composition is applied on the film and then subjected to reduction treatment to form a porous metal oxide film. It is obtained by forming a thin film and forming a fuel electrode. [Effect] Regarding the fuel cell using the above fuel electrode, the polarization resistance does not increase even if the current increases, so there is almost no resistance due to the electrode reaction, and under a predetermined constant current. Polarization resistance is extremely small over time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体電解質型燃料電池
の燃料極とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel electrode for a solid oxide fuel cell and a method for manufacturing the same.

【0002】[0002]

【従来の技術】固体電解質型燃料電池において、固体電
解質上に電極を形成させる方法としては、通常グリーン
シート状のジルコニア電解質等の電解質に電極組成物を
塗布などにより被着したのち、一体焼結する方法や、焼
結されたジルコニア電解質等の焼結電解質上に電極を塗
布や印刷等で被着する方法が用いられている。
2. Description of the Related Art In a solid oxide fuel cell, a method for forming an electrode on a solid electrolyte is usually to apply an electrode composition to an electrolyte such as a zirconia electrolyte in the form of a green sheet by coating and then integrally sinter. And a method of depositing an electrode on a sintered electrolyte such as a sintered zirconia electrolyte by coating or printing.

【0003】後者の被着法では、それで形成した電池を
発電すると電流が大きくなるにつれて分極抵抗が大きく
なったり、また長時間運転を行うと、アノードの焼結が
進行し、電解質からはがれてしまい、分極抵抗が増大し
経時的に劣化が進行するという欠点がある。
In the latter deposition method, the polarization resistance increases as the current increases when the battery formed therefrom is generated, and when the battery is operated for a long time, the anode is sintered and peeled from the electrolyte. However, there is a drawback that polarization resistance increases and deterioration progresses with time.

【0004】[0004]

【発明が解決しようとする課題】本発明は、このような
従来の燃料電池のもつ欠点を克服し、発電時に電流が大
きくなっても、また長時間運転しても分極抵抗の増大が
抑制され、経時的に劣化することのない固体電解質型燃
料電池を与える燃料極を提供することを目的としてなさ
れたものである。
SUMMARY OF THE INVENTION The present invention overcomes the drawbacks of the conventional fuel cell, and suppresses the increase of polarization resistance even when the current becomes large during power generation and the operation is continued for a long time. The purpose of the present invention is to provide a fuel electrode that provides a solid oxide fuel cell that does not deteriorate over time.

【0005】[0005]

【課題を解決するための手段】本発明者らは、前記の好
ましい特徴を有する燃料極を開発するために種々研究を
重ねた結果、従来の前記被着法の欠点である分極抵抗の
増大は、燃料極と電解質間で強固な界面が形成されてい
ないことに起因することに着目し、強固な燃料極/電解
質界面を形成するために特有の工夫を施すことにより、
その目的を達成しうることを見出し、この知見に基づい
て本発明を完成するに至った。
The inventors of the present invention have conducted various studies to develop a fuel electrode having the above-mentioned preferable characteristics, and as a result, the polarization resistance, which is a drawback of the conventional deposition method, has been increased. , Paying attention to the fact that a strong interface is not formed between the fuel electrode and the electrolyte, and by implementing a unique device for forming a strong fuel electrode / electrolyte interface,
It has been found that the object can be achieved, and the present invention has been completed based on this finding.

【0006】すなわち、本発明は、固体電解質板を挟ん
で片面に空気極を、他方の面に燃料極をそれぞれ形成さ
せた固体電解質型燃料電池において、燃料極側固体電解
質表面に密着した多孔質金属薄膜上に積層一体化されて
成る固体電解質型燃料電池の燃料極を提供するものであ
る。
That is, the present invention provides a solid electrolyte fuel cell in which an air electrode is formed on one surface and a fuel electrode is formed on the other surface with a solid electrolyte plate sandwiched between them, and a porous material which is in close contact with the surface of the solid electrolyte on the fuel electrode side is used. The present invention provides a fuel electrode for a solid oxide fuel cell, which is integrally laminated on a metal thin film.

【0007】本発明の燃料極の重要な構成層を成す多孔
質金属薄膜は、基体あるいはマトリックスとなる上記電
解質と燃料極との間に界面層として介在して自体電解質
に強固に密着接合しているとともに、燃料極も強固に保
持している。この界面層としての上記多孔質金属薄膜の
厚さは10μm以下、さらに有利には1〜5μm程度と
するのが好ましい。
The porous metal thin film forming an important constituent layer of the fuel electrode of the present invention is interposed as an interface layer between the electrolyte serving as a substrate or matrix and the fuel electrode, and firmly adhered to the electrolyte itself. It also holds the fuel electrode firmly. The thickness of the porous metal thin film as the interface layer is preferably 10 μm or less, more preferably about 1 to 5 μm.

【0008】本発明の燃料極は、固体電解質の燃料極側
表面上に金属薄膜又は金属化合物薄膜を形成したのち、
該薄膜を金属酸化膜とし、次いでこの金属酸化膜上に燃
料極用組成物を塗布したのち、還元処理を施して上記酸
化膜を多孔質金属薄膜とするとともに燃料極を形成させ
ることにより製造される。
In the fuel electrode of the present invention, after a metal thin film or a metal compound thin film is formed on the fuel electrode side surface of the solid electrolyte,
The thin film is formed into a metal oxide film, and then the composition for fuel electrode is applied onto the metal oxide film, and then reduction treatment is applied to form the above-mentioned oxide film into a porous metal thin film and to form a fuel electrode. It

【0009】本発明において、固体電解質としては、イ
ットリア添加安定化ジルコニアや部分安定化ジルコニア
などのジルコニア系のものが好ましい。また、本発明方
法において固体電解質上に金属薄膜又は金属化合物薄膜
を形成するには、該電解質にめっき、電子ビーム蒸着、
スパツタリングなどによる表面処理を施すのがよく、特
に密着性が良好で、均一な膜厚の皮膜が得られる無電解
めつき法によるのが望ましい。
In the present invention, the solid electrolyte is preferably a zirconia-based one such as yttria-stabilized zirconia or partially stabilized zirconia. Further, in the method of the present invention, in order to form a metal thin film or a metal compound thin film on the solid electrolyte, plating, electron beam evaporation,
Surface treatment such as spattering is preferable, and it is particularly preferable to use an electroless plating method that can obtain a film having good adhesion and a uniform film thickness.

【0010】このようにして得られる薄膜は金属又は金
属化合物からなる緻密な薄膜であって、薄膜を構成する
金属としては、NiやCoが好ましく、また金属化合物
としては、金属酸化物や金属炭化物が好ましく、なかで
も酸化ニッケルや酸化コバルトが望ましい。
The thin film thus obtained is a dense thin film made of a metal or a metal compound, and Ni or Co is preferable as the metal constituting the thin film, and the metal compound is a metal oxide or a metal carbide. Are preferred, and nickel oxide and cobalt oxide are particularly preferred.

【0011】薄膜を介して電極を従来の被着法に準じて
形成させると、従来の電解質上に直接電極を形成させる
被着法によるのに比べ、電極と電解質との付着力が強固
になる。その反面、薄膜が緻密すぎるために原料ガスや
電池反応で生じる生成ガスや水の拡散が遅くなり拡散抵
抗が増大するという問題がある。
When an electrode is formed through a thin film according to a conventional deposition method, the adhesive force between the electrode and the electrolyte becomes stronger as compared with the conventional deposition method in which the electrode is directly formed on the electrolyte. . On the other hand, since the thin film is too dense, there is a problem in that the diffusion of the raw material gas, the gas generated in the battery reaction and water is delayed, and the diffusion resistance increases.

【0012】そこで、本発明においては、このような問
題を次のような方法をさらに用いて解決した。すなわ
ち、上記のようにして得られた薄膜を、金属酸化膜と
し、次いでこの金属酸化膜上に燃料極用組成物を塗布し
たのち、還元処理を施して上記酸化膜を多孔質金属薄膜
とするとともに電極を形成させるものである。この具体
的方法として、好適には金属薄膜を800〜1200℃
程度で1〜10時間程度酸化焼成して金属酸化膜とした
のち、この薄膜を燃料極/電解質界面層とし、この薄膜
上に燃料極用組成物を塗布したのち、300〜400℃
まで昇温する過程でバインダー類を焼去し、800℃〜
1200℃で還元処理を施すことにより、金属酸化薄膜
を還元して多孔質化し多孔質金属薄膜とするとともに、
燃料極を形成する方法が挙げられる。還元処理は5〜2
0%の水素を添加した窒素を用いるのが好ましく、また
その開始時期は電池を作成してそれを昇温する際の80
0℃に達した時点からが望ましい。
Therefore, in the present invention, such a problem is solved by further using the following method. That is, the thin film obtained as described above is used as a metal oxide film, and then the composition for fuel electrode is applied on the metal oxide film, and then reduction treatment is performed to form the oxide film as a porous metal thin film. Together with this, an electrode is formed. As this specific method, a metal thin film is preferably 800 to 1200 ° C.
After about 1 to 10 hours of oxidation and baking to form a metal oxide film, this thin film is used as a fuel electrode / electrolyte interface layer, and the composition for fuel electrode is applied on this thin film, and then 300 to 400 ° C
Binders are burned off in the process of heating up to 800 ℃
By performing a reduction treatment at 1200 ° C., the metal oxide thin film is reduced to make it porous and form a porous metal thin film.
The method of forming a fuel electrode is mentioned. 5-2 reduction process
It is preferable to use nitrogen to which 0% of hydrogen has been added, and the starting time is 80% when the battery is made and the temperature is raised.
It is desirable that the temperature reaches 0 ° C.

【0013】[0013]

【実施例】固体電解質板にイットリアを8モル%添加し
たジルコニアである部分安定化ジルコニアからなる30
×30×0.2mmの板状物を用いた。固体電解質板の
片方の表面を無電解めっき浴で1分間処理し、1μm厚
のNi緻密膜を形成した。次に、この膜を1000℃、
空気雰囲気で1時間焼成し、酸化ニッケル膜とした。こ
の膜上に面積2cmの領域内でNi/ZrO(重量
比10/1)サーメット混合粉末を有機系バインダーに
分散した塗布用組成物を厚さ0.1〜0.2mm塗布し
てアノード形成膜とした。さらに固体電解質板の他方の
表面上に面積2cmの領域内でLa0.8r0.2
MnO粉末(平均粒径約5μm)を有機系バインダー
に分散した塗布用組成物を厚さ0.1〜0.2mm塗布
してカソード形成膜とした。
EXAMPLE 30 A partially stabilized zirconia which is a zirconia prepared by adding 8 mol% of yttria to a solid electrolyte plate 30
A plate-like material having a size of x30x0.2 mm was used. One surface of the solid electrolyte plate was treated with an electroless plating bath for 1 minute to form a 1 μm thick Ni dense film. Next, the film is heated to 1000 ° C.
The film was baked in an air atmosphere for 1 hour to form a nickel oxide film. An Ni / ZrO 2 (weight ratio 10/1) cermet mixed powder dispersed in an organic binder was applied on the film in an area of 2 cm 2 to form a coating composition having a thickness of 0.1 to 0.2 mm. The film was formed. Further, on the other surface of the solid electrolyte plate, within the area of 2 cm 2 , La 0.8 S r0.2
A coating composition in which MnO 3 powder (average particle size of about 5 μm) was dispersed in an organic binder was applied to a thickness of 0.1 to 0.2 mm to form a cathode forming film.

【0014】このようにして得られた電極形成膜を設け
た電解質板をそれと同大の2種の端子板と集積し固体電
解質型燃料電池を作製した。これら端子板は各原料ガス
を導通する溝を片面に設けた集電体、すなわちLa
0.8r0.2Cr0.9Co0.1からなるカ
ソード側集電体と、インコネル600からなるアノード
側集電体で構成した。
The electrolyte plate provided with the electrode-forming film thus obtained was integrated with two types of terminal plates of the same size as the solid electrolyte fuel cell. These terminal plates are current collectors having a groove on one side for conducting each raw material gas, that is, La.
It was composed of a cathode side current collector made of 0.8 Sr0.2 Cr 0.9 Co 0.1 O 3 and an anode side current collector made of Inconel 600.

【0015】このようにして作製した燃料電池を加熱し
た。室温から350℃までは加熱空気を流し、350℃
から800℃までは水素通路側にアノードの酸化を防止
するため、窒素ガスを流し、さらに800℃から100
0℃までの間はH/N=5/50(cc/min)
の混合ガスを流して還元し、いずれの操作も10℃/m
inで昇温した。この処理により多孔質のNi膜が形成
され、電極が焼成形成された。その後、1000℃に保
持してアノード側に水素、カソード側に酸素を流し、発
電を開始した。この電池の電流変化による分極特性及び
分極(電流が1.6Aの定電流の場合)の経時特性をそ
れぞれ表1及び表2に示す。
The fuel cell thus manufactured was heated. Heated air flows from room temperature to 350 ℃, 350 ℃
From 800 to 800 ° C, nitrogen gas is flowed to prevent oxidation of the anode on the hydrogen passage side.
H 2 / N 2 = 5/50 (cc / min) up to 0 ° C
Flowing mixed gas to reduce, 10 ℃ / m
The temperature was raised in. By this treatment, a porous Ni film was formed and the electrode was formed by firing. Then, the temperature was maintained at 1000 ° C., hydrogen was flown to the anode side and oxygen was flown to the cathode side to start power generation. Table 1 and Table 2 show the polarization characteristics and the polarization characteristics (when the current is a constant current of 1.6 A) with time according to the change in the current of the battery, respectively.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】実施例2 電解質板へのめつき処理を60分間行って10μm厚さ
のNi緻密膜を形成した以外は実施例1と同様にして燃
料電池を作製し、この電池を実施例1と同様に加熱処理
し発電させた。この電池の電流変化による分極特性及び
分極(電流が1.6Aの定電流の場合)の経時特性をそ
れぞれ表3及び表4に示す。
Example 2 A fuel cell was prepared in the same manner as in Example 1 except that the Ni dense film having a thickness of 10 μm was formed by performing the plating treatment on the electrolyte plate for 60 minutes. Similarly, heat treatment was performed to generate power. Table 3 and Table 4 show the polarization characteristics and the polarization characteristics (when the current is a constant current of 1.6 A) with time of the battery, respectively.

【0019】[0019]

【表3】 [Table 3]

【0020】[0020]

【表4】 [Table 4]

【0021】これらの結果より、実施例の電池の分極抵
抗は電流が大きくなっても分極電圧自体増加することも
ないことから、電極反応に起因する抵抗がほとんどない
こと、及び所定の定電流下の分極抵抗は、経時的にも極
めて少ないことが分る。100時間程度までは分極電圧
自体変わらず、200時間以上で少しずつ増加するに過
ぎないかあるいは100時間以上で少しずつ増加するに
過ぎないことから、電極反応に起因する抵抗は極めて少
ないことが分る。
From these results, the polarization resistance of the battery of the embodiment does not increase even if the current increases, so that there is almost no resistance due to the electrode reaction, and under the predetermined constant current. It can be seen that the polarization resistance of 1 is extremely small even over time. The polarization voltage itself does not change up to about 100 hours, and increases little by little over 200 hours or only over 100 hours. Therefore, it can be seen that the resistance caused by the electrode reaction is extremely small. It

【0022】比較例 固体電解質板の水素通路側に、多孔質Ni膜を界面に挿
入することなく、実施例と同じ所定サーメット粉末を有
機系バインダーに分散した塗布用組成物を実施例と同様
に塗布してアノード形成膜を形成させたこと以外は実施
例と同様にして、燃料電池を作成した。この燃料電池を
実施例と同様に加熱処理し発電させた。この電池の電流
変化による分極特性及び分極(電流が1.6Aの定電流
の場合)の経時特性をそれぞれ表5及び表6に示す。
Comparative Example A coating composition in which the same predetermined cermet powder as in the example was dispersed in an organic binder without inserting a porous Ni film at the interface on the hydrogen passage side of the solid electrolyte plate was prepared in the same manner as in the example. A fuel cell was prepared in the same manner as in Example except that the anode forming film was formed by coating. This fuel cell was subjected to heat treatment and power generation in the same manner as in the example. Table 5 and Table 6 show the polarization characteristics and the polarization characteristics (when the current is a constant current of 1.6 A) with time of the battery, respectively.

【0023】[0023]

【表5】 [Table 5]

【0024】[0024]

【表6】 [Table 6]

【0025】これより、比較例の電池は、実施例の多孔
質Ni膜を介在させた電池に比べて分極抵抗が大きく、
しかも電流が大きくなると分極電圧も増大することか
ら、電極反応に起因する抵抗が相当あり、また分極の経
時劣化が大きいことが分る。
As a result, the battery of the comparative example has a larger polarization resistance than the battery having the porous Ni film of the example,
Moreover, since the polarization voltage also increases as the current increases, it can be seen that there is considerable resistance due to the electrode reaction and that the polarization deterioration with time is large.

【0026】[0026]

【発明の効果】本発明の燃料極は、それを用いた燃料電
池について、その分極抵抗は電流が大きくなっても分極
電圧自体増加することもないことから、電極反応に起因
する抵抗がほとんどないし、また所定の定電流下の分極
抵抗が経時的にも極めて少ないという利点がある。
The fuel electrode of the present invention has almost no resistance due to the electrode reaction in the fuel cell using the fuel electrode because the polarization resistance does not increase even if the current increases. Moreover, there is an advantage that the polarization resistance under a predetermined constant current is extremely small even with time.

フロントページの続き (72)発明者 安藤 基朗 埼玉県入間郡大井町西鶴ケ岡一丁目3番1 号 東燃株式会社総合研究所内 (72)発明者 吉田 利彦 埼玉県入間郡大井町西鶴ケ岡一丁目3番1 号 東燃株式会社総合研究所内Front Page Continuation (72) Inventor Motoaki Ando Nishitsurugaoka 1-3-1 Oi-cho, Iruma-gun, Saitama Prefecture Tonen Corporation Research Institute (72) Inventor Toshihiko Yoshida Nishitsurugaoka 3-chome, Oi-cho, Saitama No. 1 Tonen Co., Ltd. Research Institute

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 固体電解質板を挟んで片面に空気極を、
他方の面に燃料極をそれぞれ形成させた固体電解質型燃
料電池において、燃料極側固体電解質表面に密着した多
孔質金属薄膜上に積層一体化されて成る固体電解質型燃
料電池の燃料極。
1. An air electrode on one side of a solid electrolyte plate,
A solid electrolyte fuel cell having a fuel electrode formed on the other surface, wherein the fuel electrode of the solid electrolyte fuel cell is laminated and integrated on a porous metal thin film that is in close contact with the surface of the solid electrolyte on the fuel electrode side.
【請求項2】 固体電解質の燃料極側表面上に金属薄膜
又は金属化合物薄膜を形成したのち、該薄膜を金属酸化
膜とし、次いでこの金属酸化膜上に燃料極用組成物を塗
布したのち、還元処理を施して上記酸化膜を多孔質金属
薄膜とするとともに燃料極を形成させることを特徴とす
る固体電解質型燃料電池の燃料極の製造方法。
2. A metal thin film or a metal compound thin film is formed on the fuel electrode side surface of the solid electrolyte, the thin film is used as a metal oxide film, and then the fuel electrode composition is applied on the metal oxide film. A method for producing a fuel electrode of a solid oxide fuel cell, which comprises subjecting the above-mentioned oxide film to a porous metal thin film by a reduction treatment and forming a fuel electrode.
JP4284926A 1992-10-01 1992-10-01 Fuel electrode of solid oxide fuel cell and manufacturing method thereof Pending JPH06119929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4284926A JPH06119929A (en) 1992-10-01 1992-10-01 Fuel electrode of solid oxide fuel cell and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4284926A JPH06119929A (en) 1992-10-01 1992-10-01 Fuel electrode of solid oxide fuel cell and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JPH06119929A true JPH06119929A (en) 1994-04-28

Family

ID=17684852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4284926A Pending JPH06119929A (en) 1992-10-01 1992-10-01 Fuel electrode of solid oxide fuel cell and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH06119929A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7300718B2 (en) 2003-11-05 2007-11-27 Honda Motor Co., Ltd. Electrolyte-electrode joined assembly and method for producing the same
JP2008034305A (en) * 2006-07-31 2008-02-14 Tokyo Gas Co Ltd Anode reduction method for solid oxide fuel cells

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7300718B2 (en) 2003-11-05 2007-11-27 Honda Motor Co., Ltd. Electrolyte-electrode joined assembly and method for producing the same
JP2008034305A (en) * 2006-07-31 2008-02-14 Tokyo Gas Co Ltd Anode reduction method for solid oxide fuel cells

Similar Documents

Publication Publication Date Title
US6017647A (en) Electrode structure for solid state electrochemical devices
KR101183774B1 (en) Manufacturing method and current collector
JP2002289248A (en) Unit cell for fuel cell and solid electrolytic fuel cell
JP2003132906A (en) Single cell for fuel cell and solid electrolytic fuel cell
JP2008519404A (en) Electrochemical cell structure and its manufacturing method by controlled powder method
CN1398439A (en) Method of fabricating assembly comprising anode-supported electrolyte, and ceramic cell comprising such assembly
JP2018206486A (en) Laminate green sheet, all-solid secondary battery and manufacturing method thereof
WO1998049738A1 (en) Electrode structure for solid state electrochemical devices
JP3915500B2 (en) THIN FILM LAMINATE, PROCESS FOR PRODUCING THE SAME, AND SOLID OXIDE FUEL CELL USING THE SAME
JPH1092446A (en) Solid electrolyte type fuel cell
JP3924772B2 (en) Air electrode current collector of solid oxide fuel cell
JP2007529855A (en) Conductive steel-ceramic composite and method for producing the same
JPH10172590A (en) Solid electrolyte type fuel cell
JP6910172B2 (en) Manufacturing method of cell-to-cell connection member
JP4352447B2 (en) Solid oxide fuel cell separator with excellent conductivity
JPH06119929A (en) Fuel electrode of solid oxide fuel cell and manufacturing method thereof
KR20200135027A (en) Electrode material for solid oxide fuel cell and method for manufacturing the same
US4902587A (en) Fuel cell
JP2003331859A (en) Separator for fuel cell, its manufacturing method, and fuel cell using separator for fuel cell
JP3447541B2 (en) Cylindrical solid oxide fuel cell and fuel cell
JPH06203847A (en) Solid electrolyte for fuel cells
JP2004355814A (en) Solid oxide fuel battery cell and its manufacturing method
JP3894103B2 (en) Current collector material for solid oxide fuel cells
JPH07245113A (en) Solid electrolyte for fuel cell and solid electrolyte fuel cell using the same
JPH09190824A (en) Fuel electrode structure of fuel cell of solid electrolyte type and manufacture thereof