[go: up one dir, main page]

JP4090547B2 - Exhaust gas purification catalyst - Google Patents

Exhaust gas purification catalyst Download PDF

Info

Publication number
JP4090547B2
JP4090547B2 JP34774197A JP34774197A JP4090547B2 JP 4090547 B2 JP4090547 B2 JP 4090547B2 JP 34774197 A JP34774197 A JP 34774197A JP 34774197 A JP34774197 A JP 34774197A JP 4090547 B2 JP4090547 B2 JP 4090547B2
Authority
JP
Japan
Prior art keywords
exhaust gas
oxide
nox
cerium
barium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34774197A
Other languages
Japanese (ja)
Other versions
JPH11169712A (en
Inventor
耿 張
和博 長島
智隆 広田
康憲 倉島
秀昭 村木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson Matthey Japan GK
Original Assignee
Johnson Matthey Japan GK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson Matthey Japan GK filed Critical Johnson Matthey Japan GK
Priority to JP34774197A priority Critical patent/JP4090547B2/en
Publication of JPH11169712A publication Critical patent/JPH11169712A/en
Application granted granted Critical
Publication of JP4090547B2 publication Critical patent/JP4090547B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、窒素酸化物(NOx)、一酸化炭素(CO)及び炭化水素(HC)を含む排ガスの浄化用触媒に関する。
【0002】
【従来の技術】
自動車や発電所、硝酸製造工場などからの排ガスには、多くの場合に、人間の健康や環境に被害を及ぼすのに十分な、多量のNOx、COとHCが含まれている。中には特にNOxが顕著に問題になるケースも多い。
【0003】
従来では、硝酸製造工場や発電所のような排ガスの固定発生源において、NOxを除去するために、アンモニア選択還元法と呼ばれる技術が採用されている。この方法は一般的にバナジウムを含む成分を触媒にし、アンモニアを還元剤に使ってNOxを還元する方法である。この方法の欠点は有毒なアンモニアを使うことである。
【0004】
また、自動車などのような排ガスの移動源ではPt、PdまたはRhを主成分とするいわゆる三元触媒を主に使用している。自動車ではエンジン駆動のための燃料となるガソリンを燃やすために必要な酸素量(空気量)とガソリンの量との比(以下空燃比と略す)が化学量論的に1に近いため、その排ガス内に含まれる還元剤のHCとCO及び酸化剤のNOxと酸素もほぼ化学量論的に等しい組成になっている。三元触媒はこのような組成を利用して、HC、COとNOxを同時に除去することができる。
【0005】
しかし、近年では、環境問題、エネルギー問題に対する人々の関心が急激に高まり、人類の健康への影響はもちろん、地球温暖化やオゾン層破壊への対策として多くの努力が払われている。自動車の分野では、低燃費低公害を目標にいわゆるリーンバーンエンジンが開発されている。従来のエンジンとは異なり、リーンバーンエンジンは空燃比を著しく高く制御することにより低燃費を実現せしめるものである。当然ながら、リーンバーンエンジンからの排ガス組成もエンジンに導入される酸素(空気)と燃料の空燃比の影響を受け、酸素過剰な酸化性雰囲気となるため、従来の三元触媒が働く条件が揃わなくなり、HCとCOは除去出来ても、NOxの浄化は難しくなる。このような酸化雰囲気に於いても有効にNOxを除去できる技術として、前述のアンモニア法があるが、自動車のような移動体に適用するのが困難なことは明らかである。
【0006】
この課題を解決するため、最近では、NOx吸蔵型触媒の応用が提案されている。これは、NOxを吸蔵する能力を持つ材料を触媒に使い、エンジンがストイキよりリーンの条件下で運転するときに、一時的にNOxを吸蔵させる。この吸蔵材におけるNOxの吸蔵が飽和になる前に一定期間ごとに強制的に空燃比を瞬時に燃料リッチに切り替えることによって、吸蔵されたNOxを還元除去するものである。しかしながら、このような仕組みに基づいて提案された現在までの触媒にはNOxの貯蔵能力や耐熱性には不十分な点が多い。
【0007】
【本発明が解決しようとする課題】
ストイキ領域からリーンバーン領域までの空燃比範囲で駆動する内燃機関及び外燃機関より排出される排ガス中の汚染物質を効率よく除去することができる高温耐熱性に優れた触媒を提供する。
【0008】
【課題を解決するための手段】
発明者らは鋭意研究した結果、バリウムを主成分とするNOx吸蔵材をPtと同じ第一層(下層)に分散させる一方、RhをPtのある層とは別の第二層(上層)に配置することにより、フレッシュ(調製後、高温処理前)の状態下だけではなく、高温処理した後でも酸素過剰雰囲気下で高いNOx除去能を持つ触媒の発明に至った。また、NOx吸蔵材をRhのある層にも分散することができる。
【0009】
本発明は、酸素過剰の雰囲気下で排気ガス中の窒素酸化物(NOx)、一酸化炭素(CO)及び炭化水素(HC)を浄化する排ガス浄化用触媒において、アルミナと、酸化セリウムまたはセリウムを含む酸素吸蔵放出特性を持つ酸化物とを含む担体と;アルカリ金属、アルカリ土類金属及び希土類元素からなる群から選ばれ、該担体に担持されたNOx吸蔵材と該担体に担持された白金(Pt)とを含んでなる第一層(下層)と;アルミナと、酸化セリウム−酸化ジルコニウムまたはセリウム−ジルコニウム複合酸化物とを含む担体に担持されたロジウム(Rh)を含んでなる第二層(上層)とを有することを特徴とする排ガス浄化用触媒に関する。
【0010】
【発明の実施の形態】
本発明では、Ptの耐熱性やストイキ領域の三元活性を維持するため、酸化セリウムが含まれている。またRhの担体として、アルミナ及び酸化ジルコニウムでもよく、より高温耐熱性を持たせるため、セリウムやネオジウムなど希土類元素によって安定化された酸化ジルコニウムを使うことが望ましい。
NOx貯蔵材としては、バリウムが有効である。耐熱性やより広い温度範囲でのNOx吸蔵能を維持するため、バリウムにカリウム、ジルコニウム、マンガン等の添加物を複合させることは有効である。
【0011】
本発明においては、より多くのPtをNOx吸蔵材の近傍に配置させることになり、このことがNOx貯蔵段階を速い速度で進行させるのに重要である。通常の三元触媒では、Rhを活用するためにPtとRhを同じ触媒層内に分散させ、一部Pt−Rh合金を作らせているが、このような状態になると、Ptの一部が粒子表面上でRhに覆われ、PtのNOの酸化能力にマイナスに影響する。従って、高NO酸化活性を維持するため、PtをRhから分離する必要がある。NOxを放出し還元除去する段階においては、貯蔵されたNOxが一挙に放出されるため、NOxの還元速度が重要である。このための触媒としてRhが有効であることはいうまでもない。Rhの活性を高めるには、高表面積で高耐熱性の担体が必要である。さらに、NOxを還元する過程では、できるだけ、NOxとRhとを接触する機会を増やすのが望ましい。従って、Rhを含む層をPtとNOx吸蔵材を含む層の上層に配置する。この場合に、Rhを含む層にもNOx吸蔵材を配置することができる。
【0012】
本触媒の製造においては、まず、アルミナに酸化セリウムを酸化セリウム粉末、水酸化セリウム又は炭酸化セリウムとして加えることができる。又、含浸法などによりその他のセリウムの化合物を用いて添加することもできる。使用できるセリウムの化合物は、水又は有機溶媒または水と有機溶媒の混合物に溶けることができれば特に限定しない。Ptの場合は、Ptを含浸法やイオン交換法でPtの化合物を用いてアルミナと酸化セリウムの混合物に分散する。使用できるPtの化合物は、水又は有機溶媒または水と有機溶媒の混合物に溶けることができれば特に限定しない。バリウムとその複合体の添加方法は酸化セリウムと同じく、酸化バリウム、炭酸化バリウム、水酸化バリウムなど不溶性物質を使用する場合はそのままの形で、水又は有機溶媒または水と有機溶媒の混合物に溶けるものは含浸法またはイオン交換法等によって、添加することができる。アルミナへの添加順序は、セリウム、PtとNOx吸蔵材の三者のどれか1つを先に加えても良いし、2つ又は3つ同時に加えてもよく、特に限定しない。
【0013】
バリウム以外のカリウム、ジルコニウム、マンガン、鉄、コバルト、ニッケル、銅と亜鉛はバリウムの添加方法と同じ方法で添加できる。添加順序も特に限定する必要はない。また、バリウムとこれら元素の複合体として添加する場合、バリウムとこれら元素の化合物を、関係元素すべてが可溶性の場合は共沈法または蒸発乾固法、それ以外は含浸法、イオン交換法または混練法により調製し、必要に応じて、乾燥焼成を行う。できあがったバリウムとその他元素との複合体はバリウムと同じ添加の仕方によって触媒に添加する。
【0014】
Rhを含む層の触媒は水又は有機溶剤に可溶なRh塩を使って、含浸法又はイオン交換法によって担体に分散する。Rhの担体として、アルミナ、酸化ジルコニウム、又は希土類酸化物によって安定化した酸化ジルコニウムがある。安定化酸化ジルコニウムの組成として、セリウムとジルコニウムとの比率が、原子比でジルコニウム20〜99.9%、セリウム0.1〜80%であり、さらに、原子比で0〜10%のLa、0〜10%のNd、0〜10%Y又は他の希土類を含むことがある。
上記の構成を有する本発明の排ガス浄化用触媒は、本発明の方法に従い、窒素酸化物、一酸化炭素及び炭化水素を含む排気ガスと接触させることにより、そのような排気ガス中の窒素酸化物を有効に除去でき、そのような排気ガスの浄化に有利に用いることができる。
【0015】
【実施例】
実施例1
触媒No.1
第一層目ウォシュコートの調製とそのハニカムへの塗布:
市販のAl2 3 (BET比表面積200m2 /g)粉末に、酸化セリウム粉末を全混合物に占める酸化セリウムの割合が25重量%になるように加えて混合した。さらに、この混合粉末を水と酢酸と共にボールミルにて1時間粉砕しスラリーを作った。このスラリーに市販の400セルコージェライトハニカムよりくりぬいた直径1インチ、長さ6.7センチのコアを漬けた後引き上げて、エアガンで余分なスラリーを取り除いた後に、105℃で30分乾燥してさらに500℃で1時間焼成した。付着したスラリーの量は焼成後ハニカム1リットルあたり150gであった。
【0016】
第一層目ハニカム触媒へのPtの担持:
このハニカムの吸水量に基づき、ハニカム1リットルあたりPt3.5gを担持できるように〔Pt(NH3 4 〕Cl2 の溶液を調製した。この溶液にスラリーの付着したハニカムを浸漬したあと、エアガンで余分な溶液を取り除き、105℃で30分乾燥、500℃で1時間焼成して、Pt担持一層目を得た。
【0017】
第一層目ハニカム触媒へのバリウムの担持:
Ptを担持した後に、Ptの場合と同じ方法で酢酸バリウムを用いて、Baの担持量(金属換算)が25g/Lになるようにバリウムを担持した。
【0018】
第二層目ウォシュコートの調製とそのハニカムへの塗布
共沈法で作成した安定化酸化ジルコニウム(BET比表面積60m2 /g、CeO2 15重量%、ZrO2 75重量%)粉末が全体均一に濡れるまで攪拌しながら水を加えて、1gあたりの吸水量をまず測定した。この吸水量に基づいて最終的にRhの含量が1.64重量%になるようにRh(NO3 3 の溶液を調製し、酸化ジルコニウムにこの溶液を加えながらよくかき混ぜた。加えた後できた混合物を105℃で一晩乾燥し、さらに500℃で2時間、空気中で焼成した。続いて、この粉末とRhを含まないアルミナとを重量比で1対1で混合し、水と酢酸と共にボールミルにて1時間粉砕しスラリーを作った。このスラリーを、先に得られたPtを含むウォシュコート第一層目を塗布した400セルコージェライトコアに第一層目ウォシュコートの時と同じ方法で塗布して、酸化バリウムと酸化ジルコニウム複合体を含む二層構造を持つ触媒No.1を得た。付着した第二層ウォシュコートの量は約60g/Lで、その中に含まれるRhの量は0.35g/Lであった。
【0019】
実施例2
触媒No.2
バリウムの担持量がハニカム触媒1リットル当たり75gであること以外は実施例1と全く同じ方法でバリウムを含む二層構造の触媒No.2を得た。
【0020】
実施例3
触媒No.3
実施例1において、第一層目のバリウム担持量を45g/Lにし、Rhを含む層をハニカムに担持した後に、第一層目にバリウムを担持したと同じ方法で、バリウム30g/Lをさらに該ハニカムコアに担持して、触媒No.3を得た。
【0021】
実施例4
触媒No.4
第一層目ハニカム触媒へのバリウムの担持の前に、マンガンをMn換算で9.2g/LになるようにMn(NO3 2 溶液より担持する以外は実施例1と同一方法にて調製し、バリウムとマンガンを含む二層構造の触媒No.4を得た。
【0022】
実施例5
触媒No.5
マンガンの代わりにコバルトをCo換算で10.4g/LになるようにCo(NO3 2 溶液より担持する以外は実施例4と同一方法にて調製し、バリウムとコバルトを含む二層構造の触媒No.5を得た。
【0023】
実施例6
触媒No.6
第一層目ハニカム触媒へのバリウムの担持の後に、カリウムをK換算で5.3g/LになるようにKNO3 溶液より担持する以外は実施例1と同一方法にて調製し、バリウムとカリウムを含む二層構造の触媒No.6を得た。
【0024】
実施例7
触媒No.7
第一層目ハニカム触媒へのマンガンとバリウムの担持の後にカリウムをK換算で5.3g/LになるようにKNO3 溶液より担持する以外は実施例3と同一方法にて調製し、バリウム、マンガンとカリウムを含む二層構造の触媒No.7を得た。
【0025】
比較例1
触媒No.R1
市販のAl2 3 (BET比表面積200m2 /g)粉末に、酸化セリウム粉末を全混合物に占める酸化セリウムの割合が30重量%になるように加えて混合した。この混合粉末を水と酢酸と共にボールミルにて1時間粉砕してスラリーとした。このスラリーに市販の400セルコージェライトハニカムよりくりぬいた直径1インチ、長さ6.7センチのコアを漬けた後引き上げて、エアガンで余分なスラリーを取り除いた後に、105℃で30分乾燥してさらに500℃で1時間焼成した。付着したスラリーの量は焼成後ハニカム1リットルあたり150gであった。
【0026】
このハニカムの吸水量に基づき、Ptが1リットルあたり3.5g、Rhが0.35g担持できるように〔Pt(NH3 4 〕Cl2 とRh(NO3 3 の混合溶液を調製した。この溶液にスラリーの付着したハニカムを浸漬したあと、エアガンで余分な溶液を取り除き、105℃で30分乾燥、500℃で1時間焼成した。この後さらに、この触媒の吸水量に基づき、バリウムをPtとRhの場合と同じ方法で酢酸バリウムを用いて、Baの担持量が25g/Lになるようにバリウムを担持して、バリウムを含むPt−Rh触媒(触媒No.R1)を得た。
【0027】
比較例2
触媒No.R2
バリウムの担持量をハニカム触媒1リットル当たり75gにした以外は比較例1と全く同様にして触媒No.R2を得た。
【0028】
評価方法:
高温処理:
ガスを流すことのできる石英管の周りを電熱体で囲まれた電気炉を使用し、石英管に触媒コアを置き、窒素中で所定温度になるまでに温度を上げた。その温度で還元雰囲気(水素6体積%+窒素94体積%)と酸化雰囲気(酸素3体積%+窒素97体積%)の雰囲気ガスを10分間ずつ流して1サイクルとし、これを6時間繰り返した。全流量は3リットル/分で、処理温度は800℃とした。
【0029】
活性テスト方法:
高温処理した触媒のコアを通常の流通反応器に入れ、コア周りをガスが素通りできないように固定した。そのコアを500℃で15分、表1に示した反応ガス組成1中に保持し、続いてそのガス中で所定のテスト温度まで昇降温した。温度が安定になってから、NOxの測定を始めた。ガス組成1に3分間、続いてガス組成2に切り替えて3分間それぞれ保持することを1サイクルとし、これを5サイクル繰り返した。各サイクルにおいて、ガス組成2になってから40秒の間のNOxの浄化率(下記の式参照)の平均値を触媒の浄化性能とした。各触媒のテストの結果は表2と表3に示す。
NOx浄化率=(入口NOx濃度−出口NOx濃度)x100%/入口NOx濃度
【0030】
【表1】

Figure 0004090547
【0031】
【表2】
Figure 0004090547
【0032】
【表3】
Figure 0004090547
【0033】
【発明の効果】
本発明に従い、RhをPtの上層に配置し、NOx吸蔵材を下層又は下層と上層両方に分散し、かつ窒素酸化物吸蔵材にバリウムとその複合体を使用することにより、酸素過剰な雰囲気においても効率良く窒素酸化物を除去することができる。
【0034】
以上の説明に関して更に以下の項を開示する。
1. 酸素過剰の雰囲気下で排気ガス中の窒素酸化物(NOx)、一酸化炭素(CO)及び炭化水素(HC)を浄化する排ガス浄化用触媒において、アルミナと、酸化セリウムまたはセリウムを含む酸素吸蔵放出特性を持つ酸化物とを含む担体と;アルカリ金属、アルカリ土類金属及び希土類元素からなる群から選ばれ、該担体に担持されたNOx吸蔵材と該担体に担持された白金(Pt)とを含んでなる第一層(下層)と;アルミナと、酸化セリウム、酸化ジルコニウムまたはセリウム−ジルコニウム複合酸化物とを含む担体に担持されたロジウム(Rh)を含んでなる第二層(上層)とを有することを特徴とする排ガス浄化用触媒。
2. NOx吸蔵材をRhを含む上層にも分散させてなる第1項記載の排ガス浄化用触媒。
3. NOx吸蔵材がバリウムである第2項記載の排ガス浄化用触媒。
4. NOx吸蔵材が、マンガン、鉄、コバルト、ニッケル、銅及び亜鉛からなる群から選ばれた少なくとも一種とバリウム及びバリウムとカリウムの複合体からなる群から選ばれた少なくとも一種類との複合体からなるものである第1項記載の排ガス浄化用触媒。
5. NOx吸蔵材が、バリウムと、ジルコニウム及びカリウムからなる群から選ばれた少なくとも一種類との複合体からなるものである第1項記載の排ガス浄化用触媒。
6. 複合酸化物が、酸化セリウムと酸化ジルコニウムとの複合酸化物であり、セリウムとジルコニウムとの比率が原子比でジルコニウム20〜99.9%、セリウム0.1〜80%である第1項記載の排ガス浄化用触媒。
7. 酸化セリウムと酸化ジルコニウムとの複合酸化物が原子比でLa0.1〜10%、Nd0.1〜10%、Y又は他の希土類0〜10%を含むことを特徴とする第6項記載の排ガス浄化用触媒。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust gas purifying catalyst containing nitrogen oxide (NOx), carbon monoxide (CO), and hydrocarbon (HC).
[0002]
[Prior art]
In many cases, exhaust gases from automobiles, power plants, nitric acid manufacturing plants, etc. contain a large amount of NOx, CO, and HC sufficient to cause damage to human health and the environment. In particular, there are many cases where NOx is particularly problematic.
[0003]
Conventionally, a technique called an ammonia selective reduction method has been adopted in order to remove NOx in a fixed exhaust gas generation source such as a nitric acid manufacturing plant or a power plant. This method is generally a method of reducing NOx using a component containing vanadium as a catalyst and ammonia as a reducing agent. The disadvantage of this method is the use of toxic ammonia.
[0004]
Further, a so-called three-way catalyst having Pt, Pd or Rh as a main component is mainly used in an exhaust gas movement source such as an automobile. In automobiles, the ratio of the amount of oxygen (air) required to burn gasoline, which is the fuel for driving the engine, and the amount of gasoline (hereinafter abbreviated as air-fuel ratio) is close to stoichiometrically 1. The reducing agents HC and CO and the oxidizing agents NOx and oxygen contained therein also have almost stoichiometric compositions. The three-way catalyst can remove HC, CO and NOx at the same time using such a composition.
[0005]
However, in recent years, people's interest in environmental issues and energy issues has increased rapidly, and many efforts have been made to counter global warming and ozone depletion as well as impact on human health. In the field of automobiles, so-called lean burn engines have been developed with the goal of low fuel consumption and low pollution. Unlike conventional engines, lean burn engines achieve low fuel consumption by controlling the air-fuel ratio to be extremely high. Naturally, the exhaust gas composition from the lean burn engine is also affected by the oxygen (air) and fuel air-fuel ratio introduced into the engine, resulting in an oxygen-excessive oxidizing atmosphere. Even if HC and CO can be removed, purification of NOx becomes difficult. There is the above-described ammonia method as a technique that can effectively remove NOx even in such an oxidizing atmosphere, but it is obvious that it is difficult to apply to a moving body such as an automobile.
[0006]
In order to solve this problem, recently, application of a NOx storage catalyst has been proposed. This uses a material capable of storing NOx as a catalyst, and temporarily stores NOx when the engine is operated under conditions leaner than stoichiometric. The stored NOx is reduced and removed by forcibly switching the air-fuel ratio instantaneously to fuel-rich for every predetermined period before the NOx storage in the storage material becomes saturated. However, many of the catalysts proposed to date based on such a mechanism are insufficient for NOx storage capacity and heat resistance.
[0007]
[Problems to be solved by the present invention]
Provided is a catalyst excellent in high-temperature heat resistance that can efficiently remove pollutants in exhaust gas discharged from an internal combustion engine and an external combustion engine driven in an air-fuel ratio range from a stoichiometric range to a lean burn range.
[0008]
[Means for Solving the Problems]
As a result of intensive studies, the inventors have dispersed NOx occlusion material mainly composed of barium in the same first layer (lower layer) as Pt, while Rh is separated into a second layer (upper layer) different from the layer containing Pt. Arrangement has led to the invention of a catalyst having a high NOx removal ability not only in a fresh state (after preparation but before high temperature treatment) but also in a high oxygen atmosphere even after high temperature treatment. Further, the NOx occlusion material can be dispersed in a layer containing Rh.
[0009]
The present invention relates to an exhaust gas purifying catalyst for purifying nitrogen oxide (NOx), carbon monoxide (CO) and hydrocarbon (HC) in exhaust gas in an oxygen-excess atmosphere. In the exhaust gas purifying catalyst, alumina and cerium oxide or cerium are used. A support containing an oxide having oxygen storage / release characteristics, including: an NOx storage material selected from the group consisting of alkali metals, alkaline earth metals, and rare earth elements, and platinum supported on the support (platinum ( A second layer comprising rhodium (Rh) supported on a carrier comprising alumina and cerium oxide-zirconium oxide or cerium-zirconium composite oxide. And an exhaust gas-purifying catalyst.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, cerium oxide is included in order to maintain the heat resistance of Pt and the ternary activity in the stoichiometric region. Further, alumina and zirconium oxide may be used as the carrier for Rh, and it is desirable to use zirconium oxide stabilized with a rare earth element such as cerium or neodymium in order to provide higher temperature heat resistance.
Barium is effective as the NOx storage material. In order to maintain heat resistance and NOx occlusion ability in a wider temperature range, it is effective to combine an additive such as potassium, zirconium or manganese with barium.
[0011]
In the present invention, more Pt is placed in the vicinity of the NOx storage material, which is important for allowing the NOx storage stage to proceed at a high rate. In an ordinary three-way catalyst, Pt and Rh are dispersed in the same catalyst layer in order to utilize Rh, and a part of the Pt—Rh alloy is made. It is covered with Rh on the particle surface and negatively affects the NO oxidation ability of Pt. Therefore, it is necessary to separate Pt from Rh in order to maintain high NO oxidation activity. In the stage of releasing and reducing NOx, the stored NOx is released all at once, so the NOx reduction rate is important. Needless to say, Rh is effective as a catalyst for this purpose. In order to increase the activity of Rh, a high surface area and high heat resistance carrier is required. Furthermore, in the process of reducing NOx, it is desirable to increase the chance of contacting NOx and Rh as much as possible. Therefore, the layer containing Rh is disposed above the layer containing Pt and NOx storage material. In this case, the NOx occlusion material can be disposed also in the layer containing Rh.
[0012]
In the production of the catalyst, first, cerium oxide can be added to alumina as cerium oxide powder, cerium hydroxide, or cerium carbonate. Further, other cerium compounds may be added by an impregnation method or the like. The cerium compound that can be used is not particularly limited as long as it can be dissolved in water, an organic solvent, or a mixture of water and an organic solvent. In the case of Pt, Pt is dispersed in a mixture of alumina and cerium oxide using a Pt compound by an impregnation method or an ion exchange method. The Pt compound that can be used is not particularly limited as long as it can be dissolved in water, an organic solvent, or a mixture of water and an organic solvent. Barium and its composites are added in the same way as cerium oxide, when insoluble materials such as barium oxide, barium carbonate, and barium hydroxide are used, dissolve in water or an organic solvent or a mixture of water and organic solvent. A thing can be added by the impregnation method or the ion exchange method. The order of addition to alumina is not particularly limited, and any one of cerium, Pt, and NOx storage material may be added first, or two or three may be added simultaneously.
[0013]
Potassium, zirconium, manganese, iron, cobalt, nickel, copper and zinc other than barium can be added by the same method as that for adding barium. The order of addition is not particularly limited. In addition, when adding as a complex of barium and these elements, the compound of barium and these elements is coprecipitation or evaporation to dryness if all the related elements are soluble, otherwise impregnation, ion exchange or kneading. Prepared by the method, and if necessary, dry firing. The resulting composite of barium and other elements is added to the catalyst by the same method of addition as barium.
[0014]
The catalyst of the layer containing Rh is dispersed on the support by an impregnation method or an ion exchange method using an Rh salt soluble in water or an organic solvent. Examples of Rh carriers include alumina, zirconium oxide, or zirconium oxide stabilized by rare earth oxides. As the composition of the stabilized zirconium oxide, the ratio of cerium to zirconium is 20 to 99.9% zirconium and 0.1 to 80% cerium in atomic ratio, and 0 to 10% La and 0 in atomic ratio. May contain -10% Nd, 0-10% Y or other rare earths.
According to the method of the present invention, the exhaust gas purifying catalyst of the present invention having the above-described configuration is brought into contact with an exhaust gas containing nitrogen oxide, carbon monoxide and hydrocarbons, whereby nitrogen oxide in such exhaust gas is obtained. Can be removed effectively, and can be advantageously used for purification of such exhaust gas.
[0015]
【Example】
Example 1
Catalyst No. 1
Preparation of first layer washcoat and its application to honeycomb:
To the commercially available Al 2 O 3 (BET specific surface area 200 m 2 / g) powder, cerium oxide powder was added and mixed so that the ratio of cerium oxide in the total mixture was 25% by weight. Further, this mixed powder was pulverized with water and acetic acid for 1 hour in a ball mill to form a slurry. A 1 inch diameter, 6.7 cm long core hollowed out from a commercially available 400 cell cordierite honeycomb was dipped into this slurry, then pulled up, and after removing excess slurry with an air gun, it was dried at 105 ° C. for 30 minutes. Furthermore, it baked at 500 degreeC for 1 hour. The amount of the adhered slurry was 150 g per liter of honeycomb after firing.
[0016]
Loading Pt on the first layer honeycomb catalyst:
Based on the water absorption amount of the honeycomb, a solution of [Pt (NH 3 ) 4 ] Cl 2 was prepared so that 3.5 g of Pt could be supported per liter of the honeycomb. After immersing the honeycomb with the slurry in this solution, the excess solution was removed with an air gun, dried at 105 ° C. for 30 minutes, and fired at 500 ° C. for 1 hour to obtain a Pt-supported first layer.
[0017]
Barium loading on first layer honeycomb catalyst:
After supporting Pt, barium acetate was supported by the same method as in the case of Pt so that the supported amount of Ba (in metal conversion) was 25 g / L.
[0018]
Preparation of the second layer washcoat and its stabilized zirconium oxide (BET specific surface area 60 m 2 / g, CeO 2 15 wt%, ZrO 2 75 wt%) powder prepared by the co-precipitation method on the honeycomb Water was added while stirring until wet, and the amount of water absorption per gram was first measured. Based on this water absorption, a solution of Rh (NO 3 ) 3 was prepared so that the final Rh content was 1.64% by weight, and the solution was stirred well while adding this solution to zirconium oxide. The resulting mixture was dried at 105 ° C. overnight and calcined in air at 500 ° C. for 2 hours. Subsequently, this powder and Rh-free alumina were mixed at a weight ratio of 1: 1, and pulverized with water and acetic acid for 1 hour in a ball mill to form a slurry. This slurry was applied to the 400-cell cordierite core coated with the first layer of Pt-containing washcoat obtained in the same manner as in the case of the first layer of washcoat, and the barium oxide and zirconium oxide composite was coated. Catalyst No. 2 having a two-layer structure containing 1 was obtained. The amount of the attached second layer washcoat was about 60 g / L, and the amount of Rh contained therein was 0.35 g / L.
[0019]
Example 2
Catalyst No. 2
Catalyst No. 2 having a two-layer structure containing barium in exactly the same manner as in Example 1 except that the amount of barium supported was 75 g per liter of honeycomb catalyst. 2 was obtained.
[0020]
Example 3
Catalyst No. 3
In Example 1, the amount of barium supported in the first layer was 45 g / L, the layer containing Rh was supported on the honeycomb, and then barium was further added in the same manner as in the case where barium was supported in the first layer. The catalyst no. 3 was obtained.
[0021]
Example 4
Catalyst No. 4
Prepared in the same manner as in Example 1 except that manganese was supported from the Mn (NO 3 ) 2 solution so as to be 9.2 g / L in terms of Mn before supporting barium on the first layer honeycomb catalyst. Catalyst No. 2 having a two-layer structure containing barium and manganese. 4 was obtained.
[0022]
Example 5
Catalyst No. 5
A double-layer structure containing barium and cobalt was prepared in the same manner as in Example 4 except that cobalt was supported from a Co (NO 3 ) 2 solution so that cobalt would be 10.4 g / L instead of manganese. Catalyst No. 5 was obtained.
[0023]
Example 6
Catalyst No. 6
Barium and potassium were prepared in the same manner as in Example 1 except that after loading barium on the first-layer honeycomb catalyst, potassium was loaded from the KNO 3 solution so that the potassium was 5.3 g / L. Catalyst No. 2 having a two-layer structure containing 6 was obtained.
[0024]
Example 7
Catalyst No. 7
Prepared in the same manner as in Example 3 except that after the manganese and barium were supported on the first layer honeycomb catalyst, potassium was supported from the KNO 3 solution so as to be 5.3 g / L in terms of K, barium, Catalyst No. 2 having a two-layer structure containing manganese and potassium. 7 was obtained.
[0025]
Comparative Example 1
Catalyst No. R1
To the commercially available Al 2 O 3 (BET specific surface area 200 m 2 / g) powder, cerium oxide powder was added and mixed so that the proportion of cerium oxide in the total mixture was 30% by weight. This mixed powder was pulverized with water and acetic acid in a ball mill for 1 hour to form a slurry. A 1 inch diameter, 6.7 cm long core hollowed out from a commercially available 400 cell cordierite honeycomb was dipped into this slurry, then pulled up, and after removing excess slurry with an air gun, it was dried at 105 ° C. for 30 minutes. Furthermore, it baked at 500 degreeC for 1 hour. The amount of the adhered slurry was 150 g per liter of honeycomb after firing.
[0026]
Based on the water absorption of the honeycomb, a mixed solution of [Pt (NH 3 ) 4 ] Cl 2 and Rh (NO 3 ) 3 was prepared so that 3.5 g of Pt and 0.35 g of Rh could be supported. After immersing the honeycomb with the slurry in this solution, the excess solution was removed with an air gun, dried at 105 ° C. for 30 minutes, and fired at 500 ° C. for 1 hour. Thereafter, based on the amount of water absorbed by the catalyst, barium is supported using barium acetate in the same manner as in the case of Pt and Rh, so that the supported amount of Ba is 25 g / L, and barium is contained. A Pt—Rh catalyst (catalyst No. R1) was obtained.
[0027]
Comparative Example 2
Catalyst No. R2
Except that the supported amount of barium was 75 g per liter of honeycomb catalyst, the catalyst No. R2 was obtained.
[0028]
Evaluation methods:
High temperature treatment:
An electric furnace surrounded by an electric heating body was used around a quartz tube through which a gas can flow, and a catalyst core was placed on the quartz tube, and the temperature was raised to a predetermined temperature in nitrogen. At that temperature, a reducing atmosphere (6% by volume of hydrogen + 94% by volume of nitrogen) and an atmospheric gas of an oxidizing atmosphere (3% by volume of oxygen + 97% by volume of nitrogen) were allowed to flow for 10 minutes to form one cycle, which was repeated for 6 hours. The total flow rate was 3 liters / minute, and the treatment temperature was 800 ° C.
[0029]
Activity test method:
The high temperature treated catalyst core was placed in a normal flow reactor and fixed around the core so that no gas could pass through it. The core was held in the reaction gas composition 1 shown in Table 1 for 15 minutes at 500 ° C., and then the temperature was raised to a predetermined test temperature in the gas. When the temperature became stable, measurement of NOx was started. Switching to gas composition 1 for 3 minutes, then switching to gas composition 2 and holding each for 3 minutes was taken as 1 cycle, and this was repeated 5 cycles. In each cycle, the average value of the NOx purification rate (see the following formula) for 40 seconds after the gas composition 2 was reached was defined as the catalyst purification performance. The test results for each catalyst are shown in Tables 2 and 3.
NOx purification rate = (inlet NOx concentration−outlet NOx concentration) × 100% / inlet NOx concentration
[Table 1]
Figure 0004090547
[0031]
[Table 2]
Figure 0004090547
[0032]
[Table 3]
Figure 0004090547
[0033]
【The invention's effect】
In accordance with the present invention, by placing Rh in the upper layer of Pt, dispersing the NOx storage material in the lower layer or both the lower layer and the upper layer, and using barium and its composite in the nitrogen oxide storage material, Can efficiently remove nitrogen oxides.
[0034]
The following items are further disclosed with respect to the above description.
1. In an exhaust gas purifying catalyst that purifies nitrogen oxides (NOx), carbon monoxide (CO), and hydrocarbons (HC) in exhaust gas under an oxygen-excess atmosphere, alumina and oxygen containing cerium oxide or cerium A carrier comprising an oxide having an occlusion-release characteristic; selected from the group consisting of alkali metals, alkaline earth metals and rare earth elements, and a NOx occlusion material supported on the carrier and platinum (Pt) supported on the carrier A second layer (upper layer) comprising rhodium (Rh) supported on a support containing alumina and cerium oxide, zirconium oxide or a cerium-zirconium composite oxide. An exhaust gas purifying catalyst characterized by comprising:
2. The exhaust gas purifying catalyst according to item 1, wherein the NOx occlusion material is dispersed also in an upper layer containing Rh.
3. The exhaust gas purifying catalyst according to item 2, wherein the NOx storage material is barium.
4. The NOx storage material is a composite of at least one selected from the group consisting of manganese, iron, cobalt, nickel, copper and zinc and at least one selected from the group consisting of barium and a composite of barium and potassium. The exhaust gas-purifying catalyst as set forth in claim 1, comprising:
5. The exhaust gas purifying catalyst according to item 1, wherein the NOx storage material is composed of a composite of barium and at least one selected from the group consisting of zirconium and potassium.
6. The composite oxide is a composite oxide of cerium oxide and zirconium oxide, and the ratio of cerium to zirconium is 20 to 99.9% zirconium and 0.1 to 80% cerium in terms of atomic ratio. The catalyst for exhaust gas purification as described.
7. The composite oxide of cerium oxide and zirconium oxide containing La 0.1 to 10%, Nd 0.1 to 10%, Y or other rare earth 0 to 10% by atomic ratio Exhaust gas purification catalyst.

Claims (6)

酸素過剰の雰囲気下で排気ガス中の窒素酸化物(NOx)、一酸化炭素(CO)及び炭化水素(HC)を浄化する排ガス浄化用触媒であって、
アルミナと、酸化セリウムまたはセリウムを含む酸素吸蔵放出特性を持つ酸化物とを含む担体と;前記担体に担持されたNOx吸蔵材と;及び、前記担体に担持された白金(Pt)とを含んでなる第一層(下層)と、
アルミナと、及び、酸化セリウム、酸化ジルコニウムまたはセリウム−ジルコニウム複合酸化物とを含む担体に担持されたロジウム(Rh)を含んでなる第二層(上層)とを備えてなり、
前記NOx吸蔵材が、前記ロジウム(Rh)を含んでなる第二層(上層)にも分散されてなり、
前記NOx吸蔵材が、アルカリ金属、アルカリ土類金属及び希土類元素からなる群から選択されるものでありかつ、空燃比がリッチの際に、吸蔵したNOxを還元除去するものである、排ガス浄化用触媒。
An exhaust gas purifying catalyst that purifies nitrogen oxides (NOx), carbon monoxide (CO), and hydrocarbons (HC) in exhaust gas in an oxygen-excess atmosphere,
A carrier containing alumina and cerium oxide or an oxide having oxygen storage / release characteristics including cerium; a NOx occlusion material supported on the carrier; and platinum (Pt) supported on the carrier. A first layer (lower layer),
A second layer (upper layer) comprising rhodium (Rh) supported on alumina and a carrier containing cerium oxide, zirconium oxide or cerium-zirconium composite oxide;
The NOx occlusion material is also dispersed in the second layer (upper layer) containing the rhodium (Rh) ,
The NOx storage material are those selected from the group consisting of alkali metals, alkaline earth metals and rare earth elements, and, when the air-fuel ratio is rich, is to reduce and remove occluded NOx, exhaust gas purification Catalyst.
前記NOx吸蔵材がバリウムである、請求項1に記載の排ガス浄化用触媒。  The exhaust gas-purifying catalyst according to claim 1, wherein the NOx storage material is barium. 前記NOx吸蔵材が、マンガン、鉄、コバルト、ニッケル、銅及び亜鉛からなる群から選ばれた少なくとも一種類と、及び、バリウム及びバリウムとカリウムの複合体からなる群から選ばれた少なくとも一種類との複合体からなるものである、請求項1又は2に記載の排ガス浄化用触媒。  The NOx storage material is at least one selected from the group consisting of manganese, iron, cobalt, nickel, copper and zinc, and at least one selected from the group consisting of barium, a barium and potassium complex, and The exhaust gas-purifying catalyst according to claim 1 or 2, comprising the composite of the above. 前記NOx吸蔵材が、バリウムと、及びジルコニウム及びカリウムからなる群から選ばれた少なくとも一種類との複合体からなるものである、請求項1〜3の何れか一項に記載の排ガス浄化用触媒。  The exhaust gas purifying catalyst according to any one of claims 1 to 3, wherein the NOx storage material is composed of a composite of barium and at least one selected from the group consisting of zirconium and potassium. . 前記複合酸化物が、酸化セリウムと酸化ジルコニウムとの複合酸化物であり、セリウムとジルコニウムとの比率が原子比でジルコニウム20〜99.9%、セリウム0.1〜80%である、請求項1〜4の何れか一項に記載の排ガス浄化用触媒。  The composite oxide is a composite oxide of cerium oxide and zirconium oxide, and the ratio of cerium and zirconium is 20 to 99.9% zirconium and 0.1 to 80% cerium in atomic ratio. The exhaust gas-purifying catalyst according to any one of -4. 前記酸化セリウムと酸化ジルコニウムとの複合酸化物が、原子比でLa0.1〜10%、Nd0.1〜10%、Y又は他の希土類0〜10%を含んでなる、請求項5に記載の排ガス浄化用触媒。  The composite oxide of cerium oxide and zirconium oxide comprises La 0.1 to 10%, Nd 0.1 to 10%, Y or other rare earth 0 to 10% in atomic ratio. Exhaust gas purification catalyst.
JP34774197A 1997-12-17 1997-12-17 Exhaust gas purification catalyst Expired - Lifetime JP4090547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34774197A JP4090547B2 (en) 1997-12-17 1997-12-17 Exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34774197A JP4090547B2 (en) 1997-12-17 1997-12-17 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JPH11169712A JPH11169712A (en) 1999-06-29
JP4090547B2 true JP4090547B2 (en) 2008-05-28

Family

ID=18392279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34774197A Expired - Lifetime JP4090547B2 (en) 1997-12-17 1997-12-17 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP4090547B2 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000102728A (en) * 1998-09-29 2000-04-11 Mazda Motor Corp Catalyst for purifying exhaust gas
JP4590733B2 (en) * 2000-02-22 2010-12-01 マツダ株式会社 Exhaust gas purification catalyst and exhaust gas purification method using the catalyst
JP2002079106A (en) * 2000-06-29 2002-03-19 Mazda Motor Corp Catalyst and apparatus for cleaning exhaust gas
US7081431B2 (en) 2000-09-08 2006-07-25 Toyota Jidosha Kabushiki Kaisha NOx absorbent and absorption reduction-type NOx purifying catalyst
JP3758487B2 (en) * 2000-09-08 2006-03-22 トヨタ自動車株式会社 Absorption reduction type NOx purification catalyst
JP4586293B2 (en) * 2001-04-13 2010-11-24 株式会社豊田中央研究所 NOx occlusion agent, NOx occlusion reduction type catalyst and method for producing the same
JP3758601B2 (en) 2002-05-15 2006-03-22 トヨタ自動車株式会社 NOx storage reduction catalyst
JP4290391B2 (en) * 2002-06-07 2009-07-01 ヴァルティオン テクンニィルリネン ツッツキムスケスクス Method and apparatus for catalytic removal of nitrogen oxides
JP4238056B2 (en) * 2003-03-31 2009-03-11 三井金属鉱業株式会社 Layered catalyst for exhaust gas purification
JP4507717B2 (en) * 2004-01-16 2010-07-21 マツダ株式会社 Exhaust gas purification catalyst
JP4496876B2 (en) * 2004-07-30 2010-07-07 マツダ株式会社 Exhaust gas purification catalyst
US7566424B2 (en) 2004-07-23 2009-07-28 Mazda Motor Corporation Exhaust gas purification catalyst
JP4513453B2 (en) * 2004-08-02 2010-07-28 マツダ株式会社 Exhaust gas purification catalyst
JP4810947B2 (en) * 2005-09-29 2011-11-09 トヨタ自動車株式会社 Control method for internal combustion engine
EP2045010B1 (en) 2006-06-14 2011-09-21 Cataler Corporation Exhaust gas purifying catalyst
JP2008029970A (en) * 2006-07-28 2008-02-14 Toyota Motor Corp Gas purification catalyst
EP2127744B1 (en) 2007-02-01 2018-07-18 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Exhaust gas purification apparatus comprising a catalyst system and exhaust gas purification method
US8337791B2 (en) 2008-12-03 2012-12-25 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Exhaust gas purification catalyst, exhaust gas purification apparatus using the same and exhaust gas purification method
JPWO2010103870A1 (en) 2009-03-09 2012-09-13 第一稀元素化学工業株式会社 Exhaust gas purification catalyst, exhaust gas purification device using the same, and exhaust gas purification method
JP5673173B2 (en) * 2011-02-10 2015-02-18 トヨタ自動車株式会社 Exhaust gas purification catalyst
JP6334731B2 (en) * 2014-12-12 2018-05-30 本田技研工業株式会社 Exhaust gas purification catalyst
CN113600188B (en) * 2021-08-10 2023-05-30 无锡威孚环保催化剂有限公司 Catalyst for purifying tail gas of gasoline car and preparation method thereof

Also Published As

Publication number Publication date
JPH11169712A (en) 1999-06-29

Similar Documents

Publication Publication Date Title
JP4090547B2 (en) Exhaust gas purification catalyst
JP4092441B2 (en) Exhaust gas purification catalyst
JP4012320B2 (en) Exhaust gas purification catalyst for lean combustion engine
US7863217B2 (en) Exhaust gas purifying catalyst and exhaust gas purifying method
KR19990022366A (en) Catalyst for exhaust gas purification and exhaust gas purification method
JP3766568B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH05277376A (en) Nox removing catalyst and nox removing method utilizing the catalyst
JPH10192713A (en) Exhaust gas purifying catalyst and its use
JPH10165819A (en) Catalyst for cleaning of exhaust gas and its use method
JP2001058130A (en) Catalyst for nitrogen oxide decomposition
JP3800200B2 (en) Exhaust gas purification method and exhaust gas purification catalyst
JPH1157477A (en) Exhaust gas cleaning catalyst and method of using the same
JP4330666B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH08281116A (en) Catalyst for purifying exhaust gas
JPH07308578A (en) Exhaust gas purifying catalyst
JP3622893B2 (en) NOx absorbent and exhaust gas purification catalyst using the same
WO2002055194A1 (en) Catalyst for clarification of nitrogen oxides
JP3965793B2 (en) Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine
JP4852793B2 (en) Exhaust gas purification device and exhaust gas purification catalyst for internal combustion engine
JP3447513B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3589763B2 (en) Exhaust gas purification method for gasoline engine
JP2008215359A (en) Purification method of lean-burn engine exhaust gas
JP7304241B2 (en) NOx purification catalyst and exhaust gas purification catalyst
JP4822049B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP2001046835A (en) NOx ABSORBING AND CLEANING MATERIAL AND EXHAUST GAS CLEANING CATALYST USING THE SAME

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

EXPY Cancellation because of completion of term