JPH06119929A - Fuel electrode of solid oxide fuel cell and manufacturing method thereof - Google Patents
Fuel electrode of solid oxide fuel cell and manufacturing method thereofInfo
- Publication number
- JPH06119929A JPH06119929A JP4284926A JP28492692A JPH06119929A JP H06119929 A JPH06119929 A JP H06119929A JP 4284926 A JP4284926 A JP 4284926A JP 28492692 A JP28492692 A JP 28492692A JP H06119929 A JPH06119929 A JP H06119929A
- Authority
- JP
- Japan
- Prior art keywords
- fuel electrode
- thin film
- electrode
- solid electrolyte
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 53
- 239000007787 solid Substances 0.000 title claims abstract description 7
- 238000004519 manufacturing process Methods 0.000 title claims description 3
- 239000010409 thin film Substances 0.000 claims abstract description 31
- 239000010408 film Substances 0.000 claims abstract description 28
- 239000007784 solid electrolyte Substances 0.000 claims abstract description 21
- 239000002184 metal Substances 0.000 claims abstract description 17
- 229910052751 metal Inorganic materials 0.000 claims abstract description 17
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 11
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 11
- 150000002736 metal compounds Chemical class 0.000 claims abstract description 6
- 239000000203 mixture Substances 0.000 claims abstract description 6
- 230000010287 polarization Effects 0.000 abstract description 20
- 238000003411 electrode reaction Methods 0.000 abstract description 5
- 239000003792 electrolyte Substances 0.000 description 14
- 238000000034 method Methods 0.000 description 9
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 7
- 238000000151 deposition Methods 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 239000008199 coating composition Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- 239000011195 cermet Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000007772 electroless plating Methods 0.000 description 2
- 229910000480 nickel oxide Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 2
- 229910002077 partially stabilized zirconia Inorganic materials 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 229910001055 inconels 600 Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910001233 yttria-stabilized zirconia Inorganic materials 0.000 description 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9041—Metals or alloys
- H01M4/905—Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
(57)【要約】
【構成】 固体電解質板を挟んで片面に空気極を、他方
の面に燃料極をそれぞれ形成させた固体電解質型燃料電
池において、燃料極側固体電解質表面に密着した多孔質
金属薄膜上に積層一体化されて成る燃料極。該燃料極は
固体電解質上に金属薄膜又は金属化合物薄膜を形成した
のち、該薄膜を金属酸化膜とし、次いでこの膜上に燃料
極用組成物の塗布後還元処理し、酸化膜を多孔質金属薄
膜とするとともに燃料極を形成させて得る。
【効果】 上記燃料極を用いた燃料電池について、その
分極抵抗は電流が大きくなっても分極電圧自体増加する
こともないことから、電極反応に起因する抵抗がほとん
どないし、また所定の定電流下の分極抵抗が経時的にも
極めて少ない。(57) [Summary] [Structure] In a solid oxide fuel cell in which an air electrode is formed on one side and a fuel electrode is formed on the other side with a solid electrolyte plate sandwiched between the solid electrolyte plate and the solid electrolyte plate A fuel electrode that is integrally laminated on a metal thin film. In the fuel electrode, a metal thin film or a metal compound thin film is formed on a solid electrolyte, and then the thin film is used as a metal oxide film, and then the fuel electrode composition is applied on the film and then subjected to reduction treatment to form a porous metal oxide film. It is obtained by forming a thin film and forming a fuel electrode. [Effect] Regarding the fuel cell using the above fuel electrode, the polarization resistance does not increase even if the current increases, so there is almost no resistance due to the electrode reaction, and under a predetermined constant current. Polarization resistance is extremely small over time.
Description
【0001】[0001]
【産業上の利用分野】本発明は、固体電解質型燃料電池
の燃料極とその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel electrode for a solid oxide fuel cell and a method for manufacturing the same.
【0002】[0002]
【従来の技術】固体電解質型燃料電池において、固体電
解質上に電極を形成させる方法としては、通常グリーン
シート状のジルコニア電解質等の電解質に電極組成物を
塗布などにより被着したのち、一体焼結する方法や、焼
結されたジルコニア電解質等の焼結電解質上に電極を塗
布や印刷等で被着する方法が用いられている。2. Description of the Related Art In a solid oxide fuel cell, a method for forming an electrode on a solid electrolyte is usually to apply an electrode composition to an electrolyte such as a zirconia electrolyte in the form of a green sheet by coating and then integrally sinter. And a method of depositing an electrode on a sintered electrolyte such as a sintered zirconia electrolyte by coating or printing.
【0003】後者の被着法では、それで形成した電池を
発電すると電流が大きくなるにつれて分極抵抗が大きく
なったり、また長時間運転を行うと、アノードの焼結が
進行し、電解質からはがれてしまい、分極抵抗が増大し
経時的に劣化が進行するという欠点がある。In the latter deposition method, the polarization resistance increases as the current increases when the battery formed therefrom is generated, and when the battery is operated for a long time, the anode is sintered and peeled from the electrolyte. However, there is a drawback that polarization resistance increases and deterioration progresses with time.
【0004】[0004]
【発明が解決しようとする課題】本発明は、このような
従来の燃料電池のもつ欠点を克服し、発電時に電流が大
きくなっても、また長時間運転しても分極抵抗の増大が
抑制され、経時的に劣化することのない固体電解質型燃
料電池を与える燃料極を提供することを目的としてなさ
れたものである。SUMMARY OF THE INVENTION The present invention overcomes the drawbacks of the conventional fuel cell, and suppresses the increase of polarization resistance even when the current becomes large during power generation and the operation is continued for a long time. The purpose of the present invention is to provide a fuel electrode that provides a solid oxide fuel cell that does not deteriorate over time.
【0005】[0005]
【課題を解決するための手段】本発明者らは、前記の好
ましい特徴を有する燃料極を開発するために種々研究を
重ねた結果、従来の前記被着法の欠点である分極抵抗の
増大は、燃料極と電解質間で強固な界面が形成されてい
ないことに起因することに着目し、強固な燃料極/電解
質界面を形成するために特有の工夫を施すことにより、
その目的を達成しうることを見出し、この知見に基づい
て本発明を完成するに至った。The inventors of the present invention have conducted various studies to develop a fuel electrode having the above-mentioned preferable characteristics, and as a result, the polarization resistance, which is a drawback of the conventional deposition method, has been increased. , Paying attention to the fact that a strong interface is not formed between the fuel electrode and the electrolyte, and by implementing a unique device for forming a strong fuel electrode / electrolyte interface,
It has been found that the object can be achieved, and the present invention has been completed based on this finding.
【0006】すなわち、本発明は、固体電解質板を挟ん
で片面に空気極を、他方の面に燃料極をそれぞれ形成さ
せた固体電解質型燃料電池において、燃料極側固体電解
質表面に密着した多孔質金属薄膜上に積層一体化されて
成る固体電解質型燃料電池の燃料極を提供するものであ
る。That is, the present invention provides a solid electrolyte fuel cell in which an air electrode is formed on one surface and a fuel electrode is formed on the other surface with a solid electrolyte plate sandwiched between them, and a porous material which is in close contact with the surface of the solid electrolyte on the fuel electrode side is used. The present invention provides a fuel electrode for a solid oxide fuel cell, which is integrally laminated on a metal thin film.
【0007】本発明の燃料極の重要な構成層を成す多孔
質金属薄膜は、基体あるいはマトリックスとなる上記電
解質と燃料極との間に界面層として介在して自体電解質
に強固に密着接合しているとともに、燃料極も強固に保
持している。この界面層としての上記多孔質金属薄膜の
厚さは10μm以下、さらに有利には1〜5μm程度と
するのが好ましい。The porous metal thin film forming an important constituent layer of the fuel electrode of the present invention is interposed as an interface layer between the electrolyte serving as a substrate or matrix and the fuel electrode, and firmly adhered to the electrolyte itself. It also holds the fuel electrode firmly. The thickness of the porous metal thin film as the interface layer is preferably 10 μm or less, more preferably about 1 to 5 μm.
【0008】本発明の燃料極は、固体電解質の燃料極側
表面上に金属薄膜又は金属化合物薄膜を形成したのち、
該薄膜を金属酸化膜とし、次いでこの金属酸化膜上に燃
料極用組成物を塗布したのち、還元処理を施して上記酸
化膜を多孔質金属薄膜とするとともに燃料極を形成させ
ることにより製造される。In the fuel electrode of the present invention, after a metal thin film or a metal compound thin film is formed on the fuel electrode side surface of the solid electrolyte,
The thin film is formed into a metal oxide film, and then the composition for fuel electrode is applied onto the metal oxide film, and then reduction treatment is applied to form the above-mentioned oxide film into a porous metal thin film and to form a fuel electrode. It
【0009】本発明において、固体電解質としては、イ
ットリア添加安定化ジルコニアや部分安定化ジルコニア
などのジルコニア系のものが好ましい。また、本発明方
法において固体電解質上に金属薄膜又は金属化合物薄膜
を形成するには、該電解質にめっき、電子ビーム蒸着、
スパツタリングなどによる表面処理を施すのがよく、特
に密着性が良好で、均一な膜厚の皮膜が得られる無電解
めつき法によるのが望ましい。In the present invention, the solid electrolyte is preferably a zirconia-based one such as yttria-stabilized zirconia or partially stabilized zirconia. Further, in the method of the present invention, in order to form a metal thin film or a metal compound thin film on the solid electrolyte, plating, electron beam evaporation,
Surface treatment such as spattering is preferable, and it is particularly preferable to use an electroless plating method that can obtain a film having good adhesion and a uniform film thickness.
【0010】このようにして得られる薄膜は金属又は金
属化合物からなる緻密な薄膜であって、薄膜を構成する
金属としては、NiやCoが好ましく、また金属化合物
としては、金属酸化物や金属炭化物が好ましく、なかで
も酸化ニッケルや酸化コバルトが望ましい。The thin film thus obtained is a dense thin film made of a metal or a metal compound, and Ni or Co is preferable as the metal constituting the thin film, and the metal compound is a metal oxide or a metal carbide. Are preferred, and nickel oxide and cobalt oxide are particularly preferred.
【0011】薄膜を介して電極を従来の被着法に準じて
形成させると、従来の電解質上に直接電極を形成させる
被着法によるのに比べ、電極と電解質との付着力が強固
になる。その反面、薄膜が緻密すぎるために原料ガスや
電池反応で生じる生成ガスや水の拡散が遅くなり拡散抵
抗が増大するという問題がある。When an electrode is formed through a thin film according to a conventional deposition method, the adhesive force between the electrode and the electrolyte becomes stronger as compared with the conventional deposition method in which the electrode is directly formed on the electrolyte. . On the other hand, since the thin film is too dense, there is a problem in that the diffusion of the raw material gas, the gas generated in the battery reaction and water is delayed, and the diffusion resistance increases.
【0012】そこで、本発明においては、このような問
題を次のような方法をさらに用いて解決した。すなわ
ち、上記のようにして得られた薄膜を、金属酸化膜と
し、次いでこの金属酸化膜上に燃料極用組成物を塗布し
たのち、還元処理を施して上記酸化膜を多孔質金属薄膜
とするとともに電極を形成させるものである。この具体
的方法として、好適には金属薄膜を800〜1200℃
程度で1〜10時間程度酸化焼成して金属酸化膜とした
のち、この薄膜を燃料極/電解質界面層とし、この薄膜
上に燃料極用組成物を塗布したのち、300〜400℃
まで昇温する過程でバインダー類を焼去し、800℃〜
1200℃で還元処理を施すことにより、金属酸化薄膜
を還元して多孔質化し多孔質金属薄膜とするとともに、
燃料極を形成する方法が挙げられる。還元処理は5〜2
0%の水素を添加した窒素を用いるのが好ましく、また
その開始時期は電池を作成してそれを昇温する際の80
0℃に達した時点からが望ましい。Therefore, in the present invention, such a problem is solved by further using the following method. That is, the thin film obtained as described above is used as a metal oxide film, and then the composition for fuel electrode is applied on the metal oxide film, and then reduction treatment is performed to form the oxide film as a porous metal thin film. Together with this, an electrode is formed. As this specific method, a metal thin film is preferably 800 to 1200 ° C.
After about 1 to 10 hours of oxidation and baking to form a metal oxide film, this thin film is used as a fuel electrode / electrolyte interface layer, and the composition for fuel electrode is applied on this thin film, and then 300 to 400 ° C
Binders are burned off in the process of heating up to 800 ℃
By performing a reduction treatment at 1200 ° C., the metal oxide thin film is reduced to make it porous and form a porous metal thin film.
The method of forming a fuel electrode is mentioned. 5-2 reduction process
It is preferable to use nitrogen to which 0% of hydrogen has been added, and the starting time is 80% when the battery is made and the temperature is raised.
It is desirable that the temperature reaches 0 ° C.
【0013】[0013]
【実施例】固体電解質板にイットリアを8モル%添加し
たジルコニアである部分安定化ジルコニアからなる30
×30×0.2mmの板状物を用いた。固体電解質板の
片方の表面を無電解めっき浴で1分間処理し、1μm厚
のNi緻密膜を形成した。次に、この膜を1000℃、
空気雰囲気で1時間焼成し、酸化ニッケル膜とした。こ
の膜上に面積2cm2の領域内でNi/ZrO2(重量
比10/1)サーメット混合粉末を有機系バインダーに
分散した塗布用組成物を厚さ0.1〜0.2mm塗布し
てアノード形成膜とした。さらに固体電解質板の他方の
表面上に面積2cm2の領域内でLa0.8Sr0.2
MnO3粉末(平均粒径約5μm)を有機系バインダー
に分散した塗布用組成物を厚さ0.1〜0.2mm塗布
してカソード形成膜とした。EXAMPLE 30 A partially stabilized zirconia which is a zirconia prepared by adding 8 mol% of yttria to a solid electrolyte plate 30
A plate-like material having a size of x30x0.2 mm was used. One surface of the solid electrolyte plate was treated with an electroless plating bath for 1 minute to form a 1 μm thick Ni dense film. Next, the film is heated to 1000 ° C.
The film was baked in an air atmosphere for 1 hour to form a nickel oxide film. An Ni / ZrO 2 (weight ratio 10/1) cermet mixed powder dispersed in an organic binder was applied on the film in an area of 2 cm 2 to form a coating composition having a thickness of 0.1 to 0.2 mm. The film was formed. Further, on the other surface of the solid electrolyte plate, within the area of 2 cm 2 , La 0.8 S r0.2
A coating composition in which MnO 3 powder (average particle size of about 5 μm) was dispersed in an organic binder was applied to a thickness of 0.1 to 0.2 mm to form a cathode forming film.
【0014】このようにして得られた電極形成膜を設け
た電解質板をそれと同大の2種の端子板と集積し固体電
解質型燃料電池を作製した。これら端子板は各原料ガス
を導通する溝を片面に設けた集電体、すなわちLa
0.8Sr0.2Cr0.9Co0.1O3からなるカ
ソード側集電体と、インコネル600からなるアノード
側集電体で構成した。The electrolyte plate provided with the electrode-forming film thus obtained was integrated with two types of terminal plates of the same size as the solid electrolyte fuel cell. These terminal plates are current collectors having a groove on one side for conducting each raw material gas, that is, La.
It was composed of a cathode side current collector made of 0.8 Sr0.2 Cr 0.9 Co 0.1 O 3 and an anode side current collector made of Inconel 600.
【0015】このようにして作製した燃料電池を加熱し
た。室温から350℃までは加熱空気を流し、350℃
から800℃までは水素通路側にアノードの酸化を防止
するため、窒素ガスを流し、さらに800℃から100
0℃までの間はH2/N2=5/50(cc/min)
の混合ガスを流して還元し、いずれの操作も10℃/m
inで昇温した。この処理により多孔質のNi膜が形成
され、電極が焼成形成された。その後、1000℃に保
持してアノード側に水素、カソード側に酸素を流し、発
電を開始した。この電池の電流変化による分極特性及び
分極(電流が1.6Aの定電流の場合)の経時特性をそ
れぞれ表1及び表2に示す。The fuel cell thus manufactured was heated. Heated air flows from room temperature to 350 ℃, 350 ℃
From 800 to 800 ° C, nitrogen gas is flowed to prevent oxidation of the anode on the hydrogen passage side.
H 2 / N 2 = 5/50 (cc / min) up to 0 ° C
Flowing mixed gas to reduce, 10 ℃ / m
The temperature was raised in. By this treatment, a porous Ni film was formed and the electrode was formed by firing. Then, the temperature was maintained at 1000 ° C., hydrogen was flown to the anode side and oxygen was flown to the cathode side to start power generation. Table 1 and Table 2 show the polarization characteristics and the polarization characteristics (when the current is a constant current of 1.6 A) with time according to the change in the current of the battery, respectively.
【0016】[0016]
【表1】 [Table 1]
【0017】[0017]
【表2】 [Table 2]
【0018】実施例2 電解質板へのめつき処理を60分間行って10μm厚さ
のNi緻密膜を形成した以外は実施例1と同様にして燃
料電池を作製し、この電池を実施例1と同様に加熱処理
し発電させた。この電池の電流変化による分極特性及び
分極(電流が1.6Aの定電流の場合)の経時特性をそ
れぞれ表3及び表4に示す。Example 2 A fuel cell was prepared in the same manner as in Example 1 except that the Ni dense film having a thickness of 10 μm was formed by performing the plating treatment on the electrolyte plate for 60 minutes. Similarly, heat treatment was performed to generate power. Table 3 and Table 4 show the polarization characteristics and the polarization characteristics (when the current is a constant current of 1.6 A) with time of the battery, respectively.
【0019】[0019]
【表3】 [Table 3]
【0020】[0020]
【表4】 [Table 4]
【0021】これらの結果より、実施例の電池の分極抵
抗は電流が大きくなっても分極電圧自体増加することも
ないことから、電極反応に起因する抵抗がほとんどない
こと、及び所定の定電流下の分極抵抗は、経時的にも極
めて少ないことが分る。100時間程度までは分極電圧
自体変わらず、200時間以上で少しずつ増加するに過
ぎないかあるいは100時間以上で少しずつ増加するに
過ぎないことから、電極反応に起因する抵抗は極めて少
ないことが分る。From these results, the polarization resistance of the battery of the embodiment does not increase even if the current increases, so that there is almost no resistance due to the electrode reaction, and under the predetermined constant current. It can be seen that the polarization resistance of 1 is extremely small even over time. The polarization voltage itself does not change up to about 100 hours, and increases little by little over 200 hours or only over 100 hours. Therefore, it can be seen that the resistance caused by the electrode reaction is extremely small. It
【0022】比較例 固体電解質板の水素通路側に、多孔質Ni膜を界面に挿
入することなく、実施例と同じ所定サーメット粉末を有
機系バインダーに分散した塗布用組成物を実施例と同様
に塗布してアノード形成膜を形成させたこと以外は実施
例と同様にして、燃料電池を作成した。この燃料電池を
実施例と同様に加熱処理し発電させた。この電池の電流
変化による分極特性及び分極(電流が1.6Aの定電流
の場合)の経時特性をそれぞれ表5及び表6に示す。Comparative Example A coating composition in which the same predetermined cermet powder as in the example was dispersed in an organic binder without inserting a porous Ni film at the interface on the hydrogen passage side of the solid electrolyte plate was prepared in the same manner as in the example. A fuel cell was prepared in the same manner as in Example except that the anode forming film was formed by coating. This fuel cell was subjected to heat treatment and power generation in the same manner as in the example. Table 5 and Table 6 show the polarization characteristics and the polarization characteristics (when the current is a constant current of 1.6 A) with time of the battery, respectively.
【0023】[0023]
【表5】 [Table 5]
【0024】[0024]
【表6】 [Table 6]
【0025】これより、比較例の電池は、実施例の多孔
質Ni膜を介在させた電池に比べて分極抵抗が大きく、
しかも電流が大きくなると分極電圧も増大することか
ら、電極反応に起因する抵抗が相当あり、また分極の経
時劣化が大きいことが分る。As a result, the battery of the comparative example has a larger polarization resistance than the battery having the porous Ni film of the example,
Moreover, since the polarization voltage also increases as the current increases, it can be seen that there is considerable resistance due to the electrode reaction and that the polarization deterioration with time is large.
【0026】[0026]
【発明の効果】本発明の燃料極は、それを用いた燃料電
池について、その分極抵抗は電流が大きくなっても分極
電圧自体増加することもないことから、電極反応に起因
する抵抗がほとんどないし、また所定の定電流下の分極
抵抗が経時的にも極めて少ないという利点がある。The fuel electrode of the present invention has almost no resistance due to the electrode reaction in the fuel cell using the fuel electrode because the polarization resistance does not increase even if the current increases. Moreover, there is an advantage that the polarization resistance under a predetermined constant current is extremely small even with time.
フロントページの続き (72)発明者 安藤 基朗 埼玉県入間郡大井町西鶴ケ岡一丁目3番1 号 東燃株式会社総合研究所内 (72)発明者 吉田 利彦 埼玉県入間郡大井町西鶴ケ岡一丁目3番1 号 東燃株式会社総合研究所内Front Page Continuation (72) Inventor Motoaki Ando Nishitsurugaoka 1-3-1 Oi-cho, Iruma-gun, Saitama Prefecture Tonen Corporation Research Institute (72) Inventor Toshihiko Yoshida Nishitsurugaoka 3-chome, Oi-cho, Saitama No. 1 Tonen Co., Ltd. Research Institute
Claims (2)
他方の面に燃料極をそれぞれ形成させた固体電解質型燃
料電池において、燃料極側固体電解質表面に密着した多
孔質金属薄膜上に積層一体化されて成る固体電解質型燃
料電池の燃料極。1. An air electrode on one side of a solid electrolyte plate,
A solid electrolyte fuel cell having a fuel electrode formed on the other surface, wherein the fuel electrode of the solid electrolyte fuel cell is laminated and integrated on a porous metal thin film that is in close contact with the surface of the solid electrolyte on the fuel electrode side.
又は金属化合物薄膜を形成したのち、該薄膜を金属酸化
膜とし、次いでこの金属酸化膜上に燃料極用組成物を塗
布したのち、還元処理を施して上記酸化膜を多孔質金属
薄膜とするとともに燃料極を形成させることを特徴とす
る固体電解質型燃料電池の燃料極の製造方法。2. A metal thin film or a metal compound thin film is formed on the fuel electrode side surface of the solid electrolyte, the thin film is used as a metal oxide film, and then the fuel electrode composition is applied on the metal oxide film. A method for producing a fuel electrode of a solid oxide fuel cell, which comprises subjecting the above-mentioned oxide film to a porous metal thin film by a reduction treatment and forming a fuel electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4284926A JPH06119929A (en) | 1992-10-01 | 1992-10-01 | Fuel electrode of solid oxide fuel cell and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4284926A JPH06119929A (en) | 1992-10-01 | 1992-10-01 | Fuel electrode of solid oxide fuel cell and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06119929A true JPH06119929A (en) | 1994-04-28 |
Family
ID=17684852
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4284926A Pending JPH06119929A (en) | 1992-10-01 | 1992-10-01 | Fuel electrode of solid oxide fuel cell and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06119929A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7300718B2 (en) | 2003-11-05 | 2007-11-27 | Honda Motor Co., Ltd. | Electrolyte-electrode joined assembly and method for producing the same |
JP2008034305A (en) * | 2006-07-31 | 2008-02-14 | Tokyo Gas Co Ltd | Anode reduction method for solid oxide fuel cells |
-
1992
- 1992-10-01 JP JP4284926A patent/JPH06119929A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7300718B2 (en) | 2003-11-05 | 2007-11-27 | Honda Motor Co., Ltd. | Electrolyte-electrode joined assembly and method for producing the same |
JP2008034305A (en) * | 2006-07-31 | 2008-02-14 | Tokyo Gas Co Ltd | Anode reduction method for solid oxide fuel cells |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6017647A (en) | Electrode structure for solid state electrochemical devices | |
KR101183774B1 (en) | Manufacturing method and current collector | |
JP2002289248A (en) | Unit cell for fuel cell and solid electrolytic fuel cell | |
JP2003132906A (en) | Single cell for fuel cell and solid electrolytic fuel cell | |
JP2008519404A (en) | Electrochemical cell structure and its manufacturing method by controlled powder method | |
CN1398439A (en) | Method of fabricating assembly comprising anode-supported electrolyte, and ceramic cell comprising such assembly | |
JP2018206486A (en) | Laminate green sheet, all-solid secondary battery and manufacturing method thereof | |
WO1998049738A1 (en) | Electrode structure for solid state electrochemical devices | |
JP3915500B2 (en) | THIN FILM LAMINATE, PROCESS FOR PRODUCING THE SAME, AND SOLID OXIDE FUEL CELL USING THE SAME | |
JPH1092446A (en) | Solid electrolyte type fuel cell | |
JP3924772B2 (en) | Air electrode current collector of solid oxide fuel cell | |
JP2007529855A (en) | Conductive steel-ceramic composite and method for producing the same | |
JPH10172590A (en) | Solid electrolyte type fuel cell | |
JP6910172B2 (en) | Manufacturing method of cell-to-cell connection member | |
JP4352447B2 (en) | Solid oxide fuel cell separator with excellent conductivity | |
JPH06119929A (en) | Fuel electrode of solid oxide fuel cell and manufacturing method thereof | |
KR20200135027A (en) | Electrode material for solid oxide fuel cell and method for manufacturing the same | |
US4902587A (en) | Fuel cell | |
JP2003331859A (en) | Separator for fuel cell, its manufacturing method, and fuel cell using separator for fuel cell | |
JP3447541B2 (en) | Cylindrical solid oxide fuel cell and fuel cell | |
JPH06203847A (en) | Solid electrolyte for fuel cells | |
JP2004355814A (en) | Solid oxide fuel battery cell and its manufacturing method | |
JP3894103B2 (en) | Current collector material for solid oxide fuel cells | |
JPH07245113A (en) | Solid electrolyte for fuel cell and solid electrolyte fuel cell using the same | |
JPH09190824A (en) | Fuel electrode structure of fuel cell of solid electrolyte type and manufacture thereof |