[go: up one dir, main page]

JPH0578384B2 - - Google Patents

Info

Publication number
JPH0578384B2
JPH0578384B2 JP62325584A JP32558487A JPH0578384B2 JP H0578384 B2 JPH0578384 B2 JP H0578384B2 JP 62325584 A JP62325584 A JP 62325584A JP 32558487 A JP32558487 A JP 32558487A JP H0578384 B2 JPH0578384 B2 JP H0578384B2
Authority
JP
Japan
Prior art keywords
catalyst
activated alumina
weight
nickel oxide
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62325584A
Other languages
Japanese (ja)
Other versions
JPH01168342A (en
Inventor
Tomohisa Oohata
Kazuo Tsucha
Eiichi Shiraishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP62325584A priority Critical patent/JPH01168342A/en
Publication of JPH01168342A publication Critical patent/JPH01168342A/en
Publication of JPH0578384B2 publication Critical patent/JPH0578384B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> 本発明は、排ガス浄化用触媒に関するものであ
る。更に詳しくは本発明は自動車等内燃機関から
の排ガス中に含まれる有害成分である炭化水素
(HC)、一酸化炭素(CO)および窒素酸化物
(NOx)を同時に除去する排ガス浄化用三元触媒
に関するものである。 <従来技術とその問題点 従来、自動車等の内燃機関から排出される排ガ
スの浄化用触媒はこれまで多数提案され、実用化
されて来た。当初はHCおよびCOを除去する酸化
触媒が実用化されたが、規制の強化及び発生源の
性能の点から現在は、CO、HCに加え、NOxも
同時に除去する三元触媒が主流となつている。こ
の三元触媒はCO、HCの酸化反応とNOxの還元
反応を同時に行うものである。ところが、燃料で
あるガソリン中には微量のイオウ化合物が含まれ
ており、排ガス中にイオウ酸化物(SOx)として
排出される。この排ガスを三元触媒で浄化する
際、内燃機関から排出されるガスが還元域にある
場合、排ガス中のSOxは三元触媒の還元作用によ
り硫化水素(H2S)に還元され排出される。H2S
は臭気のみならず人体に対しても有害であるが、
現在まで、その発生を抑える有効な触媒は提案さ
れていない。 <問題点を解決するための手段> 本発明者らは、このH2S発生の問題に対し、従
来の触媒性能を損う事なく、H2Sの排出を抑える
ため鋭意研究を重ねた結果、特定量の貴金属を担
持せしめた活性アルミナを用い、さらにニツケル
酸化物を添加することで解決できることを見い出
した。 <発明の構成> 本発明は、白金パラジウムのうち少なくとも一
つの貴金属を5〜30重量%、およびロジウムを1
〜20重量%の範囲で担持せしめた活性アルミナ
(a)、セリウム酸化物(b)、活性アルミナ(c)、および
ニツケル酸化物(d)からなる触媒組成物を、ハニカ
ム型構造を有する担体に被覆担持せしめてなるこ
とを特徴とするH2S発生を抑制した触媒を提供す
るものである。 自動車等の内燃機関からの排ガス中には、燃料
中の微量イオウ化合物が酸化されて生じるSOxが
含まれている。現在広く使用されている排ガス浄
化用三元触媒は、内燃機関の条件が理論空燃比
(A/F)からずれ、燃料過剰となると、排ガス
は還元側となり、排ガス中のSOxをH2Sへと還元
し排出する。 自動車の場合、A/Fは通常、理論値付近に良
くコントロールされているが、一時的なアクセル
のふみ込みや、高負荷時には、燃料過剰側へずれ
る。H2Sの排出は、この様な時おこる。 本発明者らは、H2S発生を抑えるため、鋭意研
究の結果、使用する貴金属の活性アルミナ上への
担持量を特定することでH2Sの発生が抑えられ更
に加えてニツケル酸化物を添加することにより
H2Sは、ほとんど排出されないことを見い出し
た。 従来、貴金属の担持方法としては、活性アルミ
ナを予め担持した後、貴金属を溶液の形で、化学
吸着や物理吸着により担持する方法や、予め活性
アルミナに含浸、分散担持後、その活性アルミナ
を担体に担持する方法が一般的であつた。これら
の方法では担持された貴金属は活性アルミナ上に
高分散状態で存在している。ところが、この高分
散の貴金属はSOxのH2Sへの還元反応が非常に起
こり易い状態である。 そこで本発明者らは、貴金属の分散度合とH2S
発生量を検討した結果、活性アルミナへの担持方
法を特定することでH2S発生を抑制できることを
見いだした。すなわち、白金、パラジウムのうち
少なくとも一つの貴金属を5〜30重量%、ロジウ
ムを1〜20重量%の範囲で活性アルミナに担持
し、セリウム酸化物および、何も担持していない
活性アルミナを合わせて水性スラリーとしハニカ
ム型構造体に担持することで得られる触媒は、従
来の触媒に比べ、H2S発生が抑制され、かつ、触
媒性能は全く損わないことを見い出した。活性ア
ルミナへの貴金属の担持率は高すぎると触媒性能
を損い、低くするとH2S発生抑制効果が得られな
い。 触媒組成物のハニカム型構造体に担持する量は
当該担体1あたり、活性アルミナ(a)を1〜20
g、活性アルミナ(c)を50〜200g、およびセリウ
ム酸化物(b)をCeO2として10〜150gの範囲が好ま
しい。 更に、この様にして得られたH2S発生抑制触媒
から排出されるわずかなH2Sをも抑えるために、
研究を重ねた結果、いつたん発生したH2Sを捕集
する添加物として、ニツケル酸化物が有効である
ことを見い出した。ニツケルまたはニツケル酸化
物を触媒性能向上のため添加する提案は、これま
でにもされている。しかし、ニツケル酸化物が触
媒上に高分散状態で含有する場合ではH2Sを捕集
する効果はなく、逆にH2S発生を助長する作用を
する。ところが、ニツケル酸化物(d)と、白金、パ
ラジウムのうち少なくとも一つの貴金属を5〜30
重量%およびロジウムを1〜20重量%の範囲で担
持せしめた活性アルミナ(a)、セリウム酸化物(b)お
よび活性アルミナ(c)とを、組み合わせることによ
り、発生したH2Sと反応し、ほとんど全てのH2S
を捕集してしまうことを見い出した。ニツケル酸
化物の添加量は、添加前の触媒のH2S発生量によ
るが、担体1あたり1〜30gが好ましい。少な
すぎると効果がなく、多すぎると触媒活性に悪影
響を及ぼす。ニツケル酸化物の添加方法は、ニツ
ケル酸化物の性状によるが触媒組成物をスラリー
化する際かスラリー化後に添加することにより行
える。更には、触媒物質を担持した後、ニツケル
酸化物を追加担持することも可能である。 <実施例> 以下に実施例に示し、本発明を更に詳しく説明
するが、本発明はこれら実施例にのみ限定される
ものでないことは言うまでもない。 実施例 1 市販コージエライト質モノリス担体(日本硝子
製)を用いて触媒を調製した。用いたモノリス担
体は、横断面が1インチ平方当り約400個のガス
流通セルを有する33mmφ、長さ76mmLの円柱状の
もので、約65mlの体積を有する。 白金(Pt)1.5を含有するジニトロアンミン白
金の硝酸水溶液とロジウム(Rh)0.3gを含有す
る硝酸ロジウム水溶液を混合したものと、比表面
積100m2/gの活性アルミナ7.5gを混合し、充分
に乾燥した後、空気中400℃で2時間焼成して
16.1重量%Ptおよび3.2重量%Rh含有アルミナ粉
体を調製した。このPt−Rh含有アルミナと、貴
金属無担持の比表面積100m2/gの活性アルミナ
127g、酸化ニツケル(NiO、試薬)を15gおよ
び市販の酸化セリウム粉体(日産希元素製)75g
とをボールミルで20時間湿式粉砕することによ
り、コーテイング用水性スラリーを調製した。こ
のコーテイング用スラリーに前記モノリス担体を
浸漬し、取り出した後、セル内の過剰スラリーを
空気でブローして、全てのセル内の目詰りを除去
した。次いで130℃で3時間乾燥して触媒(a)を得
た。 この触媒は1当りアルミナ90g、酸化セリウ
ム50g、Pt1.0g、Rh0.2g、酸化ニツケルが10g
担持されていた。 比較例 1 Pt1.5gを含有するジニトロアミン白金の硝酸
水溶液と、Rh0.3gを含有する硝酸ロジウム水溶
液を混合したものを実施例1で用いた活性アルミ
ナ150gと混合、乾燥し、400℃で2時間焼成する
ことで、Pt1.0重量%およびRh0.2重量%を分散担
持したアルミナ粉体を得た。この粉体と、実施例
1で用いた同様の酸化セリウム75gとをボールミ
ルで20時間粉砕し、コーテイング用水性スラリー
を調製した。このスラリーを用い触媒(b)を得た。 この触媒は1当りアルミナ100g、酸化セリ
ウム50g、Pt1.0g、Rh0.2gが担持されていた。 比較例 2 比較例1において、PtおよびRhを担持する活
性アルミナを135gとし、Pt1.11重量%および
Rh0.22重量%を分散担持し、更に実施例1で用
いた酸化ニツケル15gとし、以下同様に触媒(c)を
調製した。 この触媒は1当りアルミナ100g、酸化セリ
ウム50g、Pt1.0g、Rh0.2g、酸化ニツケル10g
が担持されていた。 比較例 3 Ptを1.5g含有するジニトロジアミン白金の硝
酸水溶液と、Rhを0.3g含有する硝酸ロジウムの
水溶液とを混合し、これを実施例1で用いた活性
アルミナ136gを添加し、混合し、乾燥、焼成し、
Pt1.1重量%およびRh0.22重量%を分散担持した
アルミナ粉体を調製した。 次いで、この粉体と、硝酸ニツケル(Ni
(NO326H2O)57.8gを純粋150mlに溶解した水
溶液とを混合し、充分乾燥後、空気中500℃で焼
成し、Pt、RhおよびNiを含有するアルミナを調
製した。 上記の手順により調製したアルミナの粉体と、
酸化セリウム75.5gとをボールミルで湿式粉砕
し、水性スラリーを調製し、次いで実施例1で用
いたモノリス担体を、当該スラリーに浸漬し、以
下、実施例1と同様な手順により、乾燥し、触媒
(d)を得た。 この触媒は、1当たりアルミナが90g、酸化
セリウム50g、Ptが1.0g、Rhが0.2g、酸化ニツ
ケルが10g担持されていた。 <発明の効果) 実施例1、比較例1〜3で調製した触媒4種の
H2S発生量、触媒性能のテストをした。 H2S発生量は、市販の電子制御方式のエンジン
(4気筒、1800c.c.)を使用し、ガソリン中にチオ
フエン(試薬)をイオウ(S)として約0.1wt%添加
し、その排ガスを触媒に導入し、触媒出口ガス中
のH2S濃度を測定することにより行つた。ガソリ
ン中のS 0.1wt%はエンジン排ガス中のSOx濃
度の測定はJIS−K0108メチレンブルー吸光度法
で行つた。 H2S発生のテスト方法は、まず、エンジン暖気
後、触媒入口温度を500℃とし、A/Fを15.5に
し、15分間続け、その後A/F=13.0させると同
時にH2S測定用ガスサンプリングを始め、毎分1
、5分間行うことで行つた。触媒(a)〜(d)につい
ての測定結果を第1表に示す。触媒排ガス浄化性
能は、市販の電子制御エンジン(8気筒、4400
c.c.)を使用し、各触媒をマルチコンバータに充填
し、耐久テストを行つた。エンジンは定常運転60
秒、減速6秒(減速時に燃料カツト)のモードで
運転し触媒の入口温度が定常で800℃となる条件
で50時間耐久した。 耐久後の触媒の性能評価は、H2S測定に使用し
たエンジンを用い、空間速度90000Hr-1の条件で
行つた。三元特性は、触媒入口温度400℃、A/
Fを±0.5、1Hzで振動させながら、その平均
A/Fを15.1から14.1まで変化させた時のCO、
HC、NOの浄化率を測定することで評価した。
又、低温での性能評価のため、上記と同様の運転
条件下、A/Fを14.6に固定し、触媒入口温度を
200℃から450℃まで変化させ、浄化率を求め、性
能評価した。 性能評価の結果を第1表に示す。
<Industrial Application Field> The present invention relates to an exhaust gas purifying catalyst. More specifically, the present invention is a three-way catalyst for exhaust gas purification that simultaneously removes hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx), which are harmful components contained in exhaust gas from internal combustion engines such as automobiles. It is related to. <Prior Art and Problems Theretofore, many catalysts for purifying exhaust gas emitted from internal combustion engines of automobiles and the like have been proposed and put into practical use. Initially, oxidation catalysts that removed HC and CO were put into practical use, but due to stricter regulations and the performance of the generation source, three-way catalysts that remove NOx as well as CO and HC are now mainstream. There is. This three-way catalyst simultaneously performs the oxidation reaction of CO and HC and the reduction reaction of NOx. However, gasoline, which is a fuel, contains trace amounts of sulfur compounds, which are emitted as sulfur oxides (SOx) into exhaust gas. When this exhaust gas is purified using a three-way catalyst, if the gas emitted from the internal combustion engine is in the reduction region, the SOx in the exhaust gas is reduced to hydrogen sulfide (H 2 S) by the reduction action of the three-way catalyst and is emitted. . H2S
is harmful not only to the odor but also to the human body,
To date, no effective catalyst has been proposed to suppress its generation. <Means for solving the problem> The present inventors have conducted intensive research to solve the problem of H 2 S generation in order to suppress the emission of H 2 S without impairing the performance of conventional catalysts. They discovered that this problem could be solved by using activated alumina loaded with a specific amount of noble metal and by adding nickel oxide. <Structure of the invention> The present invention contains 5 to 30% by weight of at least one noble metal among platinum palladium and 1% by weight of rhodium.
Activated alumina supported in the range of ~20% by weight
(a), cerium oxide (b), activated alumina (c), and nickel oxide (d) are coated and supported on a carrier having a honeycomb structure . The present invention provides a catalyst that suppresses S generation. Exhaust gas from internal combustion engines such as automobiles contains SOx, which is produced when trace amounts of sulfur compounds in fuel are oxidized. The currently widely used three-way catalyst for purifying exhaust gas is such that when the conditions of the internal combustion engine deviate from the stoichiometric air-fuel ratio (A/F) and there is excess fuel, the exhaust gas switches to the reduction side and converts SOx in the exhaust gas into H 2 S. It is reduced and discharged. In the case of automobiles, the A/F is normally well controlled around the theoretical value, but it shifts to the side of excess fuel when the accelerator is pressed temporarily or when the load is high. Emission of H 2 S occurs at times like this. In order to suppress the generation of H 2 S, the present inventors have conducted intensive research and found that by specifying the amount of noble metals used on activated alumina, the generation of H 2 S can be suppressed, and in addition, nickel oxide can be added. By adding
It has been found that H 2 S is hardly emitted. Conventionally, methods for supporting noble metals include pre-supporting activated alumina and then supporting the noble metal in the form of a solution by chemical adsorption or physical adsorption, or impregnating activated alumina in advance, dispersing the support, and then applying the activated alumina to the support. The most common method was to support it on In these methods, the supported noble metal exists on activated alumina in a highly dispersed state. However, this highly dispersed noble metal is in a state where the reduction reaction of SOx to H 2 S is very likely to occur. Therefore, the present inventors investigated the degree of dispersion of noble metals and H 2 S
As a result of examining the amount of H 2 S generated, it was found that H 2 S generation could be suppressed by specifying the method of supporting H 2 S on activated alumina. That is, activated alumina supports at least one noble metal of platinum or palladium in a range of 5 to 30% by weight and rhodium in a range of 1 to 20% by weight, and cerium oxide and activated alumina that does not support anything are combined. It has been found that a catalyst obtained by supporting an aqueous slurry on a honeycomb structure suppresses H 2 S generation compared to conventional catalysts, and does not impair catalyst performance at all. If the loading rate of noble metals on activated alumina is too high, the catalyst performance will be impaired, and if it is too low, the effect of suppressing H 2 S generation cannot be obtained. The amount of catalyst composition supported on the honeycomb structure is 1 to 20% of activated alumina (a) per 1 carrier.
g, activated alumina (c) in the range of 50 to 200 g, and cerium oxide (b) in the range of 10 to 150 g as CeO2 . Furthermore, in order to suppress even the slightest amount of H 2 S emitted from the H 2 S generation suppressing catalyst obtained in this way,
As a result of repeated research, it was discovered that nickel oxide is effective as an additive to capture the H 2 S that is generated. Proposals have been made to add nickel or nickel oxide to improve catalyst performance. However, when nickel oxide is contained on the catalyst in a highly dispersed state, it has no effect of trapping H 2 S, and on the contrary acts to promote H 2 S generation. However, when nickel oxide (d) and at least one noble metal of platinum or palladium are mixed
By combining activated alumina (a), cerium oxide (b) and activated alumina (c) on which rhodium is supported in a range of 1 to 20% by weight, reacts with the generated H 2 S, Almost all H2S
It was discovered that it could collect . The amount of nickel oxide added depends on the amount of H 2 S generated by the catalyst before addition, but is preferably 1 to 30 g per carrier. If it is too small, there is no effect, and if it is too large, it will adversely affect the catalyst activity. The method for adding nickel oxide depends on the properties of the nickel oxide, but it can be added during or after slurrying the catalyst composition. Furthermore, after supporting the catalyst material, it is also possible to additionally support the nickel oxide. <Examples> The present invention will be explained in more detail with reference to Examples below, but it goes without saying that the present invention is not limited only to these Examples. Example 1 A catalyst was prepared using a commercially available cordierite monolith carrier (manufactured by Nippon Glass). The monolith carrier used had a cylindrical shape with a cross section of 33 mmφ and a length of 76 mm L, with a cross section of about 400 gas flow cells per square inch, and a volume of about 65 mL. A mixture of a nitric acid aqueous solution of dinitroammineplatinum containing 1.5 platinum (Pt) and a rhodium nitrate aqueous solution containing 0.3 g of rhodium (Rh) was mixed with 7.5 g of activated alumina with a specific surface area of 100 m 2 /g, and After drying, bake in air at 400℃ for 2 hours.
An alumina powder containing 16.1% by weight Pt and 3.2% by weight Rh was prepared. This Pt-Rh-containing alumina and activated alumina with a specific surface area of 100 m 2 /g and no noble metal support
127 g, 15 g of nickel oxide (NiO, reagent), and 75 g of commercially available cerium oxide powder (manufactured by Nissan Kisensu)
An aqueous slurry for coating was prepared by wet-milling the mixture in a ball mill for 20 hours. After the monolithic carrier was immersed in this coating slurry and taken out, the excess slurry in the cells was blown with air to remove clogging in all the cells. Then, it was dried at 130°C for 3 hours to obtain catalyst (a). This catalyst contains 90g of alumina, 50g of cerium oxide, 1.0g of Pt, 0.2g of Rh, and 10g of nickel oxide.
It was being carried. Comparative Example 1 A mixture of a nitric acid aqueous solution of dinitroamine platinum containing 1.5 g of Pt and a rhodium nitrate aqueous solution containing 0.3 g of Rh was mixed with 150 g of the activated alumina used in Example 1, dried, and heated at 400°C for 2 hours. By firing for a period of time, an alumina powder carrying 1.0% by weight of Pt and 0.2% by weight of Rh was obtained. This powder and 75 g of cerium oxide similar to that used in Example 1 were ground in a ball mill for 20 hours to prepare an aqueous slurry for coating. Catalyst (b) was obtained using this slurry. Each catalyst supported 100 g of alumina, 50 g of cerium oxide, 1.0 g of Pt, and 0.2 g of Rh. Comparative Example 2 In Comparative Example 1, 135 g of activated alumina supporting Pt and Rh was used, and 1.11% by weight of Pt and
A catalyst (c) was prepared in the same manner as below by dispersing and supporting 0.22% by weight of Rh and adding 15 g of the nickel oxide used in Example 1. This catalyst contains 100g of alumina, 50g of cerium oxide, 1.0g of Pt, 0.2g of Rh, and 10g of nickel oxide.
was carried. Comparative Example 3 A nitric acid aqueous solution of dinitrodiamine platinum containing 1.5 g of Pt and an aqueous rhodium nitrate solution containing 0.3 g of Rh were mixed, and 136 g of the activated alumina used in Example 1 was added and mixed. Dry, bake,
Alumina powder containing 1.1% by weight of Pt and 0.22% by weight of Rh was prepared. Next, this powder and nickel nitrate (Ni
(NO 3 ) 2 6H 2 O) was mixed with an aqueous solution of 57.8 g dissolved in 150 ml of pure water, thoroughly dried, and then calcined in air at 500° C. to prepare alumina containing Pt, Rh, and Ni. Alumina powder prepared by the above procedure,
75.5 g of cerium oxide was wet-pulverized in a ball mill to prepare an aqueous slurry, and then the monolithic support used in Example 1 was immersed in the slurry, followed by drying in the same manner as in Example 1, and the catalyst
I got (d). Each catalyst carried 90 g of alumina, 50 g of cerium oxide, 1.0 g of Pt, 0.2 g of Rh, and 10 g of nickel oxide. <Effect of the invention) Four types of catalysts prepared in Example 1 and Comparative Examples 1 to 3
The amount of H 2 S generated and catalyst performance were tested. The amount of H 2 S generated is determined by using a commercially available electronically controlled engine (4 cylinders, 1800 c.c.), adding approximately 0.1 wt% of thiophene (reagent) as sulfur (S) to gasoline, and reducing the exhaust gas. This was carried out by introducing H 2 S into the catalyst and measuring the H 2 S concentration in the catalyst outlet gas. The SOx concentration in engine exhaust gas was measured using the JIS-K0108 methylene blue absorbance method. The test method for H 2 S generation is to first warm up the engine, set the catalyst inlet temperature to 500°C, set the A/F to 15.5, continue for 15 minutes, then set the A/F to 13.0 and at the same time sample the gas for H 2 S measurement. starting with 1 every minute
, by doing it for 5 minutes. Table 1 shows the measurement results for catalysts (a) to (d). The catalyst exhaust gas purification performance is based on a commercially available electronically controlled engine (8 cylinders, 4400
cc), each catalyst was filled into a multi-converter and a durability test was conducted. The engine is in steady operation 60
It was operated for 50 hours under the condition that the catalyst inlet temperature was 800℃ at a steady state by operating in the mode of 2 seconds and 6 seconds of deceleration (fuel cut during deceleration). Performance evaluation of the catalyst after durability was performed using the same engine used for H 2 S measurement at a space velocity of 90000 Hr -1 . The ternary characteristics are catalyst inlet temperature 400℃, A/
CO when the average A/F was changed from 15.1 to 14.1 while oscillating F at ±0.5, 1Hz,
Evaluation was made by measuring the purification rate of HC and NO.
In addition, for performance evaluation at low temperatures, the A/F was fixed at 14.6 and the catalyst inlet temperature was adjusted under the same operating conditions as above.
The temperature was varied from 200℃ to 450℃, the purification rate was determined, and the performance was evaluated. The results of the performance evaluation are shown in Table 1.

【表】 *1 クロスオーバーポイントでの三元特性
*2 排ガス中の各成分の50%浄化率の温度
[Table] *1 Three-way characteristics at crossover point *2 Temperature at 50% purification rate of each component in exhaust gas

Claims (1)

【特許請求の範囲】 1 白金、パラジウムのうち少なくとも一つの貴
金属を5〜30重量%、およびロジウムを1〜20重
量%の範囲で担持せしめた活性アルミナ(a)、セリ
ウム酸化物(b)、活性アルミナ(c)、およびニツケル
酸化物(d)からなる触媒組成物を、ハニカム型構造
を有する担体に被覆担持せしめてなることを特徴
とする硫化水素発生を抑制した排ガス浄化用触
媒。 2 当該担体1あたり当該活性アルミナ(a)を1
〜20g、当該活性アルミナ(c)を50〜200g、当該
セリウム酸化物(b)をCeO2として10〜150g、およ
び当該ニツケル酸化物(d)を1〜30g担持せしめて
なる特許請求の範囲1記載の触媒。
[Claims] 1. Activated alumina (a), cerium oxide (b), on which 5 to 30% by weight of at least one noble metal selected from platinum and palladium and 1 to 20% by weight of rhodium are supported; 1. A catalyst for exhaust gas purification that suppresses hydrogen sulfide generation, characterized in that a catalyst composition comprising activated alumina (c) and nickel oxide (d) is coated and supported on a carrier having a honeycomb structure. 2 1 of the activated alumina (a) per 1 of the carrier
~20g, 50~200g of the activated alumina (c), 10~150g of the cerium oxide (b) as CeO2 , and 1~30g of the nickel oxide (d). Catalysts as described.
JP62325584A 1987-12-24 1987-12-24 Catalyst for purifying discharge gas Granted JPH01168342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62325584A JPH01168342A (en) 1987-12-24 1987-12-24 Catalyst for purifying discharge gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62325584A JPH01168342A (en) 1987-12-24 1987-12-24 Catalyst for purifying discharge gas

Publications (2)

Publication Number Publication Date
JPH01168342A JPH01168342A (en) 1989-07-03
JPH0578384B2 true JPH0578384B2 (en) 1993-10-28

Family

ID=18178510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62325584A Granted JPH01168342A (en) 1987-12-24 1987-12-24 Catalyst for purifying discharge gas

Country Status (1)

Country Link
JP (1) JPH01168342A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0520434Y2 (en) * 1988-02-02 1993-05-27
DE50106490T2 (en) * 2000-03-28 2006-03-30 Umicore Ag & Co. Kg Single-layer high-performance catalyst

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63229145A (en) * 1986-09-09 1988-09-26 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for purifying exhaust gas

Also Published As

Publication number Publication date
JPH01168342A (en) 1989-07-03

Similar Documents

Publication Publication Date Title
US5814576A (en) Catalyst for purifying exhaust gas and method of producing same
JP3952617B2 (en) Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine
JP4090547B2 (en) Exhaust gas purification catalyst
JPH03207446A (en) Exhaust gas purifying catalyst
KR19990022366A (en) Catalyst for exhaust gas purification and exhaust gas purification method
KR19980033126A (en) Catalysts and purification methods for exhaust gas purification of internal combustion engines
EP1016447A1 (en) Exhaust gas purification method and exhaust gas purification catalyst
US5039650A (en) Exhaust gas purification catalyst for suppressing hydrogen sulfide evolution, and process for production thereof
KR100752372B1 (en) Catalyst composition for exhaust gas purification including zeolite for reducing hydrogen sulfide
JPH0338894B2 (en)
JP2598817B2 (en) Exhaust gas purification catalyst
US4035263A (en) Composite catalyst for clarifying exhaust gas containing nitrogen oxides and method for producing the same
JP3800200B2 (en) Exhaust gas purification method and exhaust gas purification catalyst
JPH0578384B2 (en)
JP4330666B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH05115780A (en) Catalyst for cleaning exhaust gas
JPH06165920A (en) Exhaust gas purifying method
JP3272015B2 (en) Exhaust gas purification catalyst
JP2837864B2 (en) Exhaust gas purifying catalyst for purifying exhaust gas from internal combustion engines using alcohol as fuel
JP3956158B2 (en) Nitrogen oxide removal catalyst
JPS63236541A (en) Catalyst for purifying exhaust gas
JPH05237384A (en) Catalyst for purifying exhaust gas
JP3589763B2 (en) Exhaust gas purification method for gasoline engine
JP3447513B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3368750B2 (en) Exhaust gas purification method and catalyst