JPH06100677B2 - X-ray diffractometer - Google Patents
X-ray diffractometerInfo
- Publication number
- JPH06100677B2 JPH06100677B2 JP1133236A JP13323689A JPH06100677B2 JP H06100677 B2 JPH06100677 B2 JP H06100677B2 JP 1133236 A JP1133236 A JP 1133236A JP 13323689 A JP13323689 A JP 13323689A JP H06100677 B2 JPH06100677 B2 JP H06100677B2
- Authority
- JP
- Japan
- Prior art keywords
- target
- ray
- electron beam
- sample
- arc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
Description
本発明は機械的な運動部分のないX線回折装置に関す
る。The present invention relates to an X-ray diffractometer without mechanical moving parts.
従来のX線回折装置はX線源を一個所に固定し、試料と
X線検出器とを、試料の回転角に対してX線検出器を2
倍角だけ回転させる関係で回転させる機械的な機構であ
るゴニオメータを主要部分として構成されている。 従来のX線回折装置において、ゴニオメータは試料とX
線検出器との位置関係を精密に規定し、かつその角位置
を精密に検出できることが必要であるため、高い構造精
度を要求される機構である。このため高速駆動が困難で
あり、摺動部分の摩耗のため長期使用に当って装置の安
定性に問題があり、機構的なバックラッシュのため、測
定時の運動方向を常に一定にしておかねばならない(測
定中に往復運動を行い、往行程でも復行程でも測定する
と云うようなことができない)と云った機構上の問題が
ある。またX線源が一個所だけであるから、強力なX線
を得ようとすると、ターゲットが熱的に破壊されてしま
うので、強力なX線を得るためには回転陽極を持ったX
線源を用いる必要がある。In the conventional X-ray diffractometer, the X-ray source is fixed at one place, the sample and the X-ray detector are arranged, and two X-ray detectors are provided for the rotation angle of the sample.
The main part is a goniometer, which is a mechanical mechanism that rotates a double angle. In a conventional X-ray diffractometer, the goniometer is a
Since it is necessary to precisely define the positional relationship with the line detector and to accurately detect its angular position, this is a mechanism that requires high structural accuracy. For this reason, it is difficult to drive at high speed, and there is a problem with the stability of the device during long-term use due to wear of the sliding parts.Because of mechanical backlash, the movement direction during measurement must always be kept constant. There is a mechanical problem that it cannot be performed (it cannot be said that reciprocating motion is performed during measurement and measurement is made in both forward and backward strokes). Also, since there is only one X-ray source, the target will be thermally destroyed when trying to obtain strong X-rays.
It is necessary to use a radiation source.
上述したようにゴニオメータを用いた従来のX線回折装
置は機械的な制約から、高速運転が困難、長期安定性が
乏しい、測定のための運動に制限がある等の問題があ
り、X線源が単一固定であるため強力なX線を得ること
が困難と云う問題がある。本発明はX線回折装置から機
械的運動部分を全く或は一部なくすことにより、上述し
た諸問題を解消し装置全体として軽量化しようとするも
のである。As described above, the conventional X-ray diffractometer using the goniometer has problems such as difficulty in high-speed operation, poor long-term stability, and limited movement for measurement due to mechanical restrictions. However, there is a problem in that it is difficult to obtain a strong X-ray because it is a single fixation. The present invention aims to solve the above-mentioned problems and to reduce the weight of the entire apparatus by eliminating mechanical movement parts or a part thereof from the X-ray diffraction apparatus.
電子銃の光軸を軸とする円周に沿って部分円弧状のター
ゲットを配置し、電子銃と上記ターゲットとの間に、電
子ビームを上記ターゲット上に入射するように回曲さ
せ、かつ同電子ビームのターゲット上入射位置が電子銃
の光軸を軸とする円周に沿って移動するように偏向させ
る電子ビーム偏向手段を配置し、上記円弧状ターゲット
と対向させ、円弧中心を共有させて部分円弧状の位置敏
感型X線検出器を配置し、上記ターゲットおよびX線検
出器の共通円弧中心上に試料を位置させるようにした。A partially arcuate target is arranged along the circumference with the optical axis of the electron gun as an axis, and the electron beam is bent between the electron gun and the target so as to be incident on the target, and Electron beam deflecting means for deflecting the incident position of the electron beam on the target so as to move along the circumference around the optical axis of the electron gun is arranged so as to face the arc target and share the arc center. A partially arcuate position-sensitive X-ray detector was arranged so that the sample was positioned on the center of the common arc of the target and the X-ray detector.
電子銃と円弧状のターゲットによりX線源が構成されて
いる。電子ビーム偏向手段によりターゲット上の電子ビ
ーム入射位置は電子銃の光軸を軸とする円弧上を移動す
る。この動作は一つのX線源を円周上で移動させるのと
同じ結果をもたらす。X線検出器として位置敏感型X線
検出器を用い、このX線検出器がターゲットと平行した
円弧状てあり、試料がターゲットおよびX線検出器の円
弧中心に置かれているので、ターゲット上の電子ビーム
入射位置の移動により、試料へのX線入射角が変化し、
これはゴニオメータ上における試料の回転に相当する。
この試料から回折反射されるX線は円弧状のX線検出器
に入射し検出されるので、X線検出器を動かさなくても
回折X線を検出することができ、X線検出器が位置敏感
型であるので、X線の回折角を検出することができ、全
体として機械的な運動部分を全く有しないでX線回折の
測定が可能となる。ターゲットは固定しているが、電子
ビーム入射位置が変わるので、ターゲット上の一点の電
子流負荷の時間的平均は従来の固定ターゲット式のX線
源に比し著しく小さくなり、強力X線を得るのが大変容
易になる。An X-ray source is composed of an electron gun and an arc-shaped target. The electron beam deflecting means moves the electron beam incident position on the target on an arc about the optical axis of the electron gun. This action has the same result as moving one X-ray source around the circumference. A position-sensitive X-ray detector is used as the X-ray detector. This X-ray detector has an arc shape parallel to the target, and the sample is placed at the center of the arc of the target and the X-ray detector. The X-ray incident angle on the sample changes due to the movement of the electron beam incident position of
This corresponds to the rotation of the sample on the goniometer.
The X-rays diffracted and reflected from this sample are incident on and detected by the arc-shaped X-ray detector, so that it is possible to detect the diffracted X-rays without moving the X-ray detector. Since it is a sensitive type, it is possible to detect the X-ray diffraction angle, and it is possible to measure X-ray diffraction without having any mechanical moving parts as a whole. The target is fixed, but the electron beam incident position changes, so the time average of the electron flow load at one point on the target is significantly smaller than that of the conventional fixed target type X-ray source, and strong X-rays are obtained. It becomes very easy.
第1図第2図は本発明の一実施例を示す。GはX線源で
1はその真空外筐である。外筐1は頂点から管状部が延
出している円錐形で円錐形部分は第2図に示すように全
円周の一部のみよりなっており、管状部内に電子銃2お
よび収束レンズ3が共軸的に収納されており、円錐部の
底面周辺に円周状にターゲット4が配置されている。外
筐1の管状部の円錐部に近い端の外側に電子ビームをX,
Y方向に偏向させる偏向コイル5が設けられている。こ
の偏向コイルにより電子ビームは図のようにターゲット
4に向けて曲げられ、偏向コイルのX,Y各偏向コイル部
分に90°位相のずれた正弦波偏向信号を印加することに
より電子ビームを電子銃2の光軸を軸とする円錐面内で
旋回させることができる。外筐1の円錐形の底面部は段
状に凹ませてあり、この凹部外周にX線透過窓6が周設
してある。ターゲット4は環形の一部をなす一体物で、
中に冷却水の流通する通路41が設けてある。外筐1の段
状凹部の内側に円周に沿ってX線入射リスト7が配置さ
れている。このスリットは第3図に示すように全円周に
沿い放射状に並べられたブレード71とこのブレードを保
持する2枚以上の円錐帯状の板72とで構成されている。
このスリットにより、ターゲット4の電子ビーム照射域
から放射されるX線のうち、電子銃2の光軸延長線と直
交するX線ビームのみが取出される。電子銃2の光軸延
長線上で上記X線ビームと交わる点Pに中心を位置させ
て試料Sが置かれるようになっている。8は半環状X線
検出器で第2図に示されるように、円周の一部をなす形
であり、外筐1の円錐形の欠除部にターゲット4と対抗
して置かれている。このX線検出器は位置敏感型X線検
出器である。 上述した構成によって電子ビームを偏向させると第2図
においてX線の試料Sへの入射角αが変化する。X線検
出器8は位置敏感型であるので、回折X線の入射点の角
位置が検出され、試料Sからの回折X線の方位角βが分
かる。α+βは試料結晶の或る格子面による回折角であ
る。そこで例えば電子ビームの偏向と同期して、入射角
αに対し、検出器8で方位角αにおける検出出力を取る
と、第2図で試料面に平行な格子面についての回折反射
X線を検出できる。 電子ビームはターゲットう上を円周方向に走査するよう
に或る角範囲だけで偏向させてもよいが、その場合、偏
向信号の形が面倒になる上、電子ビームがスタート位置
に戻るとき電子ビームをカットする必要がある。従って
電子ビーム自体は円錐の全周に沿って回転偏向させると
よい。1 and 2 show an embodiment of the present invention. G is an X-ray source and 1 is its vacuum outer casing. The outer casing 1 has a conical shape in which a tubular portion extends from the apex, and the conical portion consists of only a part of the entire circumference as shown in FIG. 2, and the electron gun 2 and the converging lens 3 are provided in the tubular portion. The targets 4 are housed coaxially, and the targets 4 are circumferentially arranged around the bottom surface of the conical portion. The electron beam X is emitted outside the end of the outer casing 1 near the conical portion of the tubular portion,
A deflection coil 5 for deflecting in the Y direction is provided. By this deflection coil, the electron beam is bent toward the target 4 as shown in the figure, and a sine wave deflection signal with a 90 ° phase shift is applied to each of the X and Y deflection coil portions of the deflection coil so that the electron beam is emitted by the electron gun. It is possible to rotate in a conical surface having the optical axis of 2 as an axis. The conical bottom surface of the outer casing 1 is recessed in steps, and an X-ray transmission window 6 is provided around the outer periphery of the recess. The target 4 is an integral part of a ring shape,
A passage 41 through which cooling water flows is provided therein. An X-ray incidence list 7 is arranged inside the stepped recess of the outer casing 1 along the circumference. As shown in FIG. 3, this slit is composed of blades 71 radially arranged along the entire circumference and two or more conical strip-shaped plates 72 holding the blades.
With this slit, of the X-rays emitted from the electron beam irradiation area of the target 4, only the X-ray beam orthogonal to the optical axis extension line of the electron gun 2 is extracted. A sample S is placed with its center located at a point P intersecting the X-ray beam on the extension line of the electron gun 2. Reference numeral 8 denotes a semi-circular X-ray detector, which has a shape forming a part of the circumference as shown in FIG. 2, and is placed in the conical notch of the outer casing 1 so as to face the target 4. . This X-ray detector is a position-sensitive X-ray detector. When the electron beam is deflected by the configuration described above, the incident angle α of the X-ray on the sample S changes in FIG. Since the X-ray detector 8 is a position sensitive type, the angular position of the incident point of the diffracted X-ray is detected, and the azimuth angle β of the diffracted X-ray from the sample S is known. α + β is a diffraction angle due to a certain lattice plane of the sample crystal. Therefore, for example, in synchronism with the deflection of the electron beam, when the detector 8 takes the detection output at the azimuth angle α with respect to the incident angle α, the diffracted reflection X-rays on the lattice plane parallel to the sample plane are detected in FIG. it can. The electron beam may be deflected only within a certain angular range so that it scans over the target in the circumferential direction, but in that case, the shape of the deflection signal becomes troublesome, and when the electron beam returns to the start position, The beam needs to be cut. Therefore, it is advisable to rotate and deflect the electron beam itself along the entire circumference of the cone.
本発明は必要に応じて試料の傾を変える以外は機械的な
運動部分を全く有しないから高速の角度走査が可能であ
り、また摩耗,バックラッシュ等に伴う問題もなく、耐
久的であり、X線源はターゲット上を電子照射点が移動
するから容易に強いX線を得ることができ、回転陽極型
X線源と異りターゲットが固定されているから冷却も容
易でありゴニオメータのような重量機構がないので装置
全体が軽量化できる。The present invention is capable of high-speed angular scanning because it has no mechanical moving parts other than changing the inclination of the sample as necessary, and is durable without problems such as wear and backlash. The X-ray source can easily obtain strong X-rays because the electron irradiation point moves on the target, and unlike the rotating anode X-ray source, the target is fixed, so it is easy to cool and it is similar to a goniometer. Since there is no weight mechanism, the weight of the entire device can be reduced.
第1図は本発明の一実施例の側面断面図、第2図は同じ
く要部正面図、第3図は同じくスリットの正面図であ
る。 1……外筐、2……電子銃、3……収束レンズ、4……
ターゲット、5……偏向コイル、6……X線透過窓、7
……X線入射スリット、8……X線検出器、S……試
料。FIG. 1 is a side sectional view of an embodiment of the present invention, FIG. 2 is a front view of a relevant portion, and FIG. 3 is a front view of a slit. 1 ... Outer casing, 2 ... Electron gun, 3 ... Converging lens, 4 ...
Target, 5 ... Deflection coil, 6 ... X-ray transmission window, 7
...... X-ray incident slit, 8 ... X-ray detector, S ... Sample.
Claims (1)
円弧状のターゲットを配置し、電子銃と上記ターゲット
との間に、電子ビームを上記ターゲットに入射する方向
に回曲すると共に同電子ビームのターゲット入射点がタ
ーゲット上を電子銃の光軸を軸とする円周に沿って移動
するように偏向させる電子ビーム偏向手段を配置し、上
記部分円弧状ターゲットと円弧中心を共有させ、円弧面
を上記光軸と直交させて部分円弧状の位置敏感型X線検
出器を上記ターゲットと対向するように配置し、上記タ
ーゲットおよびX線検出器の共通円弧中心上に試料を位
置させるようにしたことを特徴とするX線回折装置。1. A partially arcuate target is arranged along a circumference having an optical axis of the electron gun as an axis, and an electron beam is bent between the electron gun and the target in a direction in which the electron beam is incident on the target. At the same time, the electron beam deflecting means for deflecting the electron beam so that the target incident point of the electron beam moves on the target along the circumference having the optical axis of the electron gun as the axis, the partial arc-shaped target and the arc center are arranged. A position sensitive type X-ray detector having a partial arc shape is disposed so as to be shared and the arc surface is orthogonal to the optical axis, and the sample is placed on the common arc center of the target and the X-ray detector. An X-ray diffractometer characterized by being positioned.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1133236A JPH06100677B2 (en) | 1989-05-26 | 1989-05-26 | X-ray diffractometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1133236A JPH06100677B2 (en) | 1989-05-26 | 1989-05-26 | X-ray diffractometer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02310499A JPH02310499A (en) | 1990-12-26 |
JPH06100677B2 true JPH06100677B2 (en) | 1994-12-12 |
Family
ID=15099894
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1133236A Expired - Lifetime JPH06100677B2 (en) | 1989-05-26 | 1989-05-26 | X-ray diffractometer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06100677B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19900346A1 (en) * | 1999-01-07 | 2000-07-13 | Europ Lab Molekularbiolog | Precision sample turning device |
CN106298403B (en) * | 2016-08-29 | 2018-03-30 | 中航动力股份有限公司 | A kind of electron beam sympodium method of calibration |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53117379A (en) * | 1977-03-23 | 1978-10-13 | Nec Corp | Production of resin material for sealing of semiconductor devices |
JPS5844075B2 (en) * | 1978-06-23 | 1983-09-30 | 積水化学工業株式会社 | Method for manufacturing paperboard containers |
JPS6122241A (en) * | 1984-07-11 | 1986-01-30 | Rigaku Denki Kk | X-ray analytical apparatus |
-
1989
- 1989-05-26 JP JP1133236A patent/JPH06100677B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH02310499A (en) | 1990-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4991189A (en) | Collimation apparatus for x-ray beam correction | |
CA2823121C (en) | Scanning device and method for back-scatter imaging with a radiation beam | |
US4923263A (en) | Rotating mirror optical scanning device | |
US3940625A (en) | Apparatus for examining objects by means of penetrating radiation | |
CN103558240B (en) | A kind of scanister of imaging beam and method | |
US5509043A (en) | Asymmetrical 4-crystal monochromator | |
CN109709118B (en) | Soller slit, X-ray diffraction apparatus and method | |
EP1400983B1 (en) | Collimation system for dual slice electron beam tomography scanner | |
JP2001021507A (en) | Xafs measuring apparatus | |
JP5697430B2 (en) | X-ray imaging device | |
JPH06100677B2 (en) | X-ray diffractometer | |
JP2554026B2 (en) | Michelson interferometer | |
US5434696A (en) | Active energy diametric scanning | |
US5442673A (en) | Fixed septum collimator for electron beam tomography | |
EP3246695B1 (en) | X-ray scattering apparatus | |
GB1596544A (en) | Apparatus for determining the position of a remote object | |
JPH0530278Y2 (en) | ||
JP3250627B2 (en) | Distance measuring device | |
US4178505A (en) | Device for determining the direction towards a remote object | |
US4245156A (en) | Apparatus for monitoring the optical quality of a beam radiation | |
JPH06294899A (en) | Curved total reflection mirror camera | |
US3427451A (en) | X-ray diffractometer having several detectors movable on a goniometer circle | |
JP3150167B2 (en) | Asymmetric X-ray diffraction method | |
JP4155538B2 (en) | X-ray measuring apparatus and X-ray measuring method | |
SU763750A1 (en) | Device for high-speed x-ray structural analysis |