[go: up one dir, main page]

JPH06115922A - Method for purifying silicon - Google Patents

Method for purifying silicon

Info

Publication number
JPH06115922A
JPH06115922A JP4268572A JP26857292A JPH06115922A JP H06115922 A JPH06115922 A JP H06115922A JP 4268572 A JP4268572 A JP 4268572A JP 26857292 A JP26857292 A JP 26857292A JP H06115922 A JPH06115922 A JP H06115922A
Authority
JP
Japan
Prior art keywords
silicon
boron
plasma
carbon
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4268572A
Other languages
Japanese (ja)
Other versions
JP3300425B2 (en
Inventor
Kenkichi Yushimo
憲吉 湯下
Hiroyuki Baba
裕幸 馬場
Yasuhiko Sakaguchi
泰彦 阪口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP26857292A priority Critical patent/JP3300425B2/en
Publication of JPH06115922A publication Critical patent/JPH06115922A/en
Application granted granted Critical
Publication of JP3300425B2 publication Critical patent/JP3300425B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/037Purification

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To provide a method for economically purifying silicon to a high-purity one capable of using as a raw material for solar cells in high productivity by removing boron and carbon content from a silicon containing large amounts of boron and carbon, e.g. metal silicon to obtain a purified silicon having lowered contents of them useful as a raw material silicon for solar cells. CONSTITUTION:A melted silicon 1 is put in a vessel made of silica or a material consisting essentially of silica and plasma gas jet 6 is injected to the surface of the melted silicon. Boron and carbon in silicon can be removed in a short time without increasing plasma torch number by keeping an angle theta between the jetting direction 6 of the plasma and the surface at an angle satisfying the equation, 60 deg.>=theta>=10 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、太陽電池原料として使
用することができる高純度のシリコンの精製方法に関す
る。
TECHNICAL FIELD The present invention relates to a method for purifying high-purity silicon that can be used as a raw material for solar cells.

【0002】[0002]

【従来の技術】太陽電池に使用される高純度シリコン
は、例えば比抵抗が0.1Ωcm以上のものが使われる
が、このようなシリコンではシリコン中に含まれる不純
物含有量がppmオーダまで除去されている必要があ
る。これに対して従来種々の技術が検討されているが、
ボロン及び炭素は最も除去しにくい元素である。
2. Description of the Related Art High-purity silicon used in solar cells has, for example, a specific resistance of 0.1 Ωcm or more. In such silicon, the content of impurities contained in silicon is removed to the order of ppm. Need to be. On the other hand, various technologies have been studied,
Boron and carbon are the most difficult elements to remove.

【0003】先に本発明者等が提案した特開平3−10
4342号公報には、シリカ或はシリカを主成分とする
容器内に溶融シリコンを保持し、これにプラズマガスジ
ェットを噴射する方法及び装置が開示されており、シリ
コン中のボロンと炭素が効率よく除去されることについ
て説明した。しかし、特開平3−104342号公報の
技術は、ボロンと炭素の除去反応がシリコン浴のプラズ
マガスジェットが投射される部分で進行するために、処
理時間の短縮には限度があった。このため、より一層短
時間で処理できる、すなわち、反応速度の大きな処理技
術の開発が望まれていた。
Japanese Unexamined Patent Publication No. 3-10 proposed by the present inventors.
Japanese Patent No. 4342 discloses a method and an apparatus for holding a molten silicon in a silica or a container containing silica as a main component and injecting a plasma gas jet into the container, so that boron and carbon in the silicon can be efficiently discharged. It was explained that it will be removed. However, the technique disclosed in Japanese Patent Laid-Open No. 3-104342 has a limit in shortening the processing time because the removal reaction of boron and carbon proceeds in the portion of the silicon bath where the plasma gas jet is projected. For this reason, it has been desired to develop a processing technique capable of processing in a shorter time, that is, having a high reaction rate.

【0004】[0004]

【発明が解決しようとする課題】本発明は、前記問題点
を解決するシリコンの精製方法を提供しようとするもの
である。すなわち、徒にプラズマトーチの本数を増加す
ることなく、シリコン浴のプラズマガスジェットが投射
される部分の面積を増大させ、ボロンと炭素の除去反応
時間を大幅に短縮するシリコン精製方法を提供すること
を課題とするものである。
SUMMARY OF THE INVENTION The present invention is intended to provide a method for purifying silicon which solves the above problems. That is, to provide a silicon refining method that increases the area of a portion of a silicon bath onto which a plasma gas jet is projected, and significantly shortens the boron-carbon removal reaction time without increasing the number of plasma torches. Is an issue.

【0005】[0005]

【課題を解決するための手段】本発明は上述の問題を解
決するものであり、シリカあるいはシリカを主成分とす
る容器内に溶融シリコンを保持し、該溶融シリコンの溶
湯面に、プラズマガスジェットを噴射して不純物を除去
するシリコン精製方法に適用され、次の方法を採った。
すなわち、溶融シリコンの溶湯面に対するプラズマガス
ジェットの噴射角度をθとするとき、 10°≦ θ ≦60° とすることを特徴とするシリコン精製方法である。
Means for Solving the Problems The present invention is to solve the above-mentioned problems, in which molten silicon is held in a container containing silica or silica as a main component, and a plasma gas jet is provided on the molten metal surface of the molten silicon. Was applied to the silicon refining method of removing impurities by adopting the following method.
That is, when the jet angle of the plasma gas jet with respect to the molten metal surface of the molten silicon is θ, it is 10 ° ≦ θ ≦ 60 °.

【0006】[0006]

【作用】容器中のシリコン全体を溶融状態にすること
で、プラズマジェットによるシリコン浴の撹拌を容易に
し、これによってシリコン浴中の不純物、例えばボロ
ン、炭素などが停滞する領域をなくしてボロンや炭素の
除去反応が逐時進行する。特開平3−104342号公
報の方法ではボロン、炭素の除去反応が進行する場所と
して、シリコン溶面にプラズマガスジェットが投射され
る部分が考えられる。本発明者等はボロンの除去反応速
度を向上させるため鋭意研究の結果、反応場所として上
述のプラズマガスジェットが投射される部分が有望であ
るとの結果を得た。
[Function] By making the entire silicon in the container in a molten state, it is possible to easily stir the silicon bath by the plasma jet, thereby eliminating a region where impurities such as boron and carbon in the silicon bath are stagnated, and boron or carbon is removed. The removal reaction of is progressing every moment. In the method disclosed in Japanese Patent Laid-Open No. 3-104342, a portion where the plasma gas jet is projected onto the molten silicon surface is considered as a place where the reaction for removing boron and carbon proceeds. The present inventors have earnestly studied to improve the reaction rate for removing boron, and as a result, obtained the result that the portion where the above-mentioned plasma gas jet is projected is a promising reaction site.

【0007】プラズマガスジェットが投射される部分の
面積を増大させるとボロンの除去反応速度が増大する。
このプラズマガスジェットが投射される部分の面積を増
大させる方法には、プラズマトーチの数を増加する方法
があるが、トーチを傾斜させてシリコン溶湯面とプラズ
マガスジェットのなす角度θを小さくする方法が有効で
ある。シリコン溶湯面とプラズマガスジェットのなす角
度θを小さくする方法は、プラズマトーチの数を増加す
る必要がないため、より安価な処理方法である。
Increasing the area of the portion where the plasma gas jet is projected increases the boron removal reaction rate.
There is a method of increasing the number of plasma torches as a method of increasing the area of the portion on which the plasma gas jet is projected, but a method of inclining the torch to reduce the angle θ formed by the molten silicon surface and the plasma gas jets. Is effective. The method of reducing the angle θ between the molten silicon surface and the plasma gas jet is a cheaper processing method because it is not necessary to increase the number of plasma torches.

【0008】シリコン溶湯面とプラズマガスジェットの
なす角度θを種々変化させてボロンの除去反応速度を調
査した結果、60°を超えるとボロンの除去反応速度に
は大きな差は認められなかった。このため、θは60°
以下が有効である。更には、θを40°以下にするとボ
ロンの除去反応速度の増大はより顕著であり、一層効果
的である。
As a result of investigating the boron removal reaction rate by variously changing the angle θ formed between the molten silicon surface and the plasma gas jet, no significant difference was observed in the boron removal reaction rate above 60 °. Therefore, θ is 60 °
The following are valid: Furthermore, when θ is set to 40 ° or less, the increase in the boron removal reaction rate is more remarkable and more effective.

【0009】θを小さくして行くと、シリコン溶湯面が
激しく運動してくる。特にθが10°より小さいとスプ
ラッシュが著しく増大し、プラズマガスジェット投射を
継続することが困難になってくる。このために実用上は
θは10°以上が望ましい。なお、プラズマを発生させ
るガスには特開平3−104342号公報に開示される
ように、Ar、Ar−Heなどの不活性ガスを使用すれ
ばよい。これに、ボロン、炭素の除去反応を促進させる
ために水蒸気を添加する。
As θ decreases, the molten silicon surface moves violently. In particular, when θ is smaller than 10 °, the splash increases remarkably, and it becomes difficult to continue the plasma gas jet projection. Therefore, in practice, θ is preferably 10 ° or more. As disclosed in JP-A-3-104342, an inert gas such as Ar or Ar-He may be used as the gas for generating plasma. Water vapor is added to this to accelerate the reaction of removing boron and carbon.

【0010】[0010]

【実施例】以下本発明の実施例について説明する。図1
は、本発明を好適に実施するシリコン精製装置の縦断面
の説明図である。溶融シリコン1はシリカのスタンプ3
と断熱ライニング4で構成させる容器内部に保持されて
おり、その外側に誘導加熱コイル2が装着されている。
溶融シリコンの上方にプラズマトーチ5が設置されてお
り、これより噴射されるプラズマジェット6がシリコン
溶湯面に角度θで投射される。なお、プラズマジェット
6には図示していない補助管から水蒸気が添加される。
EXAMPLES Examples of the present invention will be described below. Figure 1
FIG. 3 is an explanatory view of a vertical cross section of a silicon refining apparatus that preferably implements the present invention. Fused silicon 1 is silica stamp 3
It is held inside a container constituted by the heat insulating lining 4, and the induction heating coil 2 is attached to the outside thereof.
A plasma torch 5 is installed above the molten silicon, and a plasma jet 6 jetted from the plasma torch 5 is projected onto the molten silicon surface at an angle θ. Water vapor is added to the plasma jet 6 from an auxiliary pipe (not shown).

【0011】このシリコン精製装置を用い、内径120
mm、深さ90mmの容器中で金属シリコン2kgを誘
導加熱で溶解し、これに30KWの非移送型プラズマト
ーチ5で発生したプラズマジェット6をシリコン浴表面
のほぼ中央にθ=90°で投射した。このとき、溶融シ
リコン1中のボロンの濃度変化は図2に示すように観察
された。なお、このときのプラズマ発生ガスにはAr1
5Nl/minを使用し、水蒸気5%を添加した。
Using this silicon refining apparatus, an inner diameter of 120
2 kg of metallic silicon was melted by induction heating in a container having a depth of 90 mm and a depth of 90 mm, and a plasma jet 6 generated by a 30 KW non-transfer type plasma torch 5 was projected onto the surface of the silicon bath at an angle of θ = 90 °. . At this time, a change in the concentration of boron in the molten silicon 1 was observed as shown in FIG. Ar1 is used as the plasma generating gas at this time.
5 Nl / min was used and 5% steam was added.

【0012】シリコン精製装置、プラズマ発生条件を上
記と同一として角度θのみを、60°、40°と変化さ
せると、溶融シリコン中のボロン濃度は図2に示すよう
に観察され、角度θ=90°のときよりも脱ボロン反応
速度は増大した。脱ボロン反応は図2に示されるよう
に、下記(1)式のようにボロンの一次反応として観察
された。
When the silicon refining apparatus and the plasma generation conditions are the same as the above and only the angle θ is changed to 60 ° and 40 °, the boron concentration in the molten silicon is observed as shown in FIG. 2, and the angle θ = 90. The deboron reaction rate increased more than at 0 °. As shown in FIG. 2, the deboron reaction was observed as a primary reaction of boron as shown in the following formula (1).

【0013】 −d[B]/dt=k[B]+C …(1) ここに、 [B]:シリコン中のボロン濃度(ppmw) t:時間(min) k:係数で、水蒸気の添加量の関数になる。-D [B] / dt = k [B] + C (1) where [B]: boron concentration in silicon (ppmw) t: time (min) k: coefficient, amount of water vapor added Becomes a function of.

【0014】C:定数 式(1)のkが脱ボロン反応速度係数となり、この値が
大きい程効率よくボロンが除去されることになる。さら
に、角度θを変化させて検討したところ、係数kは角度
θによって変化し、θが60°以下で脱ボロン反応が好
適に進行することが判明した。さらに、θが40°以下
がより好適な条件である。すなわち、図3に示すよう
に、角度θを60°以下にすることで脱ボロン反応速度
が増大することが分った。θ>60°の場合は、θ=9
0°すなわち、溶湯面に垂直に投射する場合に比べて脱
ボロン反応速度に著しい増大は観察されず、実用上θ>
60°(〜90°)は限定する必然性に乏しい。
C: constant k in the formula (1) becomes a deboron reaction rate coefficient, and the larger this value, the more efficiently boron is removed. Furthermore, when the angle θ was changed and examined, it was found that the coefficient k was changed depending on the angle θ, and the deboron reaction proceeded favorably when θ was 60 ° or less. Further, θ is a more preferable condition of 40 ° or less. That is, as shown in FIG. 3, it was found that the deboron reaction rate was increased by setting the angle θ to 60 ° or less. If θ> 60 °, θ = 9
0 °, that is, no significant increase in the deboron reaction rate was observed compared to the case of projecting perpendicularly to the molten metal surface, and θ>
60 ° (-90 °) is less inevitable to limit.

【0015】<比較例>図1に示す装置を用い、金属シ
リコン2kgを内径120mm、深さ90mmに内張さ
れたシリカスタンプ容器の中で誘導加熱によって溶解し
た。これに30KWのプラズマトーチで発生したプラズ
マジェットをθ=90°で投射した。シリコン中のボロ
ン、炭素の濃度は表1に示すように変化した。
Comparative Example Using the apparatus shown in FIG. 1, 2 kg of metallic silicon was melted by induction heating in a silica stamp container lined with an inner diameter of 120 mm and a depth of 90 mm. A plasma jet generated by a 30 KW plasma torch was projected onto this at θ = 90 °. The concentrations of boron and carbon in silicon changed as shown in Table 1.

【0016】<実施例1>比較例と全く同一の装置を用
い、金属シリコン2kgを比較例と同一条件で溶解し、
これに比較例と同様にプラズマジェットをθ=60°で
投射した。シリコン中のボロン、炭素の濃度は表1に示
すように変化した。脱ボロン反応速度は比較例の約2倍
に向上した。
<Example 1> Using the same apparatus as in the comparative example, 2 kg of metallic silicon was melted under the same conditions as in the comparative example.
Onto this, a plasma jet was projected at θ = 60 ° similarly to the comparative example. The concentrations of boron and carbon in silicon changed as shown in Table 1. The deboron reaction rate was improved to about twice that of the comparative example.

【0017】<実施例2>比較例、実施例1と同一の装
置を用い、金属シリコン2kgを同一条件で溶解し、こ
れに同様にプラズマジェットをθ=40°で投射した。
シリコン中のボロン、炭素の濃度は表1に示すように変
化した。
Example 2 Using the same apparatus as in Comparative Example and Example 1, 2 kg of metallic silicon was melted under the same conditions, and a plasma jet was similarly projected at θ = 40 °.
The concentrations of boron and carbon in silicon changed as shown in Table 1.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【発明の効果】本発明は太陽電池原料として使用される
高純度シリコンを経済的に製造する方法を提供するもの
で、本発明を実施することによって、安価な金属シリコ
ンを出発原料とし短時間でボロン、炭素を除去して高純
度シリコンを製造することができるようになり、従来高
価な半導体用シリコンを用いていた太陽電池の低コスト
化を可能とする。本発明は、これによって太陽電池利用
を大きく進展させることができる等、社会的にも多大の
貢献をもたらす技術である。
INDUSTRIAL APPLICABILITY The present invention provides a method for economically producing high-purity silicon used as a solar cell raw material. By carrying out the present invention, inexpensive metallic silicon is used as a starting raw material in a short time. It becomes possible to manufacture high-purity silicon by removing boron and carbon, and it is possible to reduce the cost of a solar cell that has conventionally used expensive silicon for semiconductors. The present invention is a technology that makes a great contribution to society, such that it can greatly improve the use of solar cells.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を好適に実施するシリコン精製装置の縦
断面の説明図である。
FIG. 1 is an explanatory view of a vertical cross section of a silicon refining apparatus that preferably implements the present invention.

【図2】図1に示す装置でシリコンの精製を行った際の
シリコン中のボロン濃度の経時変化を示すグラフであ
る。
FIG. 2 is a graph showing the change over time in the boron concentration in silicon when silicon is purified by the apparatus shown in FIG.

【図3】速度係数kと角度θとの関係グラフである。FIG. 3 is a relationship graph between a speed coefficient k and an angle θ.

【符号の説明】[Explanation of symbols]

1 溶融シリコン 2 誘導加熱コイル 3 シリカスタンプ 4 断熱ライニング 5 プラズマトーチ 6 プラズマジェット 7 シリコンの流れ θ 角度 k 速度係数 1 Molten Silicon 2 Induction Heating Coil 3 Silica Stamp 4 Adiabatic Lining 5 Plasma Torch 6 Plasma Jet 7 Silicon Flow θ Angle k Velocity Coefficient

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 シリカあるいはシリカを主成分とする容
器内に溶融シリコンを保持し、該溶融シリコンの溶湯面
に、プラズマガスジェットを噴射して不純物を除去する
シリコン精製方法において、 該溶融シリコンの溶湯面に対する該プラズマガスジェッ
トのなす角度をθとするとき、 10°≦ θ ≦60° とすることを特徴とするシリコン精製方法。
1. A method for purifying silicon in which molten silicon is held in silica or a container containing silica as a main component, and a plasma gas jet is jetted onto a molten metal surface of the molten silicon to remove impurities. A method for purifying silicon, characterized in that when the angle formed by the plasma gas jet with respect to the surface of the molten metal is θ, 10 ° ≦ θ ≦ 60 °.
JP26857292A 1992-10-07 1992-10-07 Silicon purification method Expired - Fee Related JP3300425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26857292A JP3300425B2 (en) 1992-10-07 1992-10-07 Silicon purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26857292A JP3300425B2 (en) 1992-10-07 1992-10-07 Silicon purification method

Publications (2)

Publication Number Publication Date
JPH06115922A true JPH06115922A (en) 1994-04-26
JP3300425B2 JP3300425B2 (en) 2002-07-08

Family

ID=17460387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26857292A Expired - Fee Related JP3300425B2 (en) 1992-10-07 1992-10-07 Silicon purification method

Country Status (1)

Country Link
JP (1) JP3300425B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0855367A1 (en) * 1997-01-22 1998-07-29 Kawasaki Steel Corporation Method for removing boron from metallurgical grade silicon and apparatus
FR2772741A1 (en) * 1997-12-19 1999-06-25 Centre Nat Rech Scient Silicon refining process for industrial mass production of photovoltaic cell grade silicon
JP2010269992A (en) * 2009-05-25 2010-12-02 Wonik Materials Co Ltd Method and apparatus for refining metallic silicon
WO2011034172A1 (en) * 2009-09-18 2011-03-24 株式会社アルバック Silicon purification method and silicon purification apparatus
CN115872408A (en) * 2022-10-19 2023-03-31 北京理工大学 Quartz sand purification method based on thermal plasma jet

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0855367A1 (en) * 1997-01-22 1998-07-29 Kawasaki Steel Corporation Method for removing boron from metallurgical grade silicon and apparatus
FR2772741A1 (en) * 1997-12-19 1999-06-25 Centre Nat Rech Scient Silicon refining process for industrial mass production of photovoltaic cell grade silicon
WO1999032402A1 (en) * 1997-12-19 1999-07-01 Centre National De La Recherche Scientifique Method and installation for refining silicon
JP2010269992A (en) * 2009-05-25 2010-12-02 Wonik Materials Co Ltd Method and apparatus for refining metallic silicon
WO2011034172A1 (en) * 2009-09-18 2011-03-24 株式会社アルバック Silicon purification method and silicon purification apparatus
CN102482105A (en) * 2009-09-18 2012-05-30 株式会社爱发科 Silicon purification method and silicon purification apparatus
JP5438768B2 (en) * 2009-09-18 2014-03-12 株式会社アルバック Silicon purification method and silicon purification apparatus
KR101395012B1 (en) * 2009-09-18 2014-05-14 가부시키가이샤 아루박 Silicon purification method and silicon purification apparatus
US8778143B2 (en) 2009-09-18 2014-07-15 Ulvac, Inc. Silicon purification method and silicon purification device
CN102482105B (en) * 2009-09-18 2015-01-21 株式会社爱发科 Silicon purification method and silicon purification apparatus
TWI494274B (en) * 2009-09-18 2015-08-01 Ulvac Inc Method and apparatus for refining silicon
EP2479144A4 (en) * 2009-09-18 2015-12-02 Ulvac Inc Silicon purification method and silicon purification apparatus
CN115872408A (en) * 2022-10-19 2023-03-31 北京理工大学 Quartz sand purification method based on thermal plasma jet
CN115872408B (en) * 2022-10-19 2023-08-11 北京理工大学 A method for purifying quartz sand based on thermal plasma jet

Also Published As

Publication number Publication date
JP3300425B2 (en) 2002-07-08

Similar Documents

Publication Publication Date Title
JP3325900B2 (en) Method and apparatus for producing polycrystalline silicon, and method for producing silicon substrate for solar cell
JP3205352B2 (en) Silicon purification method and apparatus
NO335984B1 (en) Process for producing photovoltaic-grade silicon
KR100275973B1 (en) Method for removing boron from metallurgical grade silicon and apparatus
US8673073B2 (en) Methods for purifying metallurgical silicon
NO171778B (en) PROCEDURE FOR REFINING SILICONE
JP5140835B2 (en) Manufacturing method of high purity silicon
WO1998016466A1 (en) Process and apparatus for preparing polycrystalline silicon and process for preparing silicon substrate for solar cell
KR100935959B1 (en) How to make high purity silicon
AU2008282166A1 (en) Process for the production of high purity elemental silicon
JPH06115922A (en) Method for purifying silicon
JP3848816B2 (en) High-purity metal purification method and apparatus
JPH04193706A (en) Refining method for silicon
JPH10273313A (en) Production of polycrystal silicon ingot
JPH05262512A (en) Purification of silicon
JP5379583B2 (en) Manufacturing method of ultra high purity alloy ingot
JP2846408B2 (en) Silicon purification method
JPH09202611A (en) Removal of boron from metallic silicon
JP2010052960A (en) Method for production of high-purity silicon, production apparatus, and high-purity silicon
JPH07267624A (en) Purification of silicon and apparatus therefor
JPH10139415A (en) Solidification and purification of molten silicon
JP2538044B2 (en) Metal silicon decarburizing lance and decarburizing method
JPH0925522A (en) Method for producing high-purity metallic material
US9352970B2 (en) Method for producing silicon for solar cells by metallurgical refining process
JPH10251008A (en) Method for solidifying and refining metal silicon

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020409

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080419

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090419

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090419

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100419

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees