[go: up one dir, main page]

JPH0583517B2 - - Google Patents

Info

Publication number
JPH0583517B2
JPH0583517B2 JP63077595A JP7759588A JPH0583517B2 JP H0583517 B2 JPH0583517 B2 JP H0583517B2 JP 63077595 A JP63077595 A JP 63077595A JP 7759588 A JP7759588 A JP 7759588A JP H0583517 B2 JPH0583517 B2 JP H0583517B2
Authority
JP
Japan
Prior art keywords
graphite
silicon carbide
silicon
base material
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63077595A
Other languages
Japanese (ja)
Other versions
JPH01249679A (en
Inventor
Akira Nogami
Tooru Hoshikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd filed Critical Toyo Tanso Co Ltd
Priority to JP63077595A priority Critical patent/JPH01249679A/en
Publication of JPH01249679A publication Critical patent/JPH01249679A/en
Publication of JPH0583517B2 publication Critical patent/JPH0583517B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5057Carbides
    • C04B41/5059Silicon carbide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は黒鉛−炭化珪素複合体及びその製造法
に関し、特に黒鉛基材の表層部が黒鉛と炭化珪素
との複合体となつており、更にその上に炭化珪素
が被覆されている複合体及びこれを製造する方法
に関し、その目的は集積回路の製造プロセス就中
半導体ウエハーを処理するために使用される耐酸
化性及び耐食性構造物、エピタキシヤル成長用サ
セプター、拡散炉用部品、プラズマCVD用部品、
ボート等に好適な複合材料を提供することであ
る。 〔従来技術〕 従来、黒鉛基材の表面に炭化珪素層を被覆した
構造材料は知られている。このような炭化珪素被
覆黒鉛複合材料に於いては、使用する黒鉛基材と
しては炭化珪素の熱膨張係数に近く、黒鉛表面の
気孔が小さいものを使用してきた。その理由とし
て、炭化珪素の熱膨張係数に近似していないもの
を使用すると、黒鉛と炭化珪素の間で剥離や亀裂
が起こり、気孔が大きいとピンホールの原因とな
る。これらの問題を緩和する技術がいくつかすで
に提案されている。例えば、特公昭48−26597号
においては、炭化珪素(以下SiCという場合があ
る)と黒鉛とから成る中間層を設けることが提案
されており、その中間層の厚みは50〜100μmと限
定されている。 また、特開昭49−83706号においては、5μm以
下の気孔を有する黒鉛基材に、溶融珪素を浸入さ
せることにより、該珪素と黒鉛が反応してSiCと
なり気孔がすべて炭化珪素で密封された複合材料
が得られることが開示されている。尚この際の複
合層の厚さは0.125mm以上となつている。 また、特開昭50−130363号においては、熱分解
炭素を中間層として10〜100μm形成することが提
案されている。 〔発明が解決しようとする課題〕 しかし乍ら、上記各提案によるこの種黒鉛−炭
化珪素複合基材は、なお満足出来る性能を有さ
ず、急熱急冷等の過酷な条件下では形成された
SiC被膜の亀裂や剥離等が生じ、またピンホール
の発生もなおかなり多い。しかも最近の技術進歩
に伴い、ますます過酷な条件が要求され、上記問
題点の解決がますます強く要望される現状にあ
る。たとえば特公昭48−26597号においては、
SiC−黒鉛混合物の中の中間層の厚みを50〜
100μmと限定しているために黒鉛基材として薄い
基材を使用すると、亀裂及び変形等が起こり、ま
た厚い基材については、ピンホール、剥離等が生
じる。特開昭49−83706号においては、黒鉛に浸
入した炭化珪素層の厚みを0.125mm以上としてい
るために上記と同様の不都合が生じ、さらに黒鉛
気孔部を炭化珪素により密封することは黒鉛基材
が珪化されることにより膨張し、亀裂及び変形が
生じ実用的ではない。また、特開昭50−130363号
においては、熱分解炭素の熱膨張係数を炭化珪素
の4.4×10-6/Kに近づけることは非常に困難で
あり、炭化珪素膜が剥離することは避け難い。 〔課題を解決するための手段〕 本発明者等は、前述した従来技術が抱える問題
点を種々調べたところ、黒鉛表面を溶融珪素と反
応させると黒鉛細孔部より溶融珪素が浸透し、バ
インダー部と骨材黒鉛の一部が珪化されることが
判明した。特に、黒鉛の全細孔容積の含浸率がポ
アー半径及び熱膨張係数と相関があることが明ら
かとなつた。そしてこれらの現象を有効に利用す
ることにより炭化珪素被膜のピンホール、剥離及
び亀裂のない炭化珪素被覆用黒鉛−炭化珪素複合
体が得られ、従来の問題点を解決できることが判
明した。本発明はこの新しい事実に基づいて完成
されたものであつて、即ち本発明は黒鉛基材の表
層部に炭化珪素が含浸され、更にその上から炭化
珪素を被覆した黒鉛−炭化珪素複合体及びその製
造法に係るものである。 〔作用〕 本発明の如く黒鉛表面を溶融珪素と反応させる
と黒鉛細孔部に溶融珪素が浸透し、黒鉛の一部が
炭化珪素となる(この反応を含浸処理と呼ぶ)。
この反応により、種々の熱膨張係数の黒鉛基材が
炭化珪素の熱膨張係数(4.4×10-6/K)に収斂
される。また、ポアー半径及び細孔容積も小さく
なる。これらのことは、化学気相蒸着法(以下
CVD法という)により炭化珪素を被覆する場合
に、前者は剥離及び亀裂を防止する作用があり、
後者はピンホール発生を防止する作用を発揮す
る。 しかし乍ら、炭化珪素の含浸が全細孔容積の5
%に達しないと、熱膨張係数が近似し難く、また
ポアー半径もピンホールの原因となる1μm以下と
はなり難い。60%より多くなると熱膨張係数は近
似するが、体積膨張により黒鉛基材の変形又は亀
裂を生じる傾向がある。従つて本発明の上記作用
を特に顕著に発揮させるためには、使用する黒鉛
基材の全細孔容積の5〜60%が炭化珪素で含浸さ
れるようにする。 以下に本発明をその製法に従つて説明する。 本発明に於いては黒鉛基材に溶融珪素を浸透せ
しめて、反応を行うことをその基本としている。
この際使用する黒鉛基材としては、比較的多孔性
の小さいものが好ましく、通常嵩密度が1.70〜
1.90g/cm3、全細孔容積が10〜20cm3/g及び平均
ポアー半径が1.0〜2.0μm黒鉛基材が使用される。 但し、上記特性は夫々次のことを示す。 嵩密度:黒鉛基材の全体積当たりの質量(g/
cm3) 気孔率:黒鉛基材の体積中の全気孔の割合 真比重−嵩密度/真比重×100% 全細孔容積:Hgポロシメーター(Hg圧入法)に
より求めた開気孔の全容積(cm3/g) 平均ポアー半径:Hgポロシメーターから求めた
細孔容積の平均ポアー半径(μm) 更に本発明に於いては黒鉛基材として高純度の
ものを使用することにより、更に高純度の複合材
料が収得出来る。高純度黒鉛基材としてはその純
度としては不純物(灰分)が10ppm以下、とくに
好ましくは2ppm以下のものが好ましい。高純度
化の方法としては特に制限されず、各種の方法が
任意に適用される。好ましい方法としては特願昭
61−224131号に記載の方法を例示することが出来
る。 珪素としては溶融金属珪素に黒鉛基材を浸すば
かりでなく、CVD法や珪素蒸気により黒鉛基材
上に珪素を形成せしめ、これを溶融して反応せし
めてもよい。しかし乍ら溶融珪素浸漬法は含浸率
を調節するのがむずかしいためCVD法が望まし
い。 本発明に於いて珪素と黒鉛基材とを反応せしめ
るに際しては、特に黒鉛基材の全細孔容積の5〜
60%が炭化珪素で含浸されるように調整する。5
%に達しないとすでに述べた通り、炭化珪素と黒
鉛との熱膨張係数が近似せず、且つポアー半径が
小さくならず、ピンホールの発生、剥離、亀裂等
が生じ、また60%よりも多くなると体積膨張によ
り黒鉛基材の変形や亀裂が発生する。 而して珪素と黒鉛基材との反応に際しては、溶
融珪素に黒鉛基材を浸して反応させる方法、
CVD法または珪素蒸気により黒鉛基材表面に珪
素被覆を行い、珪素の融点以上の温度で熱処理を
行つてもよい。CVD法は、SiCl4またはSiHCl3
ようなハロゲン化シランまたはSiH4を用い、水
素をキヤリアガスとして、1300〜1600Kで黒鉛基
材上に化学気相蒸着を行えば、均一にSi被膜が生
成する。続いて、温度を珪素の融点以上好ましく
は1750〜1900Kで熱処理を行うと被覆した珪素の
90%以上は黒鉛の気孔の中に浸透し炭化珪素とな
る。 このようにして得られる黒鉛−炭化珪素複合材
料は参考写真でも示す通り、その表面層がほぼ均
一な状態で黒鉛と炭化珪素とから成つている。但
し参考写真は実施例1に於いて製造された複合材
料の断面の走査型電子顕微鏡写真(100倍)であ
り、白く見える部分は炭化珪素、また黒く見える
部分は黒鉛である。 本発明に於いては、黒鉛基材に溶融炭化珪素層
を形成せしめた後、さらにこの上に常法により
SiC被覆を行うことである。即ち本発明に於いて
はSiC被覆を行う前の複合材料の表面は黒鉛と炭
化珪素との複合層から成つているために、この上
にSiC被覆を行うと極めて強固にSiC被膜が形成
される。その結果として熱衝撃に極めて強く、且
つピンホールの全く存在しない三層複合材料が得
られる。このような更にSiC被膜を形成した三層
複合材料は上記の特性を有するため、たとえば集
積回路(IC)の製造プロセス中半導体ウエハー
を処理するために使用される耐酸化性及び耐食性
構造物、エピタキシヤル成長用サセプター、拡散
炉用部品、プラズマCVD用部品、ボート等に極
めて好適な材料となる。 この第三層にあたるSiC層を形成せしめる手段
自体は何等限定されず、従来から知られている各
種の手段がいずれも有効に使用出来、その一例を
示せばCVD法による被覆手段を例示出来る。 更に詳しくはSiCl4、SiHCl3等のハロゲン化シ
ランやSiH4とCH4、C3H8等の炭化水素又はCCl4
等を水素をキヤリアとして炉内へ導入する方法、
またはCH3SiCl3等の有機シラン系ガスや石英−
炭素系等のSiOガスを用いて蒸着させてもよい。 〔実施例〕 次にその実施例を述べる。 実施例 1〜3 高純度黒鉛(嵩密度1.78g/cm3、平均ポアー半
径1.4μm、全細孔容積0.085cm3/g、熱膨張係数
4.0×10-6/K)を直径100mm、厚さ5mmに加工し
た。この黒鉛基材を温度1400Kに加熱し、SiCl4
0.9×10-2mol/min、H20.9mol/minを流し、珪
素被覆を行つた。さらにH20.05mol/minを流し
ながら温度を1800Kに昇温し、1時間加熱した。
尚、珪素被覆時間は、全細孔容積に対する炭化珪
素の含浸率によつて決めた。その結果、炭化珪素
含浸率5、30、及び60%の試料を3種類得た。そ
れらの試料の熱膨張係数、ポアー半径を測定し
た。この結果を表1に示す。 続いて、得られた黒鉛−炭化珪素複合体を
1500Kに加熱し、SiCl40.9×10-2mol/min、H2
1.8mol/min、C3H81.3×10-3mol/minで90分、
更に炉内で基材と支持台との支点を変え90分被覆
を行つた。膜厚は重量増加から計算して100μmで
あつた。 比較例 1〜3 上記実施例に於いて炭化珪素含浸率を夫々0、
0.2及び80%とし、その他はすべて実施例と同様
に処理した。その結果を表1に示す。 これ等実施例1〜3及び比較例1〜2で得られ
た試料についてランニングテスト(90℃で35時間
空気中で加熱)及び熱衝撃テスト(450℃に加熱
された電気炉中に30分間保持し、その後水中へ浸
し、クラツク等の確認操作の10回繰り返し)を行
つた。その結果を表2に示す。
[Industrial Application Field] The present invention relates to a graphite-silicon carbide composite and a method for producing the same, and in particular, the surface layer of a graphite base material is a composite of graphite and silicon carbide, and silicon carbide is further formed on the surface layer of the graphite base material. It relates to a coated composite and a method for producing the same, the purpose of which is to provide oxidation- and corrosion-resistant structures used in the manufacturing process of integrated circuits, particularly for processing semiconductor wafers, susceptors for epitaxial growth, and diffusion furnaces. parts, plasma CVD parts,
An object of the present invention is to provide a composite material suitable for boats and the like. [Prior Art] Structural materials in which the surface of a graphite base material is coated with a silicon carbide layer are known. In such a silicon carbide-coated graphite composite material, a graphite base material having a thermal expansion coefficient close to that of silicon carbide and having small pores on the graphite surface has been used. The reason for this is that if a material whose thermal expansion coefficient is not close to that of silicon carbide is used, peeling or cracking will occur between the graphite and silicon carbide, and if the pores are large, pinholes will occur. Several techniques have already been proposed to alleviate these problems. For example, in Japanese Patent Publication No. 48-26597, it is proposed to provide an intermediate layer consisting of silicon carbide (hereinafter sometimes referred to as SiC) and graphite, and the thickness of the intermediate layer is limited to 50 to 100 μm. There is. Furthermore, in JP-A No. 49-83706, by infiltrating molten silicon into a graphite base material having pores of 5 μm or less, the silicon and graphite react to form SiC, and all the pores are sealed with silicon carbide. It is disclosed that a composite material is obtained. The thickness of the composite layer at this time is 0.125 mm or more. Further, in Japanese Patent Application Laid-Open No. 130363/1983, it is proposed to form an intermediate layer of pyrolytic carbon with a thickness of 10 to 100 μm. [Problems to be Solved by the Invention] However, the graphite-silicon carbide composite substrates proposed above still do not have satisfactory performance and cannot be formed under harsh conditions such as rapid heating and cooling.
Cracks and peeling of the SiC film occur, and pinholes are still quite common. Moreover, with recent technological advances, increasingly harsh conditions are required, and there is an ever-increasing demand for solutions to the above-mentioned problems. For example, in Special Publication No. 48-26597,
The thickness of the intermediate layer in the SiC-graphite mixture is 50~
Since the thickness is limited to 100 μm, if a thin graphite base material is used, cracks and deformation will occur, and if a thick base material is used, pinholes, peeling, etc. will occur. In JP-A No. 49-83706, the thickness of the silicon carbide layer infiltrated into the graphite is set to 0.125 mm or more, which causes the same problem as above, and furthermore, sealing the graphite pores with silicon carbide is not suitable for the graphite base material. When it becomes silicified, it expands, causing cracks and deformation, making it impractical. Furthermore, in JP-A-50-130363, it is extremely difficult to make the thermal expansion coefficient of pyrolytic carbon close to that of silicon carbide, 4.4×10 -6 /K, and it is difficult to avoid peeling of the silicon carbide film. . [Means for Solving the Problems] The present inventors investigated various problems faced by the above-mentioned conventional technology and found that when the graphite surface is reacted with molten silicon, the molten silicon permeates through the graphite pores and binds the binder. It was found that some of the aggregate graphite was silicified. In particular, it has become clear that the impregnation rate of the total pore volume of graphite is correlated with the pore radius and the coefficient of thermal expansion. It has been found that by effectively utilizing these phenomena, a graphite-silicon carbide composite for silicon carbide coating without pinholes, peeling, and cracks in the silicon carbide coating can be obtained, and the conventional problems can be solved. The present invention was completed based on this new fact, and the present invention consists of a graphite-silicon carbide composite in which the surface layer of a graphite base material is impregnated with silicon carbide, and then silicon carbide is coated thereon. This relates to its manufacturing method. [Operation] When the graphite surface is reacted with molten silicon as in the present invention, the molten silicon penetrates into the pores of the graphite, and a portion of the graphite becomes silicon carbide (this reaction is called an impregnation treatment).
Through this reaction, graphite base materials having various coefficients of thermal expansion converge to the coefficient of thermal expansion of silicon carbide (4.4×10 −6 /K). The pore radius and pore volume also become smaller. These things can be done using chemical vapor deposition method (hereinafter referred to as
When coating silicon carbide using the CVD method, the former has the effect of preventing peeling and cracking.
The latter has the effect of preventing pinholes from forming. However, impregnation of silicon carbide accounts for 5% of the total pore volume.
%, it is difficult to approximate the thermal expansion coefficient, and the pore radius is also difficult to be less than 1 μm, which causes pinholes. If it exceeds 60%, the coefficient of thermal expansion will be similar, but the graphite base material will tend to deform or crack due to volumetric expansion. Therefore, in order to exhibit the above-mentioned effects of the present invention particularly markedly, 5 to 60% of the total pore volume of the graphite base material used should be impregnated with silicon carbide. The present invention will be explained below according to its manufacturing method. The basic principle of the present invention is to infiltrate molten silicon into a graphite base material and carry out a reaction.
The graphite base material used at this time is preferably one with relatively low porosity, and usually has a bulk density of 1.70 to 1.70.
1.90 g/cm 3 , a total pore volume of 10-20 cm 3 /g and an average pore radius of 1.0-2.0 μm graphite substrate is used. However, each of the above characteristics indicates the following. Bulk density: mass per total volume of graphite base material (g/
cm 3 ) Porosity: Percentage of total pores in the volume of graphite substrate True specific gravity - Bulk density / True specific gravity x 100% Total pore volume: Total volume of open pores determined by Hg porosimeter (Hg intrusion method) (cm 3 / g) Average pore radius: Average pore radius of pore volume determined from Hg porosimeter (μm) Furthermore, in the present invention, by using a highly purified graphite base material, a composite material with even higher purity can be obtained. can be obtained. The purity of the high-purity graphite base material is preferably one containing impurities (ash) of 10 ppm or less, particularly preferably 2 ppm or less. The method for high purification is not particularly limited, and various methods can be arbitrarily applied. The preferred method is
An example of this method is the method described in No. 61-224131. As for the silicon, not only the graphite base material is immersed in molten metal silicon, but also silicon may be formed on the graphite base material by a CVD method or silicon vapor, and then the silicon may be melted and reacted. However, since it is difficult to control the impregnation rate with the molten silicon immersion method, the CVD method is preferable. In the present invention, when reacting silicon and a graphite base material, in particular, 5 to 50% of the total pore volume of the graphite base material
Adjust so that 60% is impregnated with silicon carbide. 5
As mentioned above, the thermal expansion coefficients of silicon carbide and graphite are not close to each other, and the pore radius is not small, causing pinholes, peeling, cracks, etc. Then, the graphite base material deforms and cracks occur due to volumetric expansion. For the reaction between silicon and graphite base material, there is a method of immersing the graphite base material in molten silicon to react;
The surface of the graphite base material may be coated with silicon by CVD or silicon vapor, and then heat treated at a temperature equal to or higher than the melting point of silicon. The CVD method uses halogenated silanes such as SiCl 4 or SiHCl 3 or SiH 4 and performs chemical vapor deposition on a graphite substrate at 1300 to 1600 K with hydrogen as a carrier gas, producing a uniform Si film. . Subsequently, heat treatment is performed at a temperature higher than the melting point of silicon, preferably 1750 to 1900K, and the coated silicon is heated.
More than 90% of it penetrates into the pores of graphite and becomes silicon carbide. As shown in the reference photograph, the graphite-silicon carbide composite material thus obtained has a substantially uniform surface layer consisting of graphite and silicon carbide. However, the reference photograph is a scanning electron micrograph (100x magnification) of a cross section of the composite material produced in Example 1, and the white part is silicon carbide, and the black part is graphite. In the present invention, after forming a molten silicon carbide layer on a graphite base material, a layer of molten silicon carbide is further applied on the graphite base material by a conventional method.
It is to perform SiC coating. That is, in the present invention, since the surface of the composite material before SiC coating is made of a composite layer of graphite and silicon carbide, when SiC coating is applied on top of this, an extremely strong SiC coating is formed. . The result is a three-layer composite material that is extremely resistant to thermal shock and completely free of pinholes. Such three-layer composites further coated with SiC have the above-mentioned properties and are therefore useful for example in oxidation- and corrosion-resistant structures used for processing semiconductor wafers during integrated circuit (IC) manufacturing processes, epitaxy, etc. It is an extremely suitable material for susceptors for barrel growth, parts for diffusion furnaces, parts for plasma CVD, boats, etc. The means for forming the SiC layer, which is the third layer, is not limited in any way, and any of the various conventionally known means can be effectively used, and one example is a coating method using the CVD method. More specifically, halogenated silanes such as SiCl 4 and SiHCl 3 , SiH 4 and hydrocarbons such as CH 4 and C 3 H 8 , or CCl 4
etc. into the furnace using hydrogen as a carrier,
Or organic silane gas such as CH 3 SiCl 3 or quartz.
The vapor deposition may be performed using carbon-based SiO gas or the like. [Example] Next, an example will be described. Examples 1 to 3 High purity graphite (bulk density 1.78 g/cm 3 , average pore radius 1.4 μm, total pore volume 0.085 cm 3 /g, thermal expansion coefficient
4.0×10 -6 /K) was processed into a diameter of 100 mm and a thickness of 5 mm. This graphite base material is heated to a temperature of 1400K, and SiCl 4
0.9×10 −2 mol/min and H 2 0.9 mol/min were flowed to perform silicon coating. Furthermore, the temperature was raised to 1800K while flowing H 2 at 0.05 mol/min, and the mixture was heated for 1 hour.
The silicon coating time was determined based on the impregnation rate of silicon carbide with respect to the total pore volume. As a result, three types of samples with silicon carbide impregnation rates of 5, 30, and 60% were obtained. The thermal expansion coefficient and pore radius of these samples were measured. The results are shown in Table 1. Next, the obtained graphite-silicon carbide composite was
Heated to 1500K, SiCl 4 0.9×10 -2 mol/min, H 2
1.8 mol/min, C 3 H 8 1.3×10 -3 mol/min for 90 minutes,
Furthermore, coating was carried out for 90 minutes by changing the fulcrum between the base material and the support in the furnace. The film thickness was calculated from the weight increase to be 100 μm. Comparative Examples 1 to 3 In the above examples, the silicon carbide impregnation rate was 0,
0.2 and 80%, and everything else was treated in the same manner as in the example. The results are shown in Table 1. The samples obtained in Examples 1 to 3 and Comparative Examples 1 to 2 were subjected to a running test (heated in air at 90°C for 35 hours) and a thermal shock test (held in an electric furnace heated to 450°C for 30 minutes). Then, the test was immersed in water, and the checking operation (cracking, etc.) was repeated 10 times. The results are shown in Table 2.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

本発明の黒鉛−炭化珪素複合材料に更に炭化珪
素を被覆した炭化珪素被覆黒鉛はピンホールが皆
無で剥離、亀裂の極めて少ないもので半導体その
他各種の製造用材料として極めて好適なものであ
り、産業上の利用価値は高い。
The silicon carbide-coated graphite, which is obtained by coating the graphite-silicon carbide composite material of the present invention with silicon carbide, has no pinholes and has very little peeling or cracking, making it extremely suitable as a material for manufacturing semiconductors and various other products, and is suitable for industrial use. The utility value of the above is high.

Claims (1)

【特許請求の範囲】 1 黒鉛基材の表層部に黒鉛基材の全細孔容積の
5〜60%に炭化珪素が含浸された含浸炭化珪素
層、及びこの含浸炭化珪素層の上に更に炭化珪素
被覆層を有する黒鉛−炭化珪素複合体。 2 黒鉛基材の全細孔容積の5〜60%が炭化珪素
で含浸されるように溶融珪素を浸透、反応せし
め、次いでここに形成された黒鉛と炭化珪素との
複合層の上に更に炭化珪素を被覆することを特徴
とする特許請求の範囲第1項に記載の黒鉛−炭化
珪素複合体の製造法。
[Scope of Claims] 1. An impregnated silicon carbide layer in which 5 to 60% of the total pore volume of the graphite base material is impregnated with silicon carbide on the surface layer of the graphite base material, and a further carbonized layer on this impregnated silicon carbide layer. A graphite-silicon carbide composite having a silicon coating layer. 2. Infiltrate and react with molten silicon so that 5 to 60% of the total pore volume of the graphite base material is impregnated with silicon carbide, and then further carbonize the graphite and silicon carbide composite layer formed here. A method for producing a graphite-silicon carbide composite according to claim 1, which comprises coating silicon.
JP63077595A 1988-03-29 1988-03-29 Graphite-silicon carbide composite body and production thereof Granted JPH01249679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63077595A JPH01249679A (en) 1988-03-29 1988-03-29 Graphite-silicon carbide composite body and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63077595A JPH01249679A (en) 1988-03-29 1988-03-29 Graphite-silicon carbide composite body and production thereof

Publications (2)

Publication Number Publication Date
JPH01249679A JPH01249679A (en) 1989-10-04
JPH0583517B2 true JPH0583517B2 (en) 1993-11-26

Family

ID=13638311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63077595A Granted JPH01249679A (en) 1988-03-29 1988-03-29 Graphite-silicon carbide composite body and production thereof

Country Status (1)

Country Link
JP (1) JPH01249679A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000319080A (en) * 1999-05-07 2000-11-21 Tokai Carbon Co Ltd Graphite member coated with silicon carbide
JP4641536B2 (en) * 2007-07-27 2011-03-02 東洋炭素株式会社 Carbon composite material for reducing atmosphere furnace and method for producing the same
JP4641535B2 (en) * 2007-07-27 2011-03-02 東洋炭素株式会社 Carbon composite material for reducing atmosphere furnace and method for producing the same
CN102220108A (en) * 2011-01-12 2011-10-19 江西赛维Ldk太阳能高科技有限公司 Silicon liquid leakage preventing plugging agent for use in field of production of polycrystalline silicon
US11117806B2 (en) 2015-08-20 2021-09-14 Entegris, Inc. Silicon carbide/graphite composite and articles and assemblies comprising same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4826597A (en) * 1971-08-04 1973-04-07
JPS4983706A (en) * 1972-11-24 1974-08-12
JPS5180317A (en) * 1975-01-07 1976-07-13 Tokai Carbon Kk
JPS5318613A (en) * 1976-08-04 1978-02-21 Kowa Kogyo Method of preventing oxidation of graphite products and oxidation prevented products
JPS5530043A (en) * 1978-08-23 1980-03-03 Noboru Nakamura Cylinder lock and alarm system therefor
JPS5684381A (en) * 1979-12-04 1981-07-09 Toshiba Ceramics Co Carbon silicate material
JPS56145180A (en) * 1980-04-10 1981-11-11 Hitachi Chemical Co Ltd Manufacture of silicon carbide clad carbon material
JPS578797A (en) * 1981-03-24 1982-01-18 Nippon Shoji Kk Method and reagent for quantitative determination of free fatty acid
JPS58185488A (en) * 1982-04-15 1983-10-29 ステンカ−・コ−ポレ−シヨン Oxidation-resistant and corrosion-resistant solid carbon product and manufacture
JPS62297467A (en) * 1986-06-18 1987-12-24 Fujitsu Ltd Silicon carbide film forming method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4826597A (en) * 1971-08-04 1973-04-07
JPS4983706A (en) * 1972-11-24 1974-08-12
JPS5180317A (en) * 1975-01-07 1976-07-13 Tokai Carbon Kk
JPS5318613A (en) * 1976-08-04 1978-02-21 Kowa Kogyo Method of preventing oxidation of graphite products and oxidation prevented products
JPS5530043A (en) * 1978-08-23 1980-03-03 Noboru Nakamura Cylinder lock and alarm system therefor
JPS5684381A (en) * 1979-12-04 1981-07-09 Toshiba Ceramics Co Carbon silicate material
JPS56145180A (en) * 1980-04-10 1981-11-11 Hitachi Chemical Co Ltd Manufacture of silicon carbide clad carbon material
JPS578797A (en) * 1981-03-24 1982-01-18 Nippon Shoji Kk Method and reagent for quantitative determination of free fatty acid
JPS58185488A (en) * 1982-04-15 1983-10-29 ステンカ−・コ−ポレ−シヨン Oxidation-resistant and corrosion-resistant solid carbon product and manufacture
JPS62297467A (en) * 1986-06-18 1987-12-24 Fujitsu Ltd Silicon carbide film forming method

Also Published As

Publication number Publication date
JPH01249679A (en) 1989-10-04

Similar Documents

Publication Publication Date Title
JPH0240033B2 (en)
KR100427118B1 (en) Heat treatment jig and its manufacturing method
EP0340802B1 (en) Silicon carbide diffusion tube for semi-conductor
JPH1012692A (en) Dummy wafer
JP2000302577A (en) Graphite member coated with silicon carbide
EP0529593A1 (en) A glass carbon coated graphite chuck for use in producing polycrystalline silicon
JP2002003285A (en) SiC-coated graphite member and method of manufacturing the same
JPH0583517B2 (en)
CN112624797A (en) Graphite surface gradient silicon carbide coating and preparation method thereof
JP2000073171A (en) Method for producing multilayer SiC film by chemical vapor deposition
JP2000302576A (en) Graphite material coated with silicon carbide
JP2721678B2 (en) β-silicon carbide molded body and method for producing the same
US6881262B1 (en) Methods for forming high purity components and components formed thereby
JP3642446B2 (en) Semiconductor wafer processing tool
JPH0692761A (en) Sic-cvd coated and si impregnated sic product and its manufacture
JP2002037684A (en) Regenerating method of silicon carbide-coated graphite element and silicon carbide-coated graphite element by the method
JPH0568433B2 (en)
JP4556090B2 (en) Member for silicon carbide semiconductor manufacturing apparatus and method for manufacturing the same
JP3739507B2 (en) Manufacturing method of heat treatment jig
JP3482480B2 (en) Graphite-silicon carbide composite having excellent oxidation resistance and method for producing the same
JPH05310487A (en) Method for producing SiC-coated graphite material
JPS63166789A (en) Graphite crucible used in pulling up device for silicon single crystal and production thereof
JPS6385076A (en) Silicon wafer heating jig
JPH10256108A (en) Silicon carbide dummy wafer
JP2855458B2 (en) Processing material for semiconductor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 15