[go: up one dir, main page]

JPH0578194A - Preparation of graphite crystal - Google Patents

Preparation of graphite crystal

Info

Publication number
JPH0578194A
JPH0578194A JP3240845A JP24084591A JPH0578194A JP H0578194 A JPH0578194 A JP H0578194A JP 3240845 A JP3240845 A JP 3240845A JP 24084591 A JP24084591 A JP 24084591A JP H0578194 A JPH0578194 A JP H0578194A
Authority
JP
Japan
Prior art keywords
graphite
carbon
crystal
base material
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3240845A
Other languages
Japanese (ja)
Inventor
Susumu Fujimori
進 藤森
Yasuyuki Sugiyama
泰之 杉山
Iwao Hatakeyama
巖 畠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3240845A priority Critical patent/JPH0578194A/en
Publication of JPH0578194A publication Critical patent/JPH0578194A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To improve crystallinity and readily control the crystal size and shape by depositing carbon dissolved in a metal onto a graphite seed crystal. CONSTITUTION:A metallic lump 4 is set through a carbon base material 6 on a heat insulator 2 provided on a supporting rod 1 and a contact part of the carbon base material 6 with the metallic lump 4 is irradiated with high- output laser beams 5 from a CO2 laser to dissolve the carbon base material 6 in the metallic lump 4. A graphite seed crystal 3 is then brought into contact with the metallic lump 4 to deposit carbon dissolved in the metal onto the seed crystal 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、結晶性に優れた高品質
のグラファイト結晶を、結晶の大きさ、形状を簡便に制
御しつつ、かつ、量産性良く作製することのできるグラ
ファイト結晶の作製方法に関する。
FIELD OF THE INVENTION The present invention relates to the production of high quality graphite crystals having excellent crystallinity, by which the size and shape of the crystals can be easily controlled and the mass productivity can be improved. Regarding the method.

【0002】[0002]

【従来の技術】グラファイトは黒鉛とも呼ばれ、無定形
炭素、ダイヤモンドと共に炭素の同素体の一つをなすも
ので、その結晶構造は図2に示す通りである。古くから
良く知られた物質であり、その優れた表面潤滑性を利用
して摺動部品の材料として、あるいは、優れた耐熱性を
利用して耐火物材料、原子炉材料として用いられ、さら
に、被膜は抵抗体などの回路材料として用いられてきて
いる。
2. Description of the Related Art Graphite is also called graphite and forms one of allotropes of carbon with amorphous carbon and diamond, and its crystal structure is as shown in FIG. It is a well-known substance from ancient times, and is used as a material for sliding parts by utilizing its excellent surface lubricity, or as a refractory material and reactor material by utilizing its excellent heat resistance. Films have been used as circuit materials such as resistors.

【0003】しかし、これらの用途は集積回路、LSI な
どに代表されるエレクトロニクス産業の隆盛化前に開発
されたものであり、近年のマイクロエレクトロニクスに
用いられる電子材料の材料制御技術の水準から見ると、
前近代的な技術水準に止まっている状態にある。この理
由の一つは、炭素が古くから知られた材料でありなが
ら、高品質の結晶を得ることが難しいことにある。周期
律表からも想定されるように、炭素はIV族元素の中で最
も共有結合の強い元素であり、原子間の結合が強く、方
向性が強いことから原子の移動度が小さく安定な結晶格
子を組むために、個々の原子の移動が難しい。さらに、
Si、Ge などと異なり、溶融液化し、固化して結晶化さ
せようとしても、炭素は大気下では液化せず、昇温して
行くと昇華してしまい、数千気圧以上の極限条件下でし
か液化し得ないという厄介な性質を有している。このよ
うな炭素固有の性質から、高品質の結晶性炭素を得るこ
とが難しく、これまで、エレクトロニクス産業の主役と
なり得ていなかった。
However, these applications were developed before the rise of the electronics industry represented by integrated circuits, LSIs, etc., and viewed from the level of material control technology of electronic materials used for microelectronics in recent years. ,
It remains in a state of pre-modern technical level. One of the reasons for this is that it is difficult to obtain high quality crystals even though carbon is a material that has been known for a long time. As expected from the Periodic Table, carbon is the element with the strongest covalent bond among the group IV elements, and because the bond between atoms is strong and the directionality is strong, the mobility of atoms is small and a stable crystal. It is difficult to move individual atoms because the lattice is formed. further,
Unlike Si and Ge, carbon does not liquefy in the atmosphere even when trying to melt and solidify to crystallize, but it sublimes as the temperature rises, and under the extreme conditions of several thousand atmospheric pressure or more. It has a troublesome property that it can only be liquefied. Due to such inherent properties of carbon, it is difficult to obtain high-quality crystalline carbon, and it has not been possible to play a leading role in the electronics industry until now.

【0004】これに対し、熱分解黒鉛の結晶性は比較的
優れていると言われている。この物質は、ハイドロカー
ボン系のガスを高温に熱した基体上に導き、ガスを基体
上で熱的に分解して炭素を堆積させて得られるものであ
る。しかし、この場合には、グラファイト状の構造を有
する被膜を得ることはできるものの、その結晶性はエレ
クトロニクス産業の要求水準からみた場合に高品質のも
のとは言えず、エレクトロニクス材料としての用途に適
するものではない。
On the other hand, the crystallinity of pyrolytic graphite is said to be relatively excellent. This substance is obtained by introducing a hydrocarbon-based gas onto a substrate heated to a high temperature and thermally decomposing the gas on the substrate to deposit carbon. However, in this case, although a coating film having a graphite-like structure can be obtained, its crystallinity is not high quality when viewed from the level required by the electronics industry, and it is suitable for use as an electronic material. Not a thing.

【0005】[0005]

【発明が解決しようとする課題】以上述べたように、従
来技術においては、グラファイトをエレクトロニクス用
材料として用いることについては種々の問題点があっ
た。しかし、図2の構造から推定されるように、グラフ
ァイトの特徴は強い異方性を示すことにある。すなわ
ち、ab軸二次元平面内での強い共有結合とc軸方向の
弱いファン・デル・ワールス結合とは対照的であり、こ
のことから、電気抵抗はab軸平面内の方がc軸方向よ
りも数桁小さく、また、熱伝導率はab軸平面内方向の
方がc軸方向よりも100倍程度大きくなる。高品質のグ
ラファイト結晶の作製において、これらの特徴的な物性
の制御が可能になれば、グラファイトの産業的応用は極
めて幅広いものとなりエレクトロニクス用材料技術に一
大変革をもたらすものとなる。
As described above, in the prior art, there were various problems in using graphite as a material for electronics. However, as estimated from the structure of FIG. 2, the characteristic of graphite is that it exhibits strong anisotropy. That is, there is a contrast between the strong covalent bond in the ab axis two-dimensional plane and the weak van der Waals bond in the c axis direction. From this fact, the electric resistance in the ab axis plane is larger than that in the c axis direction. Is several orders of magnitude smaller, and the thermal conductivity in the ab axis plane direction is about 100 times greater than in the c axis direction. If it is possible to control these characteristic properties in the production of high-quality graphite crystals, the industrial application of graphite will be extremely widespread, and it will revolutionize the material technology for electronics.

【0006】このような状況から、現在、グラファイト
結晶の製造技術への関心が高まりつつあり、技術的な解
明、突破が待望されている状況にある。
Under these circumstances, interest in graphite crystal production technology is currently increasing, and there is a long-felt need for technical elucidation and breakthrough.

【0007】本発明の目的は、上記従来技術の有してい
た課題を解決して、結晶性に優れた高品質のグラファイ
ト結晶を、結晶の大きさ、形状を簡便に制御しつつ、か
つ、量産性良く作製することのできるグラファイト結晶
の作製方法を提供することにある。
An object of the present invention is to solve the problems of the above-mentioned prior art, to provide a high-quality graphite crystal having excellent crystallinity, while simply controlling the size and shape of the crystal, and It is intended to provide a method for producing a graphite crystal that can be produced with high mass productivity.

【0008】[0008]

【課題を解決するための手段】上記目的は、炭素を母材
として炭素を金属中に溶解させ、金属中に溶解した炭素
をグラファイト種結晶上に析出させることによって達成
することができる。この内容をやや具体的に説明すれば
次の通りである。すなわち、まず、炭素母材と金属とを
接触させて該金属の融点以上に加熱すれば、溶融した金
属中に炭素原子を溶解させることが可能である。ここ
で、溶融金属の一方の端にグラファイト種結晶を配置
し、かつ、炭素母材‐金属‐種結晶の系に温度勾配をつ
け、炭素母材と金属との接触面を高温に、金属と種結晶
との接触面を比較的低温に保持することによって、金属
中で過飽和状態となった炭素原子が金属‐種結晶の接触
面で種結晶上に析出し、グラファイト単結晶として成長
させることができる。
The above object can be achieved by dissolving carbon in a metal using carbon as a base material and precipitating the carbon dissolved in the metal on a graphite seed crystal. The contents will be described below in more detail. That is, first, if the carbon base material and the metal are brought into contact with each other and heated to a temperature equal to or higher than the melting point of the metal, it is possible to dissolve the carbon atom in the molten metal. Here, a graphite seed crystal is arranged at one end of the molten metal, and a temperature gradient is applied to the carbon base material-metal-seed crystal system, and the contact surface between the carbon base material and the metal is heated to a high temperature. By maintaining the contact surface with the seed crystal at a relatively low temperature, carbon atoms that have become supersaturated in the metal can precipitate on the seed crystal at the metal-seed crystal contact surface and grow as a graphite single crystal. it can.

【0009】[0009]

【作用】上記炭素母材‐金属‐種結晶の系を十分に加熱
し、かつ、必要な温度勾配を制御性良く実現し、さら
に、不純物混入による汚染を生じることのない熱源とし
ては、レーザ光線を用いることが好ましい。また、上記
の方法を用いる場合加熱温度は少なくとも1000℃以上と
する必要があるが、このような高温を温度勾配をつけて
実現する熱源としては、CO2レーザのような大出力レー
ザが最適である。
A laser beam is used as a heat source that sufficiently heats the carbon base material-metal-seed crystal system, realizes a necessary temperature gradient with good controllability, and does not cause contamination due to contamination with impurities. Is preferably used. When using the above method, the heating temperature must be at least 1000 ° C or higher, but a high-power laser such as a CO 2 laser is optimal as a heat source for achieving such a high temperature with a temperature gradient. is there.

【0010】また、上記の炭素母材‐金属‐種結晶系の
加熱に際しては、母材と種結晶とを対向させ、その間に
金属を配置し、母材と種結晶との位置関係を制御しなが
らこれらを移動させることによって、種結晶上に成長す
るグラファイト結晶の形状と大きさとを制御することが
可能となる。
When heating the above carbon base material-metal-seed crystal system, the base material and the seed crystal are opposed to each other, and a metal is placed between them to control the positional relationship between the base material and the seed crystal. However, by moving these, it becomes possible to control the shape and size of the graphite crystal grown on the seed crystal.

【0011】[0011]

【実施例】以下、本発明グラファイト結晶の作製方法に
ついて、実施例によって具体的に説明する。
EXAMPLES The method for producing the graphite crystal of the present invention will be specifically described below with reference to examples.

【0012】[0012]

【実施例1】図1は本発明方法の実施に用いたグラファ
イト結晶作製装置の要部の構成を示した図で、炭素母材
6上に金属塊4を載せ、該金属塊4上にさらに種結晶3
を載せた構成からなっていることを示す。なお、本実施
例においては、金属塊4として高純度の鉄(Fe)を用い
た。
Example 1 FIG. 1 is a diagram showing a configuration of a main part of a graphite crystal producing apparatus used for carrying out the method of the present invention, in which a metal mass 4 is placed on a carbon base material 6 and further on the metal mass 4. Seed crystal 3
It shows that it is composed of. In this example, high-purity iron (Fe) was used as the metal block 4.

【0013】上記の構成において、CO2レーザからの高
出力レーザ光5を外周部から照射し、レーザ光強度が炭
素母材6と金属塊4との接触部で最高となるように調整
した。ここで、レーザ光強度は10kW/cm2とし、金属が融
解し温度勾配が一様となった時点で種結晶3の速度を1
mm/hr、炭素母材6の速度を0.5mm/hrで上方に移動させ
た。
In the above structure, the high-power laser beam 5 from the CO 2 laser was irradiated from the outer peripheral portion, and the laser beam intensity was adjusted to be the highest at the contact portion between the carbon base material 6 and the metal block 4. Here, the laser light intensity is set to 10 kW / cm 2, and the speed of the seed crystal 3 is set to 1 at the time when the metal melts and the temperature gradient becomes uniform.
mm / hr, the velocity of the carbon base material 6 was moved upward at 0.5 mm / hr.

【0014】上記の操作を10時間行った後停止し、冷却
した後種結晶を取り出したところ、種結晶3上に直径約
1mm、長さ約10mmのグラファイトが成長していることが
確認された。また、該グラファイトの結晶性をX線回折
と電子線回折によって調べたところ、極めて高品質の単
結晶であることが確認された。また、得られた結晶の組
成分析を行ったところ、結晶表面に若干のFe の混入が
認められるのみで、極めて高純度のグラファイト結晶が
得られていることが判り、CO2レーザによる加熱が汚染
を生じさせることのない熱源として働いていることが確
認された。
After the above operation was carried out for 10 hours, the operation was stopped, the seed crystal was taken out after cooling, and it was confirmed that graphite having a diameter of about 1 mm and a length of about 10 mm was grown on the seed crystal 3. .. Further, when the crystallinity of the graphite was examined by X-ray diffraction and electron beam diffraction, it was confirmed that the graphite was a very high quality single crystal. The results of composition analysis of the obtained crystals, only incorporation of some Fe in the crystal surface is observed, it can be seen that the extremely high purity graphite crystals is obtained, heating by CO 2 laser contamination It has been confirmed that it works as a heat source that does not cause

【0015】なお、熱計算によれば、結晶成長中の温度
は炭素母材‐金属接触面で約1800℃、金属‐種結晶接触
面で約1550℃であり、温度差による炭素の溶解度の差
は、本発明の目的に対して十分であったものと推察され
る。
According to thermal calculations, the temperature during crystal growth is about 1800 ° C. at the carbon base material-metal contact surface and about 1550 ° C. at the metal-seed crystal contact surface, and the difference in the solubility of carbon due to the temperature difference is Is suspected to have been sufficient for the purposes of the present invention.

【0016】[0016]

【実施例2】実施例1の場合と同じ装置を用い、実施例
1の場合の金属塊 Fe に代えて、ニッケル(Ni)及びコバ
ルト(Co)及びこれらの合金を用いて同様の実験を行っ
た。これらの金属はそれぞれ融点が異なるため、レーザ
光強度を変えて実験を行う必要があるが、実施例1の場
合と同様に、極めて高品質、高純度のグラファイト結晶
を得ることができた。
Example 2 Using the same apparatus as in Example 1, the same experiment was conducted using nickel (Ni) and cobalt (Co) and their alloys instead of the metal ingot Fe in Example 1. It was Since these metals have different melting points, it is necessary to perform the experiment by changing the laser light intensity, but as in the case of Example 1, extremely high quality and high purity graphite crystals could be obtained.

【0017】[0017]

【実施例3】実施例1と同様内容の実験において、炭素
母材の移動速度を0.1〜1mm/hrの範囲、種結晶の移動速
度を0.4〜4mm/hrの範囲で変えて実験を行ったところ、
得られたグラファイト単結晶の外径は種結晶と炭素母材
との移動速度の比の平方根に依存すること、また、炭素
母材外径を2mmとし、上記速度比を1:4に固定した場
合に、上述の速度範囲で、直径約1mmのグラファイト単
結晶が得られ、その再現性も良いことがわかった。従っ
て、本発明の方法により、条件の設定によって設計通り
の大きさの単結晶が得られることがわかる。
[Example 3] In the same experiment as in Example 1, an experiment was conducted by changing the moving speed of the carbon base material in the range of 0.1 to 1 mm / hr and the moving speed of the seed crystal in the range of 0.4 to 4 mm / hr. By the way
The outer diameter of the obtained graphite single crystal depends on the square root of the ratio of the moving speeds of the seed crystal and the carbon base material, and the outer diameter of the carbon base material was set to 2 mm, and the speed ratio was fixed to 1: 4. In this case, a graphite single crystal having a diameter of about 1 mm was obtained in the above speed range, and it was found that its reproducibility was also good. Therefore, it is understood that the method of the present invention can obtain a single crystal having a size as designed by setting the conditions.

【0018】以上の実施例においては熱源として CO2
ーザを用いた場合の例について説明したが、光源として
は、大出力で連続発振が可能なものであれば、ルビーレ
ーザ等他のレーザを用いても、本質的に変わることな
く、同様の結果を得ることができる。
In the above embodiments, an example in which a CO 2 laser is used as a heat source has been described, but as the light source, another laser such as a ruby laser may be used as long as it is capable of continuous oscillation with a large output. However, similar results can be obtained with essentially no change.

【0019】また、上記方法によって作製したグラファ
イト結晶の物性を測定したところ、電気抵抗、熱伝導率
ともにab軸面内方向とc軸方向とで極めて大きな異方
性のあることが確認された。
Further, the physical properties of the graphite crystal produced by the above method were measured, and it was confirmed that both the electrical resistance and the thermal conductivity had extremely large anisotropy in the ab axis in-plane direction and the c axis direction.

【0020】[0020]

【発明の効果】以上述べてきたように、グラファイト結
晶の作製方法を本発明構成の方法とすることによって、
従来技術の有していた課題を解決して、結晶性に優れた
高品質のグラファイト結晶を、結晶の大きさ、形状を簡
便に制御しつつ、かつ、量産性良く作製することのでき
る方法を提供することができた。
As described above, by adopting the method for producing a graphite crystal as the method of the present invention,
A method capable of solving the problems of the prior art and producing a high-quality graphite crystal with excellent crystallinity while easily controlling the size and shape of the crystal and with good mass productivity. Could be provided.

【0021】また、本発明の方法の実施に用いる装置の
構成は原理的に簡便なものであり、装置技術の進歩によ
って、制御性やコストの面からみて、量産可能な装置と
して発展させることが可能であり、本発明のグラファイ
ト作製方法は量産化の見通しのつけやすい方法で、今後
エレクトロニクス産業の分野のプロセスにも適用可能で
ある。
Further, the structure of the device used for carrying out the method of the present invention is simple in principle, and it can be developed as a mass-producible device in view of controllability and cost due to the progress of the device technology. It is possible, and the graphite production method of the present invention is a method in which prospects for mass production are easy, and it can be applied to processes in the field of the electronics industry in the future.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法の実施に用いたグラファイト作製装
置の要部の構成を示す図。
FIG. 1 is a diagram showing a configuration of a main part of a graphite manufacturing apparatus used for carrying out a method of the present invention.

【図2】グラファイト結晶の結晶構造を示す図。FIG. 2 is a diagram showing a crystal structure of a graphite crystal.

【符号の説明】[Explanation of symbols]

1…支持棒、2…熱絶縁体、3…種結晶、4…金属塊、
5…レーザ光、6…炭素母材、7…金属塊支持棒。
1 ... Support rod, 2 ... Heat insulator, 3 ... Seed crystal, 4 ... Metal lump,
5 ... Laser light, 6 ... Carbon base material, 7 ... Metal lump support rod.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】炭素を母材として炭素を金属中に溶解させ
た後、金属中に溶解した炭素をグラファイト種結晶上に
析出させることを特徴とするグラファイト結晶の作製方
法。
1. A method for producing a graphite crystal, which comprises dissolving carbon in a metal using carbon as a base material and then depositing the carbon dissolved in the metal on a graphite seed crystal.
【請求項2】上記炭素を溶解させる金属として、鉄(F
e)、ニッケル(Ni)あるいはコバルト(Co)等の遷移金属あ
るいはそれらの合金を用いることを特徴とする請求項1
記載のグラファイト結晶の作製方法。
2. As a metal for dissolving the carbon, iron (F
e), a transition metal such as nickel (Ni) or cobalt (Co), or an alloy thereof is used.
A method for producing a graphite crystal as described.
【請求項3】上記炭素母材、金属、グラファイト種結晶
を加熱する熱源としてレーザ光線を用いることを特徴と
する請求項1及び2記載のグラファイト結晶の作製方
法。
3. The method for producing a graphite crystal according to claim 1, wherein a laser beam is used as a heat source for heating the carbon base material, the metal and the graphite seed crystal.
【請求項4】上記グラファイト種結晶上へのグラファイ
トの析出に際して、炭素母材とグラファイト種結晶とを
対向させ、それらの間に金属を配置した構成とし、炭素
母材とグラファイト種結晶の双方または何れか一方を移
動させ、その移動速度を調節することによって析出グラ
ファイト結晶の大きさを制御することを特徴とする請求
項1、2及び3記載のグラファイト結晶の作製方法。
4. When depositing graphite on the graphite seed crystal, the carbon base material and the graphite seed crystal are opposed to each other, and a metal is arranged between them, so that both of the carbon base material and the graphite seed crystal or The method for producing a graphite crystal according to claim 1, 2, or 3, wherein the size of the precipitated graphite crystal is controlled by moving either one and adjusting the moving speed.
【請求項5】上記レーザ光線の光線源として CO2レーザ
を用いることを特徴とする請求項3、4記載のグラファ
イト結晶の作製方法。
5. The method for producing a graphite crystal according to claim 3, wherein a CO 2 laser is used as a light source of the laser beam.
JP3240845A 1991-09-20 1991-09-20 Preparation of graphite crystal Pending JPH0578194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3240845A JPH0578194A (en) 1991-09-20 1991-09-20 Preparation of graphite crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3240845A JPH0578194A (en) 1991-09-20 1991-09-20 Preparation of graphite crystal

Publications (1)

Publication Number Publication Date
JPH0578194A true JPH0578194A (en) 1993-03-30

Family

ID=17065565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3240845A Pending JPH0578194A (en) 1991-09-20 1991-09-20 Preparation of graphite crystal

Country Status (1)

Country Link
JP (1) JPH0578194A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6420701B1 (en) 1997-07-23 2002-07-16 Canon Kabushiki Kaisha Method of determining average crystallite size of material and apparatus and method for preparing thin film of the material
FR2956124A1 (en) * 2010-02-08 2011-08-12 Centre Nat Rech Scient METHOD FOR MANUFACTURING SINGLE CRYSTALLINE GRAPHITE
JP2011168448A (en) * 2010-02-19 2011-09-01 Fuji Electric Co Ltd Method for manufacturing graphene film
JP2012236745A (en) * 2011-05-12 2012-12-06 Nippon Telegr & Teleph Corp <Ntt> Method for producing carbon thin film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6420701B1 (en) 1997-07-23 2002-07-16 Canon Kabushiki Kaisha Method of determining average crystallite size of material and apparatus and method for preparing thin film of the material
FR2956124A1 (en) * 2010-02-08 2011-08-12 Centre Nat Rech Scient METHOD FOR MANUFACTURING SINGLE CRYSTALLINE GRAPHITE
JP2011168448A (en) * 2010-02-19 2011-09-01 Fuji Electric Co Ltd Method for manufacturing graphene film
JP2012236745A (en) * 2011-05-12 2012-12-06 Nippon Telegr & Teleph Corp <Ntt> Method for producing carbon thin film

Similar Documents

Publication Publication Date Title
Zhang et al. One-dimensional growth mechanism of crystalline silicon nanowires
CN101796227B (en) Process for growing single-crystal silicon carbide
PL98068B1 (en) THE METHOD OF MAKING A PLAIN SILICONE CRYSTAL
JP2009525944A (en) Materials and methods for producing large diamond crystals
JP4419937B2 (en) Method for producing silicon carbide single crystal
JP5434801B2 (en) Method for producing SiC single crystal
CN102851545A (en) Ni-Mn-Ge magnetic shape memory alloy and preparation method thereof
CN101910476A (en) Method for growing silicon carbide single crystal
CN101965419B (en) Method for growing silicon carbide single crystal
Revcolevschi et al. Study of a splat cooled Cu-Zr-noncrystalline phase
JPH0337182A (en) Production of big magnetostrictive alloy rod
JPH0578194A (en) Preparation of graphite crystal
Tong et al. Formation kinetics of nanocrystalline FeBSi alloy by crystallization of the metallic glass
US20100316874A1 (en) Fabrication method of bismuth single crystalline nanowire
JP4270034B2 (en) Method for producing SiC single crystal
KR20160097568A (en) Preparing method for bulk metallic glass by noncontact radiative cooling and alloy system suitable for the method
TWI875366B (en) A crystal growth apparatus with multiple deposition sites in and method using the same
Zou et al. Impact of heating temperature and time on the morphology of synthetic zinc oxide nanowires
JP2929006B1 (en) Manufacturing method of high quality crystal sheet material
JP3607218B2 (en) Method for producing spherical single crystal silicon
JPH0578196A (en) Production of diamond crystal
JPS63125669A (en) Production of thin amorphous ta-w alloy film
Bergmann et al. Production and Properties of Amorphous Layers on Metal Substrates by Laser and Electron Beam Melting
KR0120280B1 (en) Rare earth-iron magnetostrictive alloy and its manufacturing method
JPS63130766A (en) Production of thin ta amorphous alloy film