JP3894103B2 - Current collector material for solid oxide fuel cells - Google Patents
Current collector material for solid oxide fuel cells Download PDFInfo
- Publication number
- JP3894103B2 JP3894103B2 JP2002331640A JP2002331640A JP3894103B2 JP 3894103 B2 JP3894103 B2 JP 3894103B2 JP 2002331640 A JP2002331640 A JP 2002331640A JP 2002331640 A JP2002331640 A JP 2002331640A JP 3894103 B2 JP3894103 B2 JP 3894103B2
- Authority
- JP
- Japan
- Prior art keywords
- current collector
- oxide fuel
- fuel cell
- solid oxide
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Fuel Cell (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、固体酸化物形燃料電池用集電体材料、その製造方法及び固体酸化物形燃料電池用単セルに係り、更に詳細には、界面抵抗を抑制し、耐久性及び電池性能を向上させた固体酸化物形燃料電池用集電体材料、その製造方法及び固体酸化物形燃料電池用単セルに関する。
【0002】
【従来の技術】
燃料電池とは、イオンの移動により電気が流れる電解質に、燃料(水素など)と酸化剤(空気など)を電気化学的に結合させて発電するエネルギー変換デバイスである。その中の一種である固体酸化物形燃料電池(以下「SOFC」と省略する)は、その全てが固体(セラミックスと金属)で構成され、更に比較的高温(〜1000℃)で運転されることから、他の燃料電池に比べ優位な特徴を有する。例えば、材料面では、貴金属などの高価な材料を利用しないこと、燃料電池中に液体を使用しないことから管理が容易である。また、水素以外の燃料を直接導入できるというメリットもある。
【0003】
一方、SOFCの欠点は、構成材料への制約が厳しいことである。
例えば、空気極の集電体としては、従来から1000℃の酸化雰囲気中で十分な導電性が得られ、劣化の少ない白金メッシュが使用されていた。しかし、白金は経済的に高価であるため、インコネルなどの繊維状合金からなる合金フェルトを使用しコストを低減させている。
しかしながら、合金フェルトを酸化剤極側の集電材料として用いた場合には、酸化極側の反応ガスである空気によって繊維状合金が酸化され、フェルトの表面に酸化皮膜が生成し、導電性が低下し、合金フェルトと空気電極又はセパレータとの接触抵抗が増大する。
従って、例えば、特開平7−114931号公報では、接触抵抗を減らすため、集電体の繊維状フェルトの表面にぺロブスカイト型酸化物を担持させることが提案されている。具体的には、繊維状インコネル合金表面に酸化剤電極スラリーを担持する手法などがある。
【0004】
【発明が解決しようとする課題】
上述のように、従来から合金フェルトの表面に酸化物を担持させたものを空気極上に重ねて使用する場合は、合金フェルトは比較的電極の何十倍の厚さがあるため、セルを積層して行く際に全体の体積が増大し、コンパクト化が困難であるという問題点があった。また、フェルト状合金を空気極と接合させたときに、集電体と空気極の接合部位に接触抵抗が生じ易く、更に、高温で作動する場合はフェルト集電体が電極から剥がれ易いという問題点があった。このような接触抵抗の増大や集電体の剥離は電池性能の低下という問題を招くことになる。
【0005】
本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、薄膜化、接触抵抗の低減及び剥離防止を図り、電池性能を向上させた固体酸化物形燃料電池用集電体材料、その製造方法及び固体酸化物形燃料電池用単セルを提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、導電材を被覆したマトリックス粒子を含ませた集電体材料を用いることにより、上記課題を解決できることを見出し、本発明を完成するに至った。
【0007】
【発明の実施の形態】
以下、本発明の固体酸化物形燃料電池用集電体材料について詳細に説明する。なお、本明細書において、「%」は特記しない限り質量百分率を示す。
【0008】
上述の如く、本発明の固体酸化物形燃料電池用集電体材料は、マトリックス粒子と導電材を含んで成る。また、この導電材は、LaCrO3、La0.75Sr0.25FeO3、SnO2、Fe3O4、LaCoO3、ITO、ZnO及びFeSi2−x(xはSiの欠陥組織を示す)から成る群より選ばれた少なくとも1種のものであり、マトリックス粒子の表面の一部又は全部に被覆されて成る。
このような集電体材料で形成された集電体は、電極の反応場として機能し得るので反応界面が大きくなり、電池性能がより一層向上する。
また、かかる導電材は、安価で耐高温性且つ耐酸化性であるので、高温酸化雰囲気による金属粒子や合金粒子の酸化を防止する。更に、金属粒子や合金粒子の表面に、導電性酸化物(酸素イオン導電性を有するもの)を被覆すると酸素の還元反応の反応場が更に増加するため、燃料電池に用いるときは電極の反応速度が上がりセル全体に大電流を流すことができる。
【0009】
ここで、上記マトリックス粒子は、金属粒子及び/又は合金粒子であることが好適である。このときは、ミクロオーダーの粒子から集電体を構成できるので、集電体と電極との接触状態が良好となり、高温での熱膨張による集電体の剥離を抑制できる。言い換えれば、高温での連続運転に対する耐久性が向上し得る。
金属粒子や合金粒子の形状は、代表的には球状であり、これらの粒径は、0.5〜10μmであることが好適である。0.5μm未満の場合は、高温において焼結しやすくなり、集電体に要求されるガス透過性が悪くなってしまう可能性がある。また、10μmより大きい場合は、粒子表面は完全に被覆できない可能性があり、この非被覆部分が生じることによって金属粒子が参加され内部抵抗が大きくなってしまい、セル出力が低下してしまうことになる。
なお、マトリックス粒子の形状は、最大径が上記範囲内であれば球状以外でも良く、例えば繊維状金属なども使用できる。
【0010】
また、金属粒子や合金粒子の種類は特に限定されないが、貴金属以外の方が経済的により望ましい。代表的には、上記金属粒子は、銀(Ag)、鉄(Fe)、クロム(Cr)、ニッケル(Ni)、銅(Cu)、チタン(Ti)、タングステン(W)、錫(Sn)、アルミニウム(Al)又はコバルト(Co)、及びこれらの任意の組合せに係る金属から得ることができる。上記合金粒子も特に限定されないが、これらと同様の金属を含む合金から得られる。このときは、十分な導電性を有する集電体を形成できる。なお、導電材(酸化物など)との熱膨張係数が金属材料より近い合金を用いるときは熱耐久性を更に向上できる。
【0012】
また、上記導電材は、ペロブスカイト型酸化物であることが好適である。特に、混合イオン導電性(酸素イオン導電性と電子導電性)のペロブスカイト型酸化物に限定することが望ましく、例えば、LaSrMnO3(以下「LSM」と略する)、LaSrCoO3(以下「LSC」と略する)、Sr0.5Co0.5O3(以下「SSC」と略する)などが挙げられる。図1にSSCを担持したAg粒子を拡大したTEM写真を示す。
これらは基本的に空気電極の構成材料となり得るものであり、このような材料で金属粒子や合金粒子の表面を被覆することによって、集電体(集電体層)も電極と同様に反応場として働き、フェルト材で形成された場合に比べて反応界面が拡大され電池出力を増大し得るので、電池性能をより一層向上できる。また、空気電極との接触が良好となり易く、接触抵抗を大きく低減できる。更に、熱膨張係数が非常に近似するため、高温での連続運転による集電層の剥離が抑えられ、熱耐久性も良好となり易い。
【0013】
更に、上記導電材の被覆厚さが0.05〜5.0μmであると、集電効果が良好となり易い。厚さが0.05μm未満の場合は、担持層の酸化防止効果が十分に働かないことがある。また、5.0μmを超えると、酸化物層による導電率が低減してしまい、電池の出力低下の原因になることがある。
【0014】
次に、本発明の固体酸化物形燃料電池用単セルについて詳細に説明する。
本発明の単セルは、電解質が燃料極及び空気極に挟持されて成る電池要素に、ガスを分離するセパレータを積層して成る。また、空気極とセパレータとの間には、上述の集電体材料で形成した集電体(集電体層)を配設して成る。
かかる単セルでは、従来のフェルト状金属などを集電体材料として用いた場合に比べて集電体が薄膜化されているので、電極との接合性が向上し耐久性に優れる。また、電池要素を全体的にコンパクト化できるとともに、電極として機能する面積が増大するので、電池出力も向上する。電極上に配設する集電体層の厚さは10μm以下とすることが望ましい。また、集電体材料中には、上記マトリックス粒子及び導電材の他、分散剤や結着剤などを適宜添加することができる。
なお、本明細書において、「単セル」とは電解質を空気極及び燃料極で挟持し、電極の表面に集電体(集電体層)を配設したものを示す。また、「固体酸化物形燃料電池」は、複数の単セル(燃料電池セル)を電気的に接続すると共に、隣接する単セルとの間隙にガスを分離するセパレータを設けたものを示す。
【0015】
次に、本発明の固体酸化物形燃料電池用集電体材料の製造方法について詳細に説明する。
本発明の製造方法では、スパッタリング法、共沈法、ゾル−ゲル法、めっき又は含浸法、及びこれらを任意に組合わせた方法により、導電材をマトリックス粒子の表面に被覆し、上述の固体酸化物形燃料電池用集電体材料を得る。
これらの方法を用いることで、導電材(導電性酸化物の粒子など)がマトリックス粒子(金属粒子や合金粒子)の表面全体に均一的に被覆される。また、導電材やマトリックス粒子の種類や大きさなどに応じて、被覆厚さを適宜制御することも可能である。
【0016】
【実施例】
以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。
【0017】
(実施例1)
本発明の集電体材料を空気極側に用いた固体酸化物形燃料電池セルを作製した。このときの集電体層の断面を図2に示す。
固体電解質として緻密な焼結体であるLSGM(La0.9Sr0.1Ga0.8Mg0.2O3)、燃料極としてNi−CeO2サーメット、空気極としてぺロブスカイト型酸化物であるSSC(Sm0.5Sr0.5CoO3)を使用した。また、空気極及び燃料極の表面に集電体層を形成した。この燃料極側集電体層にはNiフェルト、空気側電極集電体層には金属粒子の表面にLSC溶液中に含浸したものを使用した。
【0018】
ここで、上記構成を有する燃料電池セルの作製について詳細に説明する。
<セルの作製>
1)電解質焼結体の準備
膜厚300μmのLSGM焼結体をセルの支持体として使用した。
2)燃料極の作製
Ni:SDC=7:3になるように原料粉を混合して、バインダ(ポリビニルブチラール樹脂)と、溶媒(エチルセルロース)とを各々十分混合し、脱泡し、燃料極用スラリーを得た。このスラリーを電解質の一方の面に被覆して燃料極とした。
3)空気極の作製
空気極材料にSSCを用い、燃料極と同様の操作により空気極用スラリーを得た。このスラリーを電解質の他方の面に被覆して空気極とした。
4)空気極側集電体層の作製
集電体材料として平均粒子径が1μmのAg粒子を使用した。このAg粒子をLSCの溶液中に30秒を浸し、溶媒を飛ばし、残った粉を500℃で焼成して集電体用原料粉を得た。この粉を電極材料と同様の操作によりスラリーとし、スプレー法で空気極の表面に10μmの厚さで被覆した。電極上へスプレーした後、1000℃で、1時間焼結を行い集電体層を得た。
ここでLSCを用いたのは、LSCはSSCよりも電子導電性が高く、集電効果が高いためである。
【0019】
(実施例2)
空気側集電体材料のマトリックス粒子として合金Fe−Crを用い、この表面に導電材としてLSCの薄膜層を被覆した以外は、実施例1と同様の操作を繰り返して、固体酸化物形燃料電池セルを作製した。
【0020】
(実施例3)
空気極側集電材料として、Ag表面にスパッタリング法によってLSCを担持させた以外は、実施例1と同様の操作を繰り返して、固体酸化物形燃料電池セルを作製した。
【0021】
(実施例4〜6)
含浸法によってAgの表面に0.01μm、0.1μm及び1.0μmのLSC膜を担持させた以外は、実施例1と同様の操作を繰り返して、固体酸化物形燃料電池セルを作製した。
【0022】
(比較例1)
空気極側集電体層として、AgフェルトをLSC溶液に含浸した以外は、実施例1と同様の操作を繰り返して、固体酸化物形燃料電池セルを作製した。
【0023】
<性能評価>
各例で得えられた燃料電池セルについて、以下の条件で連続発電試験を行った。
・評価温度 :800℃
・評価雰囲気:H2/O2(H2は10%加湿した)
このような評価条件で200時間連続運転し、初回目及び200時間連続運転後のセルOVC、セル出力及び空気極と集電体層の接触抵抗を求めた。この結果を表1に示す。
【0024】
【表1】
【0025】
表1より、本発明の好適形態である実施例1〜6で得られた燃料電池セルでは導電性酸化物LSCで金属粒子の表面を担持することによって、集電により生じる接触抵抗が低下するのに対し、比較例1で得られた燃料電池セルでは金属フェルトが電極との接触抵抗が大きく、これによってセルの出力が低下してしまうことがわかる。
【0026】
【発明の効果】
以上説明したように、本発明によれば、導電材を被覆したマトリックス粒子を含ませた集電体材料を用いることとしたため、薄膜化、接触抵抗の低減及び剥離防止を図り、電池性能を向上させた固体酸化物形燃料電池用集電体材料、その製造方法及び固体酸化物形燃料電池用単セルを提供することができる。
【図面の簡単な説明】
【図1】SSCを担持したAg粒子を示すTEM写真である。
【図2】集電体層の概略を示す断面図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a current collector material for a solid oxide fuel cell, a method for producing the same, and a single cell for a solid oxide fuel cell. More specifically, the present invention suppresses interfacial resistance and improves durability and battery performance. The present invention relates to a current collector material for a solid oxide fuel cell, a manufacturing method thereof, and a single cell for a solid oxide fuel cell.
[0002]
[Prior art]
A fuel cell is an energy conversion device that generates electricity by electrochemically combining a fuel (such as hydrogen) and an oxidant (such as air) with an electrolyte through which electricity flows by movement of ions. A solid oxide fuel cell (hereinafter abbreviated as “SOFC”), which is one of them, is composed entirely of solids (ceramics and metals) and is operated at a relatively high temperature (up to 1000 ° C.). Therefore, it has superior characteristics compared to other fuel cells. For example, in terms of materials, management is easy because no expensive materials such as precious metals are used and no liquid is used in the fuel cell. In addition, there is an advantage that fuel other than hydrogen can be directly introduced.
[0003]
On the other hand, the drawback of SOFC is that the restrictions on the constituent materials are severe.
For example, as a current collector for an air electrode, a platinum mesh that has been used to obtain sufficient conductivity in an oxidizing atmosphere at 1000 ° C. and has little deterioration has been used. However, since platinum is economically expensive, an alloy felt made of a fibrous alloy such as Inconel is used to reduce the cost.
However, when an alloy felt is used as a current collecting material on the oxidizer electrode side, the fibrous alloy is oxidized by air, which is a reaction gas on the oxidizer electrode side, and an oxide film is formed on the surface of the felt, resulting in conductivity. And the contact resistance between the alloy felt and the air electrode or separator increases.
Therefore, for example, JP-A-7-114931 proposes to support a perovskite oxide on the surface of the fibrous felt of the current collector in order to reduce the contact resistance. Specifically, there is a method of supporting an oxidant electrode slurry on the surface of a fibrous inconel alloy.
[0004]
[Problems to be solved by the invention]
As mentioned above, when using an alloy felt with an oxide felt supported on the surface of an air electrode, the cell is laminated because the alloy felt is relatively tens of times thicker than the electrode. However, there is a problem in that the entire volume increases and it is difficult to make it compact. In addition, when the felt-like alloy is joined to the air electrode, contact resistance is likely to occur at the joined portion of the current collector and the air electrode, and the felt current collector tends to peel off from the electrode when operating at a high temperature. There was a point. Such an increase in contact resistance and peeling of the current collector cause a problem of deterioration in battery performance.
[0005]
The present invention has been made in view of such problems of the prior art. The object of the present invention is to provide a solid oxide with improved battery performance by reducing the film thickness, reducing contact resistance and preventing peeling. An object of the present invention is to provide a current collector material for a fuel cell, a manufacturing method thereof, and a single cell for a solid oxide fuel cell.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be solved by using a current collector material containing matrix particles coated with a conductive material. It came to be completed.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the current collector material for a solid oxide fuel cell of the present invention will be described in detail. In the present specification, “%” indicates a mass percentage unless otherwise specified.
[0008]
As described above, the current collector material for a solid oxide fuel cell of the present invention comprises matrix particles and a conductive material. Also, this conductive material is LaCrO 3 , La 0.75 Sr 0.25 FeO 3 , SnO 2 , Fe 3 O 4 , LaCoO 3 , ITO, ZnO, and FeSi 2-x (x indicates a defect structure of Si). At least one member selected from the group consisting of: and covering a part or all of the surface of the matrix particles.
Since the current collector formed of such a current collector material can function as a reaction field of the electrode, the reaction interface becomes large, and the battery performance is further improved.
Further, such a conductive material is inexpensive, resistant to high temperatures and oxidation, and thus prevents oxidation of metal particles and alloy particles due to a high temperature oxidizing atmosphere. Furthermore, if the surface of metal particles or alloy particles is coated with a conductive oxide (having oxygen ion conductivity), the reaction field of the oxygen reduction reaction further increases. And a large current can flow through the entire cell.
[0009]
Here, the matrix particles are preferably metal particles and / or alloy particles. At this time, since the current collector can be composed of micro-order particles, the contact state between the current collector and the electrode becomes good, and the current collector can be prevented from being peeled off due to thermal expansion at a high temperature. In other words, durability against continuous operation at high temperatures can be improved.
The shape of the metal particles or alloy particles is typically spherical, and the particle size thereof is preferably 0.5 to 10 μm. If the thickness is less than 0.5 μm, sintering is likely to occur at a high temperature, and gas permeability required for the current collector may be deteriorated. On the other hand, when the particle size is larger than 10 μm, the particle surface may not be completely covered, and this non-coated portion causes metal particles to participate and increase internal resistance, resulting in a decrease in cell output. Become.
The shape of the matrix particles may be other than spherical as long as the maximum diameter is within the above range, and for example, fibrous metal can be used.
[0010]
Further, the type of metal particles or alloy particles is not particularly limited, but other than precious metals are more economically desirable. Typically, the metal particles include silver (Ag), iron (Fe), chromium (Cr), nickel (Ni), copper (Cu), titanium (Ti), tungsten (W), tin (Sn), It can be obtained from metals according to aluminum (Al) or cobalt (Co) and any combination thereof. Although the said alloy particle is not specifically limited, It can be obtained from the alloy containing the metal similar to these. In this case, a current collector having sufficient conductivity can be formed. In addition, when an alloy having a thermal expansion coefficient closer to that of a conductive material (such as an oxide) than that of a metal material is used, the thermal durability can be further improved.
[0012]
The conductive material is preferably a perovskite oxide. In particular, it is desirable to limit the perovskite oxide mixed ionic conductivity (oxygen ion conductivity and electronic conductivity), for example, LaSrMnO 3 (hereinafter abbreviated as "LSM"), and LaSrCoO 3 (hereinafter "LSC" Abbreviated), Sr 0.5 Co 0.5 O 3 (hereinafter abbreviated as “SSC”), and the like. FIG. 1 shows an enlarged TEM photograph of Ag particles supporting SSC.
These can basically be constituent materials for air electrodes. By covering the surfaces of metal particles and alloy particles with such materials, the current collector (current collector layer) can react with the reaction field in the same way as the electrodes. Since the reaction interface can be expanded and the battery output can be increased as compared with the case where it is made of felt material, the battery performance can be further improved. Further, the contact with the air electrode is likely to be good, and the contact resistance can be greatly reduced. Furthermore, since the thermal expansion coefficients are very close to each other, peeling of the current collecting layer due to continuous operation at a high temperature is suppressed, and thermal durability tends to be good.
[0013]
Furthermore, when the coating thickness of the conductive material is 0.05 to 5.0 μm, the current collection effect tends to be good. When the thickness is less than 0.05 μm, the antioxidant effect of the support layer may not work sufficiently. On the other hand, when the thickness exceeds 5.0 μm, the conductivity of the oxide layer is reduced, which may cause a decrease in battery output.
[0014]
Next, the single cell for a solid oxide fuel cell of the present invention will be described in detail.
The single cell of the present invention is formed by laminating a separator for separating gas on a battery element in which an electrolyte is sandwiched between a fuel electrode and an air electrode. Further, a current collector (current collector layer) formed of the above-described current collector material is disposed between the air electrode and the separator.
In such a single cell, the current collector is made thinner compared to the case where a conventional felt-like metal or the like is used as the current collector material, so that the bonding property with the electrode is improved and the durability is excellent. In addition, the battery element can be made compact as a whole, and the area that functions as an electrode increases, so that the battery output is also improved. The thickness of the current collector layer disposed on the electrode is preferably 10 μm or less. In addition to the matrix particles and the conductive material, a dispersant, a binder, and the like can be appropriately added to the current collector material.
In the present specification, “single cell” refers to an electrode in which an electrolyte is sandwiched between an air electrode and a fuel electrode, and a current collector (current collector layer) is disposed on the surface of the electrode. In addition, the “solid oxide fuel cell” refers to a battery in which a plurality of single cells (fuel cell) are electrically connected and a separator for separating gas is provided in a gap between adjacent single cells.
[0015]
Next, the manufacturing method of the current collector material for a solid oxide fuel cell of the present invention will be described in detail.
In the production method of the present invention, the conductive material is coated on the surface of the matrix particles by a sputtering method, a coprecipitation method, a sol-gel method, a plating or impregnation method, and any combination thereof, and the above-described solid oxidation is performed. A current collector material for a physical fuel cell is obtained.
By using these methods, the entire surface of the matrix particles (metal particles and alloy particles) is uniformly coated with the conductive material (conductive oxide particles and the like). In addition, the coating thickness can be appropriately controlled according to the type and size of the conductive material and matrix particles.
[0016]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to these Examples.
[0017]
Example 1
A solid oxide fuel cell using the current collector material of the present invention on the air electrode side was produced. A cross section of the current collector layer at this time is shown in FIG.
LSGM (La 0.9 Sr 0.1 Ga 0.8 Mg 0.2 O 3 ) which is a dense sintered body as a solid electrolyte, Ni—CeO 2 cermet as a fuel electrode, and perovskite oxide as an air electrode Some SSC (Sm 0.5 Sr 0.5 CoO 3 ) was used. A current collector layer was formed on the surfaces of the air electrode and the fuel electrode. Ni felt was used for the fuel electrode side current collector layer, and the surface of the metal particles impregnated in the LSC solution was used for the air side electrode current collector layer.
[0018]
Here, the production of the fuel battery cell having the above configuration will be described in detail.
<Production of cell>
1) Preparation of electrolyte sintered body An LSGM sintered body having a film thickness of 300 μm was used as a cell support.
2) Fabrication of fuel electrode Ni: SDC = 7: 3 The raw material powder is mixed, and a binder (polyvinyl butyral resin) and a solvent (ethyl cellulose) are sufficiently mixed and defoamed for the fuel electrode. A slurry was obtained. This slurry was coated on one surface of the electrolyte to obtain a fuel electrode.
3) Production of air electrode Using SSC as the air electrode material, an air electrode slurry was obtained in the same manner as the fuel electrode. This slurry was coated on the other surface of the electrolyte to form an air electrode.
4) Preparation of air electrode side current collector layer Ag particles having an average particle diameter of 1 μm were used as a current collector material. The Ag particles were immersed in a solution of LSC for 30 seconds, the solvent was blown off, and the remaining powder was fired at 500 ° C. to obtain a raw material powder for a current collector. This powder was made into a slurry by the same operation as that of the electrode material, and coated on the surface of the air electrode with a thickness of 10 μm by a spray method. After spraying on the electrode, sintering was performed at 1000 ° C. for 1 hour to obtain a current collector layer.
The LSC is used here because the LSC has higher electronic conductivity than the SSC and has a higher current collecting effect.
[0019]
(Example 2)
The same procedure as in Example 1 was repeated except that the alloy Fe—Cr was used as matrix particles for the air-side current collector material, and the surface was covered with a thin film layer of LSC as a conductive material. A cell was produced.
[0020]
Example 3
A solid oxide fuel cell was produced by repeating the same operation as in Example 1 except that LSC was supported on the Ag surface by the sputtering method as the air electrode side current collecting material.
[0021]
(Examples 4 to 6)
A solid oxide fuel cell was produced by repeating the same operation as in Example 1 except that 0.01 μm, 0.1 μm and 1.0 μm LSC membranes were supported on the Ag surface by the impregnation method.
[0022]
(Comparative Example 1)
A solid oxide fuel cell was produced by repeating the same operation as in Example 1 except that the LSC solution was impregnated with Ag felt as the air electrode side current collector layer.
[0023]
<Performance evaluation>
The fuel cell obtained in each example was subjected to a continuous power generation test under the following conditions.
-Evaluation temperature: 800 ° C
Evaluation atmosphere: H 2 / O 2 (H 2 is 10% humidified)
Under such evaluation conditions, 200 hours of continuous operation was performed, and the cell OVC, the cell output, and the contact resistance between the air electrode and the current collector layer after the first and 200 hours of continuous operation were determined. The results are shown in Table 1.
[0024]
[Table 1]
[0025]
From Table 1, in the fuel cells obtained in Examples 1 to 6 which are preferred embodiments of the present invention, the contact resistance caused by current collection is reduced by supporting the surface of the metal particles with the conductive oxide LSC. On the other hand, in the fuel cell obtained in Comparative Example 1, it can be seen that the metal felt has a large contact resistance with the electrode, which reduces the output of the cell.
[0026]
【The invention's effect】
As described above, according to the present invention, since the current collector material containing the matrix particles coated with the conductive material is used, the battery performance is improved by reducing the thickness, reducing the contact resistance, and preventing the peeling. It is possible to provide a current collector material for a solid oxide fuel cell, a production method thereof, and a single cell for a solid oxide fuel cell.
[Brief description of the drawings]
FIG. 1 is a TEM photograph showing Ag particles supporting SSC.
FIG. 2 is a cross-sectional view schematically showing a current collector layer.
Claims (9)
マトリックス粒子及び導電材を含み、当該導電材が、LaCrO3、La0.75Sr0.25FeO3、SnO2、Fe3O4、LaCoO3、ITO、ZnO及びFeSi2−x(xはSiの欠陥組織を示す)から成る群より選ばれた少なくとも1種のものであり、マトリックス粒子の表面の一部又は全部に被覆されて成ることを特徴とする固体酸化物形燃料電池用集電体材料。In a solid oxide fuel cell, a current collector material disposed between an air electrode and a separator,
Including matrix particles and a conductive material, wherein the conductive material is LaCrO 3 , La 0.75 Sr 0.25 FeO 3 , SnO 2 , Fe 3 O 4 , LaCoO 3 , ITO, ZnO, and FeSi 2-x (where x is Si A current collector for a solid oxide fuel cell, wherein the current collector is at least one selected from the group consisting of: material.
上記マトリックス粒子の表面に、スパッタリング法、共沈法、めっき、ゾル−ゲル法及び含浸法から成る群より選ばれた少なくとも1種の方法を用いて上記導電材を被覆することを特徴とする固体酸化物形燃料電池用集電体材料の製造方法。A method for producing a current collector material for a solid oxide fuel cell according to any one of claims 1 to 7,
A solid characterized in that the surface of the matrix particles is coated with the conductive material using at least one method selected from the group consisting of sputtering, coprecipitation, plating, sol-gel and impregnation. A method for producing a current collector material for an oxide fuel cell.
空気極とセパレータとの間に請求項1〜7のいずれか1つの項に記載の固体酸化物形燃料電池用集電体材料で形成した集電体を配設して成ることを特徴とする固体酸化物形燃料電池用単セル。A solid oxide fuel cell single cell comprising a battery element in which a fuel electrode and an air electrode are opposed to each other through an electrolyte, and a separator for separating gas is laminated.
A current collector formed of the current collector material for a solid oxide fuel cell according to any one of claims 1 to 7 is disposed between an air electrode and a separator. Single cell for solid oxide fuel cells.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002331640A JP3894103B2 (en) | 2002-11-15 | 2002-11-15 | Current collector material for solid oxide fuel cells |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002331640A JP3894103B2 (en) | 2002-11-15 | 2002-11-15 | Current collector material for solid oxide fuel cells |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004165074A JP2004165074A (en) | 2004-06-10 |
JP3894103B2 true JP3894103B2 (en) | 2007-03-14 |
Family
ID=32808950
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002331640A Expired - Fee Related JP3894103B2 (en) | 2002-11-15 | 2002-11-15 | Current collector material for solid oxide fuel cells |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3894103B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7449262B2 (en) * | 2004-12-09 | 2008-11-11 | Praxair Technology, Inc. | Current collector to conduct an electrical current to or from an electrode layer |
JP5242909B2 (en) * | 2005-11-14 | 2013-07-24 | 日本電信電話株式会社 | Solid oxide fuel cell |
JP5030747B2 (en) * | 2007-11-30 | 2012-09-19 | 株式会社ノリタケカンパニーリミテド | Method for producing solid oxide fuel cell and firing jig used in the method |
JP2013069521A (en) * | 2011-09-22 | 2013-04-18 | Nissan Motor Co Ltd | Fuel cell, fuel cell stack, and manufacturing method for fuel cell or fuel cell stack |
CN110773194B (en) * | 2019-10-17 | 2020-10-09 | 厦门大学 | A kind of CO2 hydrogenation to methane catalyst and preparation method thereof |
-
2002
- 2002-11-15 JP JP2002331640A patent/JP3894103B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004165074A (en) | 2004-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5044628B2 (en) | Coating body | |
EP2250295B1 (en) | Cu-based cermet for high-temperature fuel cell | |
US7553573B2 (en) | Solid state electrochemical composite | |
US9120683B2 (en) | Method and device using a ceramic bond material for bonding metallic interconnect to ceramic electrode | |
CN106575784B (en) | Membrane electrode assembly and its manufacturing method, fuel cell and its manufacturing method | |
JPWO2004102704A1 (en) | Solid oxide fuel cell and manufacturing method thereof | |
TW201011967A (en) | Metal-supported, segmented-in-series high temperature electrochemical device | |
JP5368139B2 (en) | Solid oxide fuel cell | |
JP5013750B2 (en) | Cell stack and fuel cell | |
JP3924772B2 (en) | Air electrode current collector of solid oxide fuel cell | |
JP2011119178A (en) | Solid oxide fuel cell | |
JP3617814B2 (en) | Air electrode material for alkaline-earth-added nickel-iron perovskite-type low-temperature solid fuel cell | |
JP5170815B2 (en) | Solid oxide fuel cell unit and stack | |
JP2002280026A (en) | Air electrode current collector for solid electrolyte fuel cell | |
JP3894103B2 (en) | Current collector material for solid oxide fuel cells | |
US11996589B2 (en) | Fuel cell | |
JP5079991B2 (en) | Fuel cell and fuel cell | |
JP6160386B2 (en) | Fuel cell | |
JP2001102060A (en) | Fuel pole for solid electrolyte fuel electrode | |
JP6917182B2 (en) | Conductive members, electrochemical reaction units, and electrochemical reaction cell stacks | |
JP2004355814A (en) | Solid oxide fuel battery cell and its manufacturing method | |
WO2019167437A1 (en) | Fuel cell | |
CN112638518A (en) | Chromium adsorbent and fuel cell | |
JP2016085921A (en) | Cell support and solid oxide fuel cell | |
JP5317493B2 (en) | Electrochemical cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050126 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060829 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060831 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061030 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061121 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061204 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101222 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111222 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121222 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121222 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131222 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |