JPH0585887B2 - - Google Patents
Info
- Publication number
- JPH0585887B2 JPH0585887B2 JP59091808A JP9180884A JPH0585887B2 JP H0585887 B2 JPH0585887 B2 JP H0585887B2 JP 59091808 A JP59091808 A JP 59091808A JP 9180884 A JP9180884 A JP 9180884A JP H0585887 B2 JPH0585887 B2 JP H0585887B2
- Authority
- JP
- Japan
- Prior art keywords
- optical fiber
- main line
- groove
- optical
- square cross
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/29—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
- G02F1/31—Digital deflection, i.e. optical switching
- G02F1/313—Digital deflection, i.e. optical switching in an optical waveguide structure
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
Description
【発明の詳細な説明】
発明の技術分野
本発明は光通信装置等に用いられる光分岐回路
に関するものである。DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to an optical branch circuit used in optical communication devices and the like.
従来技術と問題点
従来の光分岐回路としては、第1図aに示す如
く、光フアイバ1,2のコア同士を互に干渉でき
るまで近づけて固定した光フアイバ加工型や、第
1図bに示す如く、レンズ3,4,5及びハーフ
ミラー6を用いて光フアイバ7から光フアイバ
8,9へ分岐する型式がある。ところが前者の光
フアイバ加工型は、小型に作ることができるが光
フアイバの加工が微小加工となり、作製が困難で
ある。また後者のレンズを用いたものは、レンズ
や光フアイバの位置調整個所が多く、作製に時間
を要し、また大型になるという欠点があつた。さ
らにまた両者とも1度作製すると、分岐比が固定
されてしまうという欠点もある。Prior Art and Problems Conventional optical branching circuits include an optical fiber processing type in which the cores of optical fibers 1 and 2 are fixed close together until they interfere with each other, as shown in Figure 1a, and an optical fiber processing type as shown in Figure 1b. As shown, there is a type in which optical fibers 7 are branched into optical fibers 8 and 9 using lenses 3, 4, and 5 and a half mirror 6. However, although the former optical fiber processing type can be made compact, the processing of the optical fiber requires minute processing and is difficult to manufacture. In addition, those using the latter lens have the disadvantage that there are many positions for adjusting the positions of lenses and optical fibers, and that it takes time to manufacture and is large in size. Furthermore, there is also the drawback that once both are produced, the branching ratio is fixed.
発明の目的
本発明は上記従来の欠点に鑑み、小型で且つ分
岐比を自由に変えられる動的分岐光回路を提供す
ることを目的とするものである。OBJECTS OF THE INVENTION In view of the above-mentioned conventional drawbacks, it is an object of the present invention to provide a dynamic branching optical circuit which is small in size and whose branching ratio can be freely changed.
発明の構成
そしてこの目的は本発明によれば、半導体又は
ガラス基板の表面に設けられたV型又は角型断面
の溝に第一の光フアイバを溶融固着した主線路
と、該主線路に直交して設けられV型又は角型断
面の溝に、熱に反応して屈折率を変化する透明有
機物を埋め込んだ光ガイドと、該光ガイド上に設
けられた加熱用抵抗体膜と、該光ガイドの終端に
設けられV型又は角型断面の溝に、第二の光フア
イバを溶融固着した係合部とを有し、該加熱用抵
抗体膜からの加熱により、前記主線路内を伝播す
る光の一部を該第二の光フアイバ内へ導くことを
特徴とする動的分岐光回路を提供することによつ
て達成される。According to the present invention, the object is to provide a main line in which a first optical fiber is fused and fixed to a groove with a V-shaped or square cross section provided on the surface of a semiconductor or glass substrate, and a main line that is perpendicular to the main line. a light guide in which a transparent organic material whose refractive index changes in response to heat is embedded in a groove with a V-shaped or square cross section, a heating resistor film provided on the light guide, and a heating resistor film provided on the light guide; The groove provided at the end of the guide and having a V-shaped or square cross-section has an engaging portion in which a second optical fiber is melted and fixed, and propagation within the main line is caused by heating from the heating resistor film. This is achieved by providing a dynamic branching optical circuit characterized in that it directs a portion of the light into the second optical fiber.
発明の実施例 以下、本発明実施例を図面によつて詳述する。Examples of the invention Embodiments of the present invention will be described in detail below with reference to the drawings.
第2図は本発明による動的分岐光回路を説明す
るための図である。同図において、10は基板、
11は主線路、12は分岐線路、13は抵抗体薄
膜をそれぞれ示している。 FIG. 2 is a diagram for explaining the dynamic branching optical circuit according to the present invention. In the figure, 10 is a substrate;
Reference numeral 11 indicates a main line, 12 a branch line, and 13 a resistor thin film.
本実施例は第2図の如く、シリコン(Si)ある
いはガリウムヒ素(GaAa)などの半導体又はガ
ラスを用いた基板10の表面に光フアイバを溶融
して埋込んで形成された主線路11と、熱に敏感
に反応してその屈折率が変化する透明樹脂(例え
ばEPOXY−TECHNOLOGYINC製EPOTEKな
ど)を埋込んで形成された分岐線路12と、該分
岐線路の上に形成された例えばNi−Cr等を用い
た抵抗体薄膜13とを具備して構成されている。
なお14,15は主線路に接続される外部からの
光フアイバ、16は分岐線路に接続される光フア
イバ、17,18は抵抗体薄膜の両側に接続され
た端子である。 As shown in FIG. 2, this embodiment includes a main line 11 formed by melting and embedding an optical fiber in the surface of a substrate 10 made of a semiconductor such as silicon (Si) or gallium arsenide (GaAa) or glass; A branch line 12 formed by embedding a transparent resin whose refractive index changes in response to heat (for example, EPOTEK manufactured by EPOXY-TECHNOLOGYINC), and a line formed on the branch line, for example, Ni-Cr, etc. A resistor thin film 13 using a resistor thin film 13 is constructed.
Note that 14 and 15 are external optical fibers connected to the main line, 16 are optical fibers connected to the branch line, and 17 and 18 are terminals connected to both sides of the resistor thin film.
このように構成された本実施例は次のようにし
て作成される。 This embodiment configured as described above is created as follows.
先ず基板10は第3図aの斜視図及びbの平面
図に示す如く、例えば厚さ0.5mmで10mm角の結晶
方位が(100)のSi基板10の表面に(110)方向
に例えばピロカテユール(C6H4(OH)2):エチレ
ンジアミン(N2H4C2H4):水=25g:141.7ml:
66.7mlの組成を有するエツチング液でエツチング
を行ないV溝を作製する。この時主線路となる部
分11′は素線が(例えば125μm中)が載るだけ
の幅(例えば150μm)あればよく、分岐線路とな
る部分12′は分岐比に存在するが例えば幅50μm
とし、さらに周辺に向つた部分にフアイバ素線が
載る例えば幅150μmの広くなつたV溝を作製す
る。以上のV溝を作製する工程は、従来の半導体
プロセスを採用できるため非常に精度よく作製す
ることができ、かつ一度に大量のV溝の付いた基
板が得られる。 First, as shown in the perspective view of FIG. 3a and the plan view of FIG. C 6 H 4 (OH) 2 ): Ethylenediamine (N 2 H 4 C 2 H 4 ): Water = 25 g: 141.7 ml:
Etching is performed using an etching solution having a composition of 66.7 ml to create a V-groove. At this time, the portion 11' that becomes the main line only needs to have a width (for example, 150 μm) that allows the strand (for example, 125 μm) to be placed thereon, and the portion 12' that becomes the branch line exists at the branch ratio, but has a width of, for example, 50 μm.
Then, a widened V-groove with a width of 150 μm, for example, on which the fiber wire is placed is further prepared in the portion facing the periphery. The process of manufacturing the V-groove described above can employ a conventional semiconductor process, so it can be manufactured with great precision, and a large number of substrates with V-grooves can be obtained at one time.
次に主線路(光ガイド)をこの基板上に作製す
る。その方法はスパツタ法、CVD法など種々考
えられるが、最も簡単な方法としては、第4図に
示す如く、ナイロンコート20の一部(例えば約
8mm)を除去して露出させた光フアイバ素線21
をV溝22内に沿わせ、この部分にCO2レーザ2
3を照射して溶かし基板10に溶着する。 Next, a main line (light guide) is fabricated on this substrate. Various methods can be considered for this, such as the sputtering method and the CVD method, but the simplest method is as shown in FIG. 21
along the inside of the V-groove 22, and the CO 2 laser 2 is attached to this part.
3 is irradiated to melt and weld to the substrate 10.
次に分岐路となる部分のフアイバ素線が載る部
分に光フアイバ素線を固定したのち、該光フアイ
バ素線と主線路との間のV溝に有機物を流し込
む。この有機物としてはその屈折率が常温では石
英より小さく、加熱すると石英より大きくなる
か、或いは逆に常温では石英より大きく、加熱す
ると石英より小さくなる特性を有することが必要
である。また0.8〜1.6μmの波長で透明(透過率が
大きい)であることも必要である。なおこの有機
物に“EPOTEX”(前出)などの接着剤を用いれ
ば光フアイバ16の素線の固定と光ガイド12の
作成が一度に作れるといつた利点がある。 Next, after fixing the optical fiber to the portion on which the fiber will be placed, which will become the branch path, an organic substance is poured into the V-groove between the optical fiber and the main line. This organic substance must have a property that its refractive index is smaller than that of quartz at room temperature and becomes larger than that of quartz when heated, or conversely, it is larger than that of quartz at room temperature and becomes smaller than that of quartz when heated. It also needs to be transparent (high transmittance) at wavelengths of 0.8 to 1.6 μm. If an adhesive such as "EPOTEX" (mentioned above) is used for this organic material, there is an advantage that fixing the strands of the optical fiber 16 and creating the light guide 12 can be done at the same time.
最後に分岐線路の上にニクロムをスパツタなど
の方法で被着し抵抗体薄膜13を形成し完成す
る。 Finally, nichrome is deposited on the branch line by a method such as sputtering to form a resistor thin film 13, thereby completing the process.
このようにして形成された本実施例は抵抗体薄
膜13に流す電流を加減することにより分岐線路
12の屈折率が変り、主線路11から分岐される
光量を変化させること、即ち分岐比を調節するこ
とができる。また本実施例はレンズ・ミラー等を
用いないため小型に製作することができる。 In this embodiment formed in this way, the refractive index of the branch line 12 is changed by adjusting the current flowing through the resistor thin film 13, and the amount of light branched from the main line 11 is changed, that is, the branching ratio is adjusted. can do. Furthermore, since this embodiment does not use lenses, mirrors, etc., it can be manufactured compactly.
発明の効果
以上、詳細に説明したように本発明の動的分岐
光回路は、主線路を光フアイバを溶融して形成
し、分岐線路を熱により屈折率が変化する有機物
を用いて形成し、さらにこの分岐線路を加熱する
抵抗体薄を設けた簡単な構成により、小型化が可
能となり、且つ所望の分岐動作を可能とするとい
つた効果大なるものである。Effects of the Invention As described above in detail, the dynamic branching optical circuit of the present invention has a main line formed by melting an optical fiber, a branch line formed using an organic material whose refractive index changes with heat, Furthermore, the simple structure of providing a thin resistor for heating the branch line makes it possible to reduce the size of the device, and has great effects in that it enables the desired branching operation.
第1図は従来の光分岐回路を説明するための
図、第2図は本発明による動的分岐光回路を説明
するための図、第3図及び第4図はその作製方法
を説明するための図である。
図面において、10は基板、11は主線路、1
2は分岐線路、13は抵抗体薄膜をそれぞれ示
す。
FIG. 1 is a diagram for explaining a conventional optical branching circuit, FIG. 2 is a diagram for explaining a dynamic branching optical circuit according to the present invention, and FIGS. 3 and 4 are for explaining its manufacturing method. This is a diagram. In the drawing, 10 is a board, 11 is a main line, 1
Reference numeral 2 indicates a branch line, and reference numeral 13 indicates a resistor thin film.
Claims (1)
型又は角型断面の溝に第一の光フアイバを溶融固
着した主線路と、 該主線路に直交して設けられたV型又は角型断
面の溝に、熱に反応して屈折率を変化する透明有
機物を埋め込んだ光ガイドと、 該光ガイド上に設けられた加熱用抵抗体膜と、 該光ガイドの終端に設けられたV型又は角型断
面の溝に、第二の光フアイバを溶融固着した係合
部とを有し、 該加熱用抵抗体膜からの加熱により、前記主線
路内を伝播する光の一部を該第二の光フアイバ内
へ導くことを特徴とする動的分岐光回路。[Claims] 1. V provided on the surface of a semiconductor or glass substrate
A main line in which a first optical fiber is melted and fixed in a groove with a shaped or square cross section, and a groove with a V-shaped or square cross section provided perpendicular to the main line, the refractive index of which changes in response to heat. A second optical fiber is inserted into a groove having a V-shaped or square cross section provided at the end of the light guide, and a heating resistor film provided on the light guide. a dynamic optical fiber having an engaging portion that is melted and fixed, and that part of the light propagating within the main line is guided into the second optical fiber by heating from the heating resistor film. Branch optical circuit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9180884A JPS60237432A (en) | 1984-05-10 | 1984-05-10 | dynamic branch optical circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9180884A JPS60237432A (en) | 1984-05-10 | 1984-05-10 | dynamic branch optical circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60237432A JPS60237432A (en) | 1985-11-26 |
JPH0585887B2 true JPH0585887B2 (en) | 1993-12-09 |
Family
ID=14036922
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9180884A Granted JPS60237432A (en) | 1984-05-10 | 1984-05-10 | dynamic branch optical circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60237432A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS548542A (en) * | 1977-06-22 | 1979-01-22 | Nippon Telegr & Teleph Corp <Ntt> | Optical controller wave guide |
JPS5858524A (en) * | 1981-10-02 | 1983-04-07 | Ricoh Co Ltd | Optical switch |
-
1984
- 1984-05-10 JP JP9180884A patent/JPS60237432A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS548542A (en) * | 1977-06-22 | 1979-01-22 | Nippon Telegr & Teleph Corp <Ntt> | Optical controller wave guide |
JPS5858524A (en) * | 1981-10-02 | 1983-04-07 | Ricoh Co Ltd | Optical switch |
Also Published As
Publication number | Publication date |
---|---|
JPS60237432A (en) | 1985-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4765702A (en) | Glass integrated optical component | |
JPS60500030A (en) | Fiber optic switches and discrete variable delay lines | |
US4830453A (en) | Device for optically coupling a radiation source to an optical transmission fiber | |
US6400857B1 (en) | Method for making integrated and composite optical devices utilizing prefabricated optical fibers and such devices | |
JPH02280104A (en) | Connecting terminal mount | |
TWI229204B (en) | Multiple planar complex optical devices and the process of manufacturing the same | |
JPH0585887B2 (en) | ||
JPS6333706A (en) | Fiber type optical wave circuit element and its production | |
JPS59189308A (en) | Connecting method of optical fiber and optical waveguide | |
JPH04140702A (en) | Connection method and device for optical fiber and optical waveguide | |
JPH10206911A (en) | Optical monitor circuit and method of manufacturing the same | |
JPH0567203B2 (en) | ||
JPH01288802A (en) | Light guide and its production | |
JPH08190031A (en) | Optical waveguide module for connecting optical waveguide to optical fiber and its production | |
JP2827640B2 (en) | Optical component manufacturing method | |
JPS58196521A (en) | Optical coupling circuit | |
JPH07253520A (en) | Silica-based glass waveguide optical device and single-mode optical fiber fusion-spliced to the same | |
JP3329951B2 (en) | Connection structure between optical element and optical component for connection | |
JPH07128543A (en) | Optical fiber and optical waveguide connection structure | |
EP0163539A2 (en) | Optical fiber positioner | |
JPH08129117A (en) | Juncture of optical waveguide and optical fiber | |
JPH05313032A (en) | Manufacture of optical waveguide | |
JPH08194125A (en) | Quartz-based waveguide type optical component | |
Najafi et al. | Recent progress in glass integrated optical circuits | |
JPS6139364Y2 (en) |