JPH0587523B2 - - Google Patents
Info
- Publication number
- JPH0587523B2 JPH0587523B2 JP58205984A JP20598483A JPH0587523B2 JP H0587523 B2 JPH0587523 B2 JP H0587523B2 JP 58205984 A JP58205984 A JP 58205984A JP 20598483 A JP20598483 A JP 20598483A JP H0587523 B2 JPH0587523 B2 JP H0587523B2
- Authority
- JP
- Japan
- Prior art keywords
- polypropylene
- polymerization
- polymer
- molecular weight
- added
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004743 Polypropylene Substances 0.000 claims description 48
- -1 Polypropylene Polymers 0.000 claims description 40
- 229920001155 polypropylene Polymers 0.000 claims description 37
- 238000000354 decomposition reaction Methods 0.000 claims description 14
- 238000001746 injection moulding Methods 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 238000011282 treatment Methods 0.000 claims description 6
- 238000000465 moulding Methods 0.000 claims description 3
- 238000006116 polymerization reaction Methods 0.000 description 38
- 229920000642 polymer Polymers 0.000 description 34
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 20
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 17
- 238000000034 method Methods 0.000 description 17
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 15
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 15
- 239000000047 product Substances 0.000 description 13
- 239000002002 slurry Substances 0.000 description 13
- 238000009826 distribution Methods 0.000 description 12
- 239000007789 gas Substances 0.000 description 11
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 238000002347 injection Methods 0.000 description 8
- 239000007924 injection Substances 0.000 description 8
- 239000012071 phase Substances 0.000 description 8
- 150000001451 organic peroxides Chemical class 0.000 description 7
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 6
- 239000005977 Ethylene Substances 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 238000004817 gas chromatography Methods 0.000 description 5
- 230000000704 physical effect Effects 0.000 description 5
- 239000003963 antioxidant agent Substances 0.000 description 4
- 230000003078 antioxidant effect Effects 0.000 description 4
- 239000008346 aqueous phase Substances 0.000 description 4
- 229920001400 block copolymer Polymers 0.000 description 4
- 239000012760 heat stabilizer Substances 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000000314 lubricant Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000008188 pellet Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- KDGNCLDCOVTOCS-UHFFFAOYSA-N (2-methylpropan-2-yl)oxy propan-2-yl carbonate Chemical compound CC(C)OC(=O)OOC(C)(C)C KDGNCLDCOVTOCS-UHFFFAOYSA-N 0.000 description 2
- UBRWPVTUQDJKCC-UHFFFAOYSA-N 1,3-bis(2-tert-butylperoxypropan-2-yl)benzene Chemical compound CC(C)(C)OOC(C)(C)C1=CC=CC(C(C)(C)OOC(C)(C)C)=C1 UBRWPVTUQDJKCC-UHFFFAOYSA-N 0.000 description 2
- DMWVYCCGCQPJEA-UHFFFAOYSA-N 2,5-bis(tert-butylperoxy)-2,5-dimethylhexane Chemical compound CC(C)(C)OOC(C)(C)CCC(C)(C)OOC(C)(C)C DMWVYCCGCQPJEA-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- ZQMIGQNCOMNODD-UHFFFAOYSA-N diacetyl peroxide Chemical compound CC(=O)OOC(C)=O ZQMIGQNCOMNODD-UHFFFAOYSA-N 0.000 description 2
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 229920001384 propylene homopolymer Polymers 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- QEQBMZQFDDDTPN-UHFFFAOYSA-N (2-methylpropan-2-yl)oxy benzenecarboperoxoate Chemical compound CC(C)(C)OOOC(=O)C1=CC=CC=C1 QEQBMZQFDDDTPN-UHFFFAOYSA-N 0.000 description 1
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 1
- WFUGQJXVXHBTEM-UHFFFAOYSA-N 2-hydroperoxy-2-(2-hydroperoxybutan-2-ylperoxy)butane Chemical compound CCC(C)(OO)OOC(C)(CC)OO WFUGQJXVXHBTEM-UHFFFAOYSA-N 0.000 description 1
- TVWBTVJBDFTVOW-UHFFFAOYSA-N 2-methyl-1-(2-methylpropylperoxy)propane Chemical compound CC(C)COOCC(C)C TVWBTVJBDFTVOW-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- SPTHWAJJMLCAQF-UHFFFAOYSA-M ctk4f8481 Chemical compound [O-]O.CC(C)C1=CC=CC=C1C(C)C SPTHWAJJMLCAQF-UHFFFAOYSA-M 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000012933 diacyl peroxide Substances 0.000 description 1
- YNLAOSYQHBDIKW-UHFFFAOYSA-M diethylaluminium chloride Chemical compound CC[Al](Cl)CC YNLAOSYQHBDIKW-UHFFFAOYSA-M 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 150000002432 hydroperoxides Chemical class 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 229920005606 polypropylene copolymer Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- SWAXTRYEYUTSAP-UHFFFAOYSA-N tert-butyl ethaneperoxoate Chemical compound CC(=O)OOC(C)(C)C SWAXTRYEYUTSAP-UHFFFAOYSA-N 0.000 description 1
- YONPGGFAJWQGJC-UHFFFAOYSA-K titanium(iii) chloride Chemical compound Cl[Ti](Cl)Cl YONPGGFAJWQGJC-UHFFFAOYSA-K 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Landscapes
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
Description
本発明は、光沢むらの発生を防止したポリプロ
ビレン成形品の製造方法に関する。
ポリプロピレンは、一般に繊維、フイルム、シ
ート、構造体などの成形品として広く利用されて
いるが、成形条件などにより射出成形品表面に光
沢むらが発生し、その商品価値を著しく低下させ
るという問題を有する。特に最近注目されている
技術として、分子量の大きいポリマーを製造して
おき、これを例えばラジカルの作用によつて分解
して分子量を低減させ、所望の分子量を有するポ
リプロピレンを得る方法があるが、この方法によ
つて得られたポリプロピレン(以下、分解PPと
もいう)を用いて射出成形品を製造する場合、光
沢むらの発生が顕著である。
本発明者等は、ポリプロピレンの射出成形品を
製造する際の光沢むらの防止について鋭意研究を
重ねてきた。その結果、ポリプロピレンの分子量
分布が、該ポリプロピレンの射出成形品表面にお
ける光沢むらに著しい影響を与えるという知見を
得た。即ち、ポリプロピレンは分解により分子量
の低減と共に分子量分布も狭くなるが、該分子量
分布が狭くなるに連れて前記問題が顕著に表われ
る。本発明はかかる知見に基づくもので、分子量
分布を表わす重量平均分子量(w)と数平均分
子量(o)との比(w/o比)が6.5以上の分
解PPを用いて射出成形することにより、得られ
るポリプロピレンの射出成形品の表面における光
沢むらの発生をほぼ完全に防止したポリプロピレ
ン成形品の製造方法を提供する。
即ち、本発明は分解処理により分子量が低減さ
れたw/o比が6.5以上のポリプロピレンを用
いて射出成形することを特徴とするポリプロピレ
ン成形品の製造方法である。
なお、本発明においてポリプロピレンとはプロ
ピレンの単独重合体及びプロピレンと他のα−オ
レフイン、例えばエチレンとの共重合体の総称で
ある。また、成形品とは一般に射出成形によつて
得られる構造体の他、板状体、シート状体などを
含む総称である。
本発明において、w/o比が6.5以上、好ま
しくは7以上の分解PPを用いることが表面にお
ける光沢むらのない成形品を得るために極めて重
要である。即ち、本発明は製造条件により、或い
は分解処理により、w/o比で表わされる分子
量分布が前記した一定の範囲より狭くなることに
よつて、得られる射出成形品表面の光沢むらの発
生が著しくなること、および分子量分布が広い分
解PPを使用した場合、光沢むらの改善が著しい
という新知見に基づくものである。従つて、
w/o比が前記範囲より小さいポリプロピレンを
用いて得られる成形品、或いは、分子量分布の広
いが分解処理をされていないポリプロピレンを用
いて得られる成形品は、その表面の光沢むらの改
善が不十分であり、本発明の目的を達成し得な
い。また、成形品の曲げ弾性率など、強度の面で
は上記ポリプロピレンはw/o比が10未満、好
好ましくは8以下、或いはメルトフローインデツ
クス(以下、MIともいう)が6以下のものが好
適に使用される。
本発明において使用する前記特定の分子量分布
を有する分解PPを得る場合には、分解によつて
Mw/o比が大巾に低下すする傾向があるので、
分解後のw/o比が前記範囲となるように
w/o比が比較的高いポリプロピレンを原料とし
て用い、分解を行なえばよい。一般にはw/o
比が10以上、好ましくは10〜50、更に好ましくは
15〜30のポリプロピレンを原料とし、これを分解
し市て前記w/o比を有する分解PPとするの
が好ましい。勿論、分解PPは、w/o比が10
未満の原料ポリプロピレンを分解したものでもよ
いが、上記分解PPのMIを上げて加工性を良好と
するために分解率を大きくする場合、所望の分子
量に分解されるまでにw/o比が前記下限をき
つてしまい、充分な分子量の低下が困難な場合が
ある。前記の高いw/o比を有する原料ポリプ
ロピレンは前記した公知の手段方法によつて得る
ことができる。また、上記原料ポリプロピレンの
分解は公知の方法が特に制限なく実施される。一
般に、ポリプロピレンをラジカル発生剤の存在下
に加熱処理する方法が好適である。上記ラジカル
発生剤としては、有機過酸化物が好適に使用され
る。代表的な有機過酸化物を例示すれば、メチル
エチルケトンパーオキサイド、メチルイソブチル
ケトンパーオキサイド等のケトンパーオキサイ
ド;イソブチルパーオキサイド、アセチルパーオ
キサイド等のジアシルパーオキサイド;ジイソプ
ロピルベンゼンハイドロパーオキサイド、その他
のハイドロパーオキサイド;2,5−ジメチル
2,5−ジ−(t−ブチルパーオキシ)ヘキサン、
1,3−ビス−(t−ブチルパーオキシイソプロ
ピル)ベンゼン等のジアルキルパーオキサイド;
1,1−ジ−t−ブチルパーオキシ−シクロヘキ
サン、その他のパーオキシケタール;t−ブチル
パーオキシアセテート、t−ブチルパーオキシベ
ンゾエート等のアルキルパーエステル;t−ブチ
ルパーオキシイソプロピルカーボネート、その他
のパーカーボネート等が挙げられる。前記有機過
酸化物の使用量は、分解度におけるポリプロピレ
ンの分子量の設定値等によつて異なり一概に決定
されないが、ポリプロピレンに対して0.001〜1.0
重量%、好ましくは0.01〜0.5重量%が一般的で
ある。
また、前記方法において、ポリプロピレンとラ
ジカル発生剤との混合は、ポリプロピレンを加熱
処理する際にラジカル発生剤が存在していれば、
その混合方法は特に制限されない。例えば、ブレ
ンダー等の混合機を用いて機械的に混合する方
法、ラジカル発生剤を適当な溶剤に溶解させてポ
リプロピレンに付着させ、該溶剤を乾燥すること
によつて混合する方法等がある。また、加熱処理
温度は、ポリプロピレンの溶融温度以上で且つラ
ジカル発生剤の分解温度以上の温度が採用され
る。しかし、あまり加熱処理温度が高いとポリプ
ロピレンの熱劣化を招く。一般に、該加熱処理温
度は、170〜300℃、特に180〜250℃の範囲内に設
定することが好ましい。
以上の説明より理解される如く、本発明の方法
によつて得られた射出成形品は表面の光沢むらが
ほとんどなく、特に射出成形において表面の光沢
むらの発生が大きな問題となつている分解PPを
用いた成形品の製造において、該分解PPの分子
量分布を前記範囲に調節した場合に優れた効果を
発揮する。
本発明の方法、射出成形によつて成形品を得る
場合、特に有効であるが、その他の成形方法、例
えば押出成形によるシート、フイルムのような成
形物の製造にも特に問題なく採用される。
以下、本発明を具体的に説明するため、実施例
を示すが、本発明はこれらの実施例に限定される
ものではない。
尚、以下の実施例及び比較例で示す種々の性状
の測定方法は次の方法によつた。
(1) メルトインデツクス(MIとも記載する)
ASTM D−1238により測定
(2) エチレン含有量
ブロツク共重合体中のエチレンン含有
量は赤外吸収スペクトル分析によつた。
(3) 分子量分布w/o
測定装置はウオーターズ社製GPC
150Cを用い、溶媒は0−ジクロルベンゼン、
測定温度は135℃で行つた。
(4) 光沢ムラ
曲げ弾性率測定用に射出成形した試験
片を目視により観察、光沢ムラが全く認めら
れない場合は◎印、極めてわずか認められる
場合は○印、わずかに認められる場合は△
印、それ以外を×でもつて評価した。
なお、光沢ムラの発生状況は一般的に
言つてケートより同心円的に現われやすい。
周期は射出成形条件により変化する。
(5) 曲げ弾性率
試験片は日鋼アンケルベルグV22A−
120型射出成形機により作成し、ASTM D
−790によつて測定した。
(6) アイゾツト衝撃強度
試験片は曲げ試験片と同様に作成し、
ASTM D−256によつて測定した。
実施例 1
プロピレン・ガスで置換された300の撹拌機
付き重合槽に三塩化チタン(TiCl3とも記載)に
対し20倍モルのジエチルアルミニウムモノクロラ
イド(AlEt2Clとも記載)及び0.02倍モルのジエ
チレングリコールジメチルエーテル(Diglymeと
も記載する)を添加し、次いで液体プロピレンを
200及び分子調節剤として水素ガスを導入する
ととも65℃に昇温し、続いてTiCl3(丸紅ソルベ
ー社製)3,4gを添加することにより重合を開
始した。重合中は水素ガスを供給しその気相濃度
が一定になるようガスクロマトグラフイーで制御
した。先づ、重合すするポリマーのMIが500にな
るよう気相水素濃度を13.6モル%に設定して1時
間20分重合を継続した。次いで重合槽頂部より未
反応プロピレン及び水素のみをパージした。続い
て重合ポリマーの残つている重合槽に再びプロピ
レンを150、15倍モルのAlEt2Clを添加すると
ともに水素ガスを導入した。そして65℃に昇温し
て重合を再び開始した。重合中は水素ガスを供給
し、該重合段階で生成するポリマーのMIが0.01
になるよう気相水素濃度を0.35モル%に設定して
3時間重合を継続した。重合完了後、重合槽の底
排弁より重合体スラリーをフラツシユ・タンクに
排出し、未反応プロピレンをパージして重合を停
止し、次いでヘプタンを200及びメタノールを
40注入してスラリー状にし60℃で1時間撹拌し
て触媒を分解した。続いて水を100注入し、触
媒分解物を水相に抽出し、水相を分離除去した。
重合体のヘプタンスラリーは遠心分離機で固液に
分離し固体は乾燥機に送り、6時間乾燥し白色顆
粒状の結晶性重合体を得た。他方、濾液はその一
部を採取しヘプタンを除去した後APPを回収し
た。該重合体のMIは1.8、APPの副生率は3.4%
であつた。
かくして得られた白色顆粒状のポリプロピレン
に有機過酸化物1,3−ビス(t−ブチルパーオ
キシイソプロピル)ベンゼン(BPBとも記載す
る)を表−1に示す割合で、更に酸化防止剤、熱
安定剤、滑剤を添加してヘンシエルミキサーで混
合した。次いでナカタニ機械VSK40のベンナト
付き40mmφ押出機でダイス出口の樹脂温度が230
℃になるよう制御しながら分解し、押出してペレ
ツト状の重合体を得た。該重合体のMI、分子量
分布、w/o、光沢ムラ、曲げ弾性率を測定し
た。その結果を表−1に示す。
The present invention relates to a method for producing a polypropylene molded article that prevents uneven gloss from occurring. Polypropylene is generally widely used as molded products such as fibers, films, sheets, and structures, but it has the problem that uneven gloss occurs on the surface of injection molded products depending on molding conditions, which significantly reduces its commercial value. . A technique that has been attracting particular attention recently is a method in which polypropylene with a desired molecular weight is obtained by producing a polymer with a large molecular weight and decomposing it, for example, by the action of radicals to reduce the molecular weight. When injection molded products are manufactured using polypropylene obtained by this method (hereinafter also referred to as decomposed PP), uneven gloss is noticeable. The present inventors have conducted intensive research on preventing uneven gloss when producing injection molded polypropylene products. As a result, it was found that the molecular weight distribution of polypropylene has a significant effect on the uneven gloss on the surface of injection molded products of the polypropylene. That is, as polypropylene decomposes, its molecular weight decreases and its molecular weight distribution narrows, and as the molecular weight distribution narrows, the above-mentioned problems become more pronounced. The present invention is based on this knowledge, and by injection molding using decomposed PP with a ratio ( w / o ratio) of weight average molecular weight ( w ) to number average molecular weight ( o ) representing molecular weight distribution of 6.5 or more. To provide a method for producing a polypropylene molded article, which almost completely prevents the occurrence of uneven gloss on the surface of the resulting injection molded polypropylene article. That is, the present invention is a method for producing a polypropylene molded article, which is characterized by injection molding using polypropylene whose molecular weight has been reduced by decomposition treatment and whose w / o ratio is 6.5 or more. In the present invention, polypropylene is a general term for propylene homopolymers and copolymers of propylene and other α-olefins, such as ethylene. Furthermore, the term "molded product" is a general term that includes structures generally obtained by injection molding, as well as plate-like bodies, sheet-like bodies, and the like. In the present invention, it is extremely important to use decomposed PP with a w / o ratio of 6.5 or more, preferably 7 or more in order to obtain a molded article with no uneven gloss on the surface. That is, the present invention prevents the generation of uneven gloss on the surface of the injection molded product to be significantly caused by the molecular weight distribution expressed by the w / o ratio becoming narrower than the above-mentioned certain range due to manufacturing conditions or decomposition treatment. This is based on new findings that when decomposed PP with a wide molecular weight distribution is used, uneven gloss is significantly improved. Therefore,
Molded products obtained using polypropylene with a w / o ratio smaller than the above range, or molded products obtained using polypropylene that has a wide molecular weight distribution but has not been subjected to decomposition treatment, may have insufficient improvement in surface gloss unevenness. is insufficient and cannot achieve the purpose of the invention. In addition, in terms of strength, such as the bending modulus of elasticity of the molded product, the polypropylene mentioned above preferably has a w / o ratio of less than 10, preferably 8 or less, or a melt flow index (hereinafter also referred to as MI) of 6 or less. used for. When obtaining the decomposed PP having the specific molecular weight distribution used in the present invention, the M w / o ratio tends to decrease significantly due to decomposition.
So that the w / o ratio after decomposition is within the above range.
Decomposition can be carried out using polypropylene having a relatively high w / o ratio as a raw material. Generally w / o
The ratio is 10 or more, preferably 10 to 50, more preferably
It is preferable to use polypropylene of 15 to 30% as a raw material and decompose it to produce decomposed PP having the above-mentioned w / o ratio. Of course, the decomposed PP has a w / o ratio of 10
However, when increasing the decomposition rate in order to increase the MI of the decomposed PP to improve processability, the w / o ratio may be as low as 100% before it is decomposed to the desired molecular weight. If the lower limit is too high, it may be difficult to reduce the molecular weight sufficiently. The raw polypropylene having the above-mentioned high w / o ratio can be obtained by the above-mentioned known methods. Moreover, the decomposition of the raw material polypropylene can be carried out by any known method without any particular restriction. Generally, a method of heat treating polypropylene in the presence of a radical generator is suitable. As the radical generator, an organic peroxide is preferably used. Examples of typical organic peroxides include ketone peroxides such as methyl ethyl ketone peroxide and methyl isobutyl ketone peroxide; diacyl peroxides such as isobutyl peroxide and acetyl peroxide; diisopropylbenzene hydroperoxide and other hydroperoxides. Oxide; 2,5-dimethyl 2,5-di-(t-butylperoxy)hexane,
Dialkyl peroxides such as 1,3-bis-(t-butylperoxyisopropyl)benzene;
1,1-di-t-butylperoxy-cyclohexane and other peroxyketals; alkyl peresters such as t-butylperoxyacetate and t-butylperoxybenzoate; t-butylperoxyisopropyl carbonate and other peroxyketals; Examples include carbonate. The amount of the organic peroxide to be used varies depending on the set value of the molecular weight of polypropylene at the degree of decomposition, etc., and cannot be determined unconditionally, but it is 0.001 to 1.0 with respect to polypropylene.
Weight %, preferably 0.01 to 0.5 weight %, is common. In addition, in the above method, the mixing of polypropylene and the radical generator can be carried out if the radical generator is present when the polypropylene is heat-treated.
The mixing method is not particularly limited. For example, there is a method of mechanical mixing using a mixer such as a blender, a method of dissolving the radical generator in a suitable solvent, adhering it to polypropylene, and mixing by drying the solvent. Further, the heat treatment temperature is a temperature higher than the melting temperature of polypropylene and higher than the decomposition temperature of the radical generator. However, if the heat treatment temperature is too high, thermal deterioration of polypropylene will occur. Generally, the heat treatment temperature is preferably set within the range of 170 to 300°C, particularly 180 to 250°C. As can be understood from the above explanation, the injection molded products obtained by the method of the present invention have almost no uneven surface gloss, and are particularly suitable for decomposed PP, where uneven surface gloss is a major problem in injection molding. In the production of molded articles using the decomposed PP, excellent effects are exhibited when the molecular weight distribution of the decomposed PP is adjusted to the above range. Although the method of the present invention is particularly effective when producing molded articles by injection molding, it can also be employed without particular problem in producing molded articles such as sheets and films by other molding methods, such as extrusion molding. EXAMPLES Hereinafter, examples will be shown to specifically explain the present invention, but the present invention is not limited to these examples. The following methods were used to measure various properties shown in the Examples and Comparative Examples below. (1) Melt index (also written as MI)
Measured according to ASTM D-1238 (2) Ethylene content Ethylene content in the block copolymer was determined by infrared absorption spectroscopy. (3) Molecular weight distribution w / o measuring device is Waters GPC
Using 150C, the solvent was 0-dichlorobenzene,
The measurement temperature was 135°C. (4) Gloss unevenness Visually observe the injection molded test piece for measuring flexural modulus. If no gloss unevenness is observed, mark ◎, if very slight unevenness is observed, mark ○, if slightly observed, △
The evaluation was made by marking the items with a mark and marking the other items with an x. Generally speaking, uneven gloss tends to appear more concentrically than with Kate.
The period changes depending on injection molding conditions. (5) Flexural modulus The test piece is Nikko Ankelberg V22A−
Made using a 120-type injection molding machine, ASTM D
-790. (6) Izot impact strength test specimens were prepared in the same way as the bending test specimens.
Measured according to ASTM D-256. Example 1 20 times the mole of diethylaluminum monochloride (also known as AlEt 2 Cl) and 0.02 times the mole of diethylene glycol relative to titanium trichloride (also known as TiCl 3 ) were added to a 300 mm stirred polymerization tank purged with propylene gas. Dimethyl ether (also known as Diglyme) is added, followed by liquid propylene.
200 and hydrogen gas as a molecular regulator were introduced, the temperature was raised to 65°C, and then 3.4 g of TiCl 3 (manufactured by Marubeni Solvay) was added to initiate polymerization. During the polymerization, hydrogen gas was supplied and the gas phase concentration was controlled using gas chromatography to maintain a constant concentration. First, the gas phase hydrogen concentration was set at 13.6 mol% so that the MI of the polymerized polymer was 500, and polymerization was continued for 1 hour and 20 minutes. Then, only unreacted propylene and hydrogen were purged from the top of the polymerization tank. Subsequently, 150% propylene and 15 times the mole of AlEt 2 Cl were added again to the polymerization tank in which the polymerization polymer remained, and hydrogen gas was introduced. Then, the temperature was raised to 65°C to start polymerization again. Hydrogen gas is supplied during polymerization, and the MI of the polymer produced during the polymerization step is 0.01.
The gas phase hydrogen concentration was set at 0.35 mol% so that the polymerization was continued for 3 hours. After the polymerization is completed, the polymer slurry is discharged from the bottom discharge valve of the polymerization tank into the flash tank, unreacted propylene is purged to stop the polymerization, and then heptane is added at 200 °C and methanol is added.
The slurry was made into a slurry and stirred at 60°C for 1 hour to decompose the catalyst. Subsequently, 100 ml of water was injected, the catalyst decomposition product was extracted into the aqueous phase, and the aqueous phase was separated and removed.
The heptane slurry of the polymer was separated into solid and liquid using a centrifuge, and the solid was sent to a dryer and dried for 6 hours to obtain a white granular crystalline polymer. On the other hand, a portion of the filtrate was collected, and after heptane was removed, APP was recovered. The MI of the polymer is 1.8, and the APP by-product rate is 3.4%.
It was hot. The organic peroxide 1,3-bis(t-butylperoxyisopropyl)benzene (also referred to as BPB) was added to the thus obtained white granular polypropylene in the proportions shown in Table 1, and an antioxidant and a heat stabilizer were added. Agents and lubricants were added and mixed using a Henschel mixer. Next, the resin temperature at the die exit was set to 230 using a Nakatani Machinery VSK40 40mmφ extruder with Bennato.
The mixture was decomposed while controlling the temperature at °C and extruded to obtain a pellet-like polymer. The MI, molecular weight distribution, w / o , gloss unevenness, and flexural modulus of the polymer were measured. The results are shown in Table-1.
【表】
* No.1は未処理
実施例 2
実施例1と同じ装置を用い、20倍モルの
AlEt2Cl及び0.02倍モルのDiglimeを添加し、次い
で液体プロピレンを200及び水素ガスを導入す
るとともに65℃に昇温し、続いてTiCl33.5gを添
加することにより重合を開始した。重合中は水素
ガスを供給し、生成するポリマーのMIが1.7にな
るよう水素気相濃度をガスクロマトグラフイーで
制御した。重合を3時間行つた後、重合槽の底排
弁より重合体スラリーをフラツシユ・タンクに排
出し、未反応プロピレンをパージして重合を停止
した。その後の処理は実施例1と同様に実施し、
白色顆粒状の結晶性重合体を得た。該重合体の
MIは1.7、APPの副生率は0.8%であつた。
続いて該重合体に実施例1と同じ有機過酸化物
を表−2に示す如く混合し、これに更に酸化防止
剤、熱安定剤、滑剤を添加してヘンシエルミキサ
ーで混合した。その後は実施例1と同様に実施
し、ペレツトを得た。該重合体の物理的特性を実
施例1と同様に測定し、その結果を表−2に示
す。[Table] * No. 1 is untreated Example 2 Using the same equipment as Example 1, 20 times the molar
AlEt 2 Cl and 0.02 times the mole of Diglime were added, then 200 ml of liquid propylene and hydrogen gas were introduced, and the temperature was raised to 65° C., followed by the addition of 3.5 g of TiCl 3 to initiate polymerization. Hydrogen gas was supplied during polymerization, and the hydrogen gas phase concentration was controlled using gas chromatography so that the MI of the resulting polymer was 1.7. After polymerization was carried out for 3 hours, the polymer slurry was discharged into a flash tank from the bottom drain valve of the polymerization tank, and unreacted propylene was purged to stop the polymerization. The subsequent processing was carried out in the same manner as in Example 1,
A white granular crystalline polymer was obtained. of the polymer
The MI was 1.7 and the APP side production rate was 0.8%. Subsequently, the same organic peroxide as in Example 1 was mixed with the polymer as shown in Table 2, and an antioxidant, a heat stabilizer, and a lubricant were further added thereto and mixed in a Henschel mixer. Thereafter, the same procedure as in Example 1 was carried out to obtain pellets. The physical properties of the polymer were measured in the same manner as in Example 1, and the results are shown in Table 2.
【表】
* No.2、3は比較例である。
実施例 3
実施例1で重合した白色顆粒状のポリプロピレ
ンを用い、有機過酸化物BPBに替えて表−3に
示す2,5−ジメチル−2,5−ジ−(t−ブチ
ルパーオキシ)ヘキサン(MBHとも記載する)、
1,1−ジ−t−ブチルパーオキシ−3,3,5
−トリメチルシクロヘキサン(BMCとも記載す
る)及びt−ブチルパーオキシイソプロピルカー
ボネート(BPCとも記載する)をそれぞれ用い
た以外は実施例1と同様に実施しペレツトを得
た。該重合体の物理的特性を実施例1と同様に測
定し、その結果を表−3に示す。[Table] *Nos. 2 and 3 are comparative examples.
Example 3 Using the white granular polypropylene polymerized in Example 1, 2,5-dimethyl-2,5-di-(t-butylperoxy)hexane shown in Table 3 was used instead of the organic peroxide BPB. (also written as MBH),
1,1-di-t-butylperoxy-3,3,5
Pellets were obtained in the same manner as in Example 1, except that -trimethylcyclohexane (also referred to as BMC) and t-butylperoxyisopropyl carbonate (also referred to as BPC) were used, respectively. The physical properties of the polymer were measured in the same manner as in Example 1, and the results are shown in Table 3.
【表】
比較例 1
実施例2で重合した白色顆粒状のポリプロピレ
ンを用いた以外は実施例3と同様に分解処理して
ペレツトを得た。該重合体の物理的特性を実施例
1と同様に測定し、その結果を表−4に示す。[Table] Comparative Example 1 Pellets were obtained by decomposition treatment in the same manner as in Example 3, except that the white granular polypropylene polymerized in Example 2 was used. The physical properties of the polymer were measured in the same manner as in Example 1, and the results are shown in Table 4.
【表】
実施例 4
(A) アルミニウム・エトキシの合成
窒素で置換した2のフラスコにAlEt3を20wt
%含むヘプタン溶液を604ml及びAlEt2Clを20wt
%含むヘプタン溶液を610mlを投入した。次いで
エタノールを1.0wt%を含むヘプタン溶液302mlを
室温下で徐々に滴下・混合した。滴下終了後、70
℃に昇温し1時間反応を行ないアルミニウム・エ
トキシを合成した。
(B) ポリプロピレンの重合
実施例1と同じ装置を用い、(A)で合成したアル
ミニウム・エトキシを750ml、該アルミに対して
0.15倍モルのp−アニス酸エチル及び液体プロピ
レンを200と分子量調節剤としての水素を張込
むとともに65℃に昇温し、TiCl3を7.0g投入する
ことにより重合を開始した。重合中は水素ガスを
供給し生成するポリマーのMIが1.7になるよう水
素気相濃度をガスクロマトグラフイーで制御し
た。重合を3時間行つた後、重合槽の底排弁より
重合体スラリーをフラツシユ・タンクに排出し、
未反応プロピレンをパージして重合を停止した。
その後の処理は実施例1と同様に実施した。
なお、得られた重合体のMIは1.9、APPの副生
率は1.4%であつた。
かくして得られた白色顆粒のポリプロピレン
BPBを表−5に示す割合で添加し、以後実施例
1と同様に行ないペレツトを得た。該重合体の物
理的特性を実施例1と同様に測定し、その結果を
表−5に示す。[Table] Example 4 (A) Synthesis of aluminum ethoxy 20wt of AlEt 3 was placed in a flask 2 purged with nitrogen.
604ml of heptane solution containing % and 20wt of AlEt2Cl
610 ml of heptane solution containing %. Next, 302 ml of a heptane solution containing 1.0 wt% ethanol was gradually added dropwise and mixed at room temperature. After dripping, 70
The temperature was raised to 0.degree. C., and the reaction was carried out for 1 hour to synthesize aluminum ethoxy. (B) Polymerization of polypropylene Using the same equipment as in Example 1, 750 ml of the aluminum ethoxy synthesized in (A) was added to the aluminum.
0.15 times the mole of p-ethyl anisate and liquid propylene 200 and hydrogen as a molecular weight regulator were charged, the temperature was raised to 65° C., and 7.0 g of TiCl 3 was added to initiate polymerization. During polymerization, hydrogen gas was supplied and the hydrogen gas phase concentration was controlled using gas chromatography so that the MI of the produced polymer was 1.7. After polymerization for 3 hours, the polymer slurry was discharged from the bottom drain valve of the polymerization tank into a flash tank.
Polymerization was stopped by purging unreacted propylene.
The subsequent treatments were carried out in the same manner as in Example 1. The obtained polymer had an MI of 1.9 and an APP by-product rate of 1.4%. The thus obtained white granular polypropylene
BPB was added in the proportions shown in Table 5, and then the same procedure as in Example 1 was carried out to obtain pellets. The physical properties of the polymer were measured in the same manner as in Example 1, and the results are shown in Table 5.
【表】
No.4は比較例を示す。
実施例 5
ブロツク共重合体の重合
実施例1と同じ触媒系を用い、生成するポリマ
ーのMIを2.5及び重合時間を2時間に設定した以
外は実施例1と同様に重合した。生成プロピレン
ホモ重合体のスラリーをフラツシユ・タンク排出
し、未反応プロピレンをパージした後、該重合体
をスラリータンクに移送し、ヘプタン150を投
入しスラリー状にした。続いて該重合体スラリー
を50℃に設定した重合槽に移送するとともにエチ
レンガス、プロピレンガス及び分子量調節剤とし
ての水素ガスを供給した。エチレンガスとプロピ
レンガスの供給は気相域でのエチレン/プロピレ
ンのモル比が1/4になるよう、また水素ガスの供
給は気相域で20モル%になるようガスクロマトグ
ラフイーで制御しながら行つた。かかる条件下に
2時間重合反応を行つた後、生成したブロツク共
重合体はフラツシユ・タンクに排出し未反応プロ
ピレンをパージし、次いでメタノール40を注入
して60℃で1時間撹拌して触媒を分解した。次い
で実施例1と同様に処理し、白色顆粒状の結晶性
重合体を得た。該重合体のMIは1.6、エチレン含
有量は4.2重量%であつた。
かくして得られたブロツク共重合体に有機過酸
化物BPBを表−6に示す割合で、更に酸化防止
剤、熱安定剤、滑剤を添加してヘンシエルミキサ
ーで混合した。次いでナカタニ機械VSK40のベ
ント付き40mmφ押出機でダイス出口の樹脂温度が
230℃になるよう制御しながら分解し、押出して
ペレツト状の重合体を得た。該重合体の物理的特
性を測定し表−6に示す。[Table] No. 4 shows a comparative example.
Example 5 Polymerization of block copolymer Polymerization was carried out in the same manner as in Example 1, except that the same catalyst system as in Example 1 was used, and the MI of the resulting polymer was set at 2.5 and the polymerization time was set at 2 hours. After the slurry of the produced propylene homopolymer was discharged to a flash tank and unreacted propylene was purged, the polymer was transferred to a slurry tank, and 150 ml of heptane was added to form a slurry. Subsequently, the polymer slurry was transferred to a polymerization tank set at 50°C, and ethylene gas, propylene gas, and hydrogen gas as a molecular weight regulator were supplied. The supply of ethylene gas and propylene gas was controlled by gas chromatography so that the molar ratio of ethylene/propylene in the gas phase region was 1/4, and the supply of hydrogen gas was controlled to be 20 mol% in the gas phase region. I went. After carrying out the polymerization reaction for 2 hours under these conditions, the produced block copolymer was discharged into a flash tank to purge unreacted propylene, and then methanol 40% was injected and stirred at 60°C for 1 hour to remove the catalyst. Disassembled. The mixture was then treated in the same manner as in Example 1 to obtain a white granular crystalline polymer. The MI of the polymer was 1.6 and the ethylene content was 4.2% by weight. The organic peroxide BPB was added to the thus obtained block copolymer in the proportions shown in Table 6, an antioxidant, a heat stabilizer, and a lubricant were added and mixed in a Henschel mixer. Next, the resin temperature at the die exit was measured using a Nakatani Machinery VSK40 vented 40mmφ extruder.
The mixture was decomposed while controlling the temperature to 230°C and extruded to obtain a pellet-like polymer. The physical properties of the polymer were measured and shown in Table 6.
【表】
比較例 2
下記の重合方法により、1段の重合により
MI6.3、w/o比14.6のポリプロピレンを製造
した。
プロピレン・ガスで置換された3001の撹拌機付
き重合槽に三塩化チタン(TiCl3とも記載)に対
し20倍モルのアルミニウムシロキシド(Et2.0AL
〔OSiH2(CH3)〕0.3Cl0.7)及び2.5倍モルノP−ア
ニス酸エチル(Diglymeとも記載する)を添加
し、次いで液体プロピレンを2001及び分子調節剤
として水素ガスを導入するとともに65℃に昇温
し、続いてTiCl3(丸紅ソルバー社製)3.4gを添加
することにより重合を開始した。重合中は水素ガ
スを供給しその気相濃度が一定になるようガスク
ロマトグラフイーで制御しながら3時間重合を継
続した。重合完了後、重合槽の底排弁より重合体
スラリーをフラツシユ・タンクに排出し、未反応
プロピレンをパージして重合を停止し、次いでヘ
プタンを2001及びメタノール401注入してスラリ
ー状にし60℃で1時間撹拌して触媒を分解した。
続いて水を1001注入し、詳媒分解物を水相に抽出
し、水相を分離除去した。重合体のヘプタンスラ
リーは遠心分離機で固液に分離し固体は乾燥機に
送り、6時間乾燥し白色顆粒状の結晶性重合体を
得た。他方、濃度はその一部を採取しヘプタンを
除去した後APPを回収した。かくして得られた
白色顆粒状のポリプロピレンに酸化防止剤、熱安
定剤・滑剤を添加してヘンシエルミキサーで混合
した。次いでナカタニ機械VSK40のベント付き
40mmφ押出機でダイス出口の樹脂温度が230℃に
なるよう制御しながら、押出してペレツト状の重
合体を得た。該重合体のMIは6.3、分子量分布
Mw/oは14.6光沢ムラはO、曲げ弾性率は、
16000Kg/cm2であつた。[Table] Comparative Example 2 By one-stage polymerization using the following polymerization method
Polypropylene was produced with an MI of 6.3 and a w / o ratio of 14.6. A 20 times molar amount of aluminum siloxide (Et 2.0 AL
[OSiH 2 (CH 3 )] 0.3 Cl 0.7 ) and 2.5 times Morno P-ethyl anisate (also written as Diglyme) were added, then liquid propylene 2001 and hydrogen gas as a molecular regulator were introduced and the mixture was heated to 65 °C. Polymerization was initiated by raising the temperature and subsequently adding 3.4 g of TiCl 3 (manufactured by Marubeni Solver). During the polymerization, hydrogen gas was supplied and the polymerization was continued for 3 hours while being controlled by gas chromatography to keep the gas phase concentration constant. After the polymerization is completed, the polymer slurry is discharged from the bottom discharge valve of the polymerization tank into a flash tank, and unreacted propylene is purged to stop the polymerization. Next, heptane 2001 and methanol 401 are injected to form a slurry and heated at 60℃. The catalyst was decomposed by stirring for 1 hour.
Subsequently, 100 liters of water was injected, the detailed medium decomposition product was extracted into the aqueous phase, and the aqueous phase was separated and removed. The heptane slurry of the polymer was separated into solid and liquid using a centrifuge, and the solid was sent to a dryer and dried for 6 hours to obtain a white granular crystalline polymer. On the other hand, a portion of the concentration was collected and APP was recovered after removing heptane. An antioxidant, a heat stabilizer, and a lubricant were added to the thus obtained white granular polypropylene and mixed in a Henschel mixer. Next, Nakatani Machinery VSK40 with vent
A pellet-like polymer was obtained by extrusion using a 40 mmφ extruder while controlling the resin temperature at the exit of the die to 230°C. The MI of the polymer is 6.3, molecular weight distribution
M w / o is 14.6, gloss unevenness is O, flexural modulus is,
It was 16000Kg/ cm2 .
Claims (1)
均分子量(w)と数平均分子量(o)との比
(w/o)比が6.5以上のポリプロピレンを用い
て射出成形することを特徴とするポリプロピレン
成形品の製造方法。1 Polypropylene molding characterized by injection molding using polypropylene whose molecular weight has been reduced by decomposition treatment and whose ratio ( w / o ) between weight average molecular weight ( w ) and number average molecular weight ( o ) is 6.5 or more. method of manufacturing the product.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20598483A JPS6099108A (en) | 1983-11-04 | 1983-11-04 | Preparation of molded article of polypropylene |
PCT/JP1985/000138 WO1986005366A1 (en) | 1983-09-26 | 1985-03-22 | Process for manufacturing wrinkled sheet tobacco |
US06/932,513 US4770194A (en) | 1983-09-26 | 1985-03-22 | Method of manufacturing wrinkled sheet tobacco |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20598483A JPS6099108A (en) | 1983-11-04 | 1983-11-04 | Preparation of molded article of polypropylene |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6099108A JPS6099108A (en) | 1985-06-03 |
JPH0587523B2 true JPH0587523B2 (en) | 1993-12-17 |
Family
ID=16515968
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20598483A Granted JPS6099108A (en) | 1983-09-26 | 1983-11-04 | Preparation of molded article of polypropylene |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6099108A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH062849B2 (en) * | 1988-12-27 | 1994-01-12 | 徳山曹達株式会社 | Polypropylene composition |
JP2558529B2 (en) * | 1989-08-28 | 1996-11-27 | 三洋化成工業株式会社 | Low molecular weight propylene polymer additive |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5130102A (en) * | 1974-09-06 | 1976-03-15 | Komatsu Mfg Co Ltd | HIKENINSHIKISUKU REEPANOJIDOSEIDOSOCHI |
GB1442681A (en) * | 1972-07-25 | 1976-07-14 | Chemie Linz Ag | Process for the preparation of polypropylene |
JPS5219595A (en) * | 1975-08-06 | 1977-02-14 | Sumitomo Chem Co Ltd | Method and apparatus for automatic arresting of ions in water |
JPS5485289A (en) * | 1977-12-20 | 1979-07-06 | Showa Denko Kk | Propylene polymer having broad molecular weight distribution |
JPS5486587A (en) * | 1977-12-23 | 1979-07-10 | Showa Denko Kk | Propylene polymer for injection molding |
JPS55139447A (en) * | 1979-04-06 | 1980-10-31 | Chisso Corp | Modification of propylene-ethylene block copolymer |
JPS5731916A (en) * | 1980-07-07 | 1982-02-20 | El Paso Polyolefins | Propylene-ethylene block copolymer |
JPS5823804A (en) * | 1981-06-15 | 1983-02-12 | キンバリ−・クラ−ク・コ−ポレ−シヨン | Polymer processability improvement and polymer composition |
-
1983
- 1983-11-04 JP JP20598483A patent/JPS6099108A/en active Granted
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1442681A (en) * | 1972-07-25 | 1976-07-14 | Chemie Linz Ag | Process for the preparation of polypropylene |
JPS5130102A (en) * | 1974-09-06 | 1976-03-15 | Komatsu Mfg Co Ltd | HIKENINSHIKISUKU REEPANOJIDOSEIDOSOCHI |
JPS5219595A (en) * | 1975-08-06 | 1977-02-14 | Sumitomo Chem Co Ltd | Method and apparatus for automatic arresting of ions in water |
JPS5485289A (en) * | 1977-12-20 | 1979-07-06 | Showa Denko Kk | Propylene polymer having broad molecular weight distribution |
JPS5486587A (en) * | 1977-12-23 | 1979-07-10 | Showa Denko Kk | Propylene polymer for injection molding |
JPS55139447A (en) * | 1979-04-06 | 1980-10-31 | Chisso Corp | Modification of propylene-ethylene block copolymer |
JPS5731916A (en) * | 1980-07-07 | 1982-02-20 | El Paso Polyolefins | Propylene-ethylene block copolymer |
JPS5823804A (en) * | 1981-06-15 | 1983-02-12 | キンバリ−・クラ−ク・コ−ポレ−シヨン | Polymer processability improvement and polymer composition |
Also Published As
Publication number | Publication date |
---|---|
JPS6099108A (en) | 1985-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7659349B2 (en) | Impact strength polypropylene | |
JP5346285B2 (en) | Polyolefin thermoplastic vulcanized elastomer | |
JP5236634B2 (en) | Neutralization of non-activated polymerization catalysts using phosphoric acid or phosphonate | |
BR112015005950B1 (en) | composition comprising copolymer of heterophasic propylene and talc, process for preparing it, its uses and shaped article | |
JPS63264605A (en) | Water-hardenable and silane-modified chlorosulfonated olefin polymers and manufacture | |
JP5237961B2 (en) | Polyolefin composition having low hardness and low gloss | |
JPH0587523B2 (en) | ||
JP4210448B2 (en) | Masterbatch and molded body using the same | |
JPH0564984B2 (en) | ||
JPH0360345B2 (en) | ||
JPH0428727B2 (en) | ||
EP1273596B1 (en) | Flexible polypropylene resin | |
JPH0347282B2 (en) | ||
KR930010739B1 (en) | Solution polymerization of alpha (α) -olefin by deactivation of catalyst | |
JPH0368656A (en) | Polyphenylene sulfide composition | |
JPH0262586B2 (en) | ||
TWI433884B (en) | Polyolefin compositions having low hardness and low gloss | |
JPH02127406A (en) | crystalline polypropylene | |
JPS6242922B2 (en) | ||
JPH0142285B2 (en) | ||
JPS6119646A (en) | Polypropylene composition | |
JP3603101B2 (en) | Resin composition | |
JP2023153541A (en) | Production method of polyolefin modified body | |
JPS63146953A (en) | Propylene resin composition | |
JPH07173218A (en) | Production of modified polyethylene and molded article |