[go: up one dir, main page]

JPH0572017B2 - - Google Patents

Info

Publication number
JPH0572017B2
JPH0572017B2 JP57174924A JP17492482A JPH0572017B2 JP H0572017 B2 JPH0572017 B2 JP H0572017B2 JP 57174924 A JP57174924 A JP 57174924A JP 17492482 A JP17492482 A JP 17492482A JP H0572017 B2 JPH0572017 B2 JP H0572017B2
Authority
JP
Japan
Prior art keywords
magnetic
oxygen
magnetic recording
recording medium
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57174924A
Other languages
Japanese (ja)
Other versions
JPS5963027A (en
Inventor
Toshiaki Kunieda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57174924A priority Critical patent/JPS5963027A/en
Publication of JPS5963027A publication Critical patent/JPS5963027A/en
Publication of JPH0572017B2 publication Critical patent/JPH0572017B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/66Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/858Producing a magnetic layer by electro-plating or electroless plating

Landscapes

  • Thin Magnetic Films (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、金属薄膜型の磁気記録媒体およびそ
の製造法に関する。 従来例の構成とその問題点 近年、磁気記録の高密度化への要求とともに、
従来の塗布型のものに代つて、プラスチツク基板
上に、磁気記録層として強磁性金属薄膜を設けた
金属薄膜型の磁気記録媒体の開発が活発に進めら
れている。 金属薄膜型の磁気記録媒体はCo,Fe,Ni、あ
るいはこれらの合金の強磁性金属薄膜を斜め入射
蒸着法、斜め入射イオンプレーテイング法により
プラスチツク基板上に形成することによつて得ら
れるが、次に述べるような問題点があることがわ
かつた。 (i) 磁気特性の改善、特に抗磁力を向上させよう
とすると入射角を大きくしなければならないた
め量産性が低下する。 (ii) 一般にこれらの強磁性金属の多くは耐蝕性が
劣つているために何れかの対策を必要とする。 発明の目的 本発明は量産性を低下させることなく抗磁力を
向上させ、かつ耐蝕性をも向上させることを目的
とする。 発明の構成 本発明は標準電極電位が負の金属を酸素雰囲気
中で蒸着して非磁性基板上に前記金属と酸素を含
有する下地層を形成し、さらにこの下地層上に強
磁性金属薄膜層を形成するものである。 実施例の説明 第1図は本発明の磁気記録媒体を製造するため
の装置の一例を示す。図に示すように、真空槽1
は下地形成用の第1真空室2と磁性層形成用の第
2真空室3から成つており、それぞれ独立の真空
排気系4,5により10-4〜10-6torr迄排気されて
いる。この真空槽1内に、巻出しロール6、ガイ
ドロール8、蒸着ロール10、巻取りロール7よ
り成る基板搬送系が設置されている。非磁性基板
9は主にプラスチツクからなり、これは最初、巻
出しロールに巻回されており、矢印の方向にガイ
ドロール8、蒸着ロール10に沿つて搬送され、
最後は巻取りロール7に巻き取られる。非磁性基
板9が搬送している間に、第一真空室2において
は、加熱源12によつて下地金属11が非磁性基
板9上に蒸着される。この時、ガス導入系15よ
り酸素ガスが導入され酸素雰囲気中で成膜され
る。続いて、第2真空室3に入り、ここでは加熱
源14により強磁性金属13を蒸着する。この
時、斜め蒸着用マスク17で規定される蒸気の入
射角と、酸素導入系16からの酸素導入量によつ
て主な磁性特性は決定される。 このようにして製造された磁気記録媒体を第2
図に示す。非磁性基板9は厚さ10〜20μmのプラ
スチツクフイルからなり、一般にはポリエステ
ル、ポリイミド、ポリアミド、ポリカーボネイト
等のフイルムが用いられるが、本発明は基板の材
質に影響されるものでない。磁性層19は一般に
はCoを中心とした合金系からなり、1000Å/sec
の成膜速度、最小蒸気入射角は30〜50℃で形成さ
れ、膜厚は1000〜2000Åである。 次に下地層18の形成条件について述べる。 (i) 下地形成法;下地の形成法としてスパツタ
法、イオンプレーテイング、真空蒸着法といつ
た物理蒸着法について検討した。どの方法にお
いても成膜中に酸素ガスを導入することにより
効果が確認された。成膜速度あるいは簡便さの
点から真空蒸着法を中心にして検討を進めた。 (ii) 下地成膜雰囲気;第1真空室2を10-5〜10-6
torr迄真空排気し、その後ガス導入系15より
Ar,H2,N2,CH4,O2の各種ガスを導入し、
雰囲気依存性あるいは導入量依存性を検討し
た。その結果雰囲気に関してはO2ガスのみが
効果を示すことが確認され、導入量に関しては
下地材料、膜厚を考慮して実験的に最大効果が
得られるよう調整することを必要とした。 (iii) 下地層金属;下地層金属として、Au,Ag,
Pt,Pd,Cuの正の標準電極電位を有するも
の、またFe,Ni,Co,Al,Sn,Siの負の標準
電極電位を有するものを検討した。その結果、
明らかに両者の間には差があり、標準電極電位
が負であるものが顕著に効果が現われていた
(その詳細は後に述べる)。又、CoやNi等の磁
性材料の場合は酸素導入量を多くし、非磁性と
した方が磁気特性への影響を考慮した場合望ま
しい。 (iv) 下地層;下地層厚は約20〜30Åから効果が見
られ、約300Å迄膜厚と共に改善方向に向い、
それ以上では飽和する傾向にある。 次に本発明によつて得られた磁気記録媒体の磁
気特性、耐蝕性について述べる。先ず、試験した
試料A〜Eの製造条件を表に示す。なお、試料A
は下地層が無い場合、D,Eは下地層に酸素を含
まない場合でいずれも比較用である。
INDUSTRIAL APPLICATION FIELD The present invention relates to a metal thin film type magnetic recording medium and a method for manufacturing the same. Conventional structure and its problems In recent years, with the demand for higher density magnetic recording,
In place of the conventional coated type magnetic recording media, development of metal thin film type magnetic recording media in which a ferromagnetic metal thin film is provided as a magnetic recording layer on a plastic substrate is actively underway. Metal thin film type magnetic recording media can be obtained by forming a ferromagnetic metal thin film of Co, Fe, Ni, or an alloy thereof on a plastic substrate by oblique incidence evaporation or oblique incidence ion plating. It was found that there were problems as described below. (i) In order to improve magnetic properties, especially coercive force, the angle of incidence must be increased, which reduces mass productivity. (ii) In general, many of these ferromagnetic metals have poor corrosion resistance and require some kind of countermeasure. OBJECTS OF THE INVENTION It is an object of the present invention to improve coercive force and corrosion resistance without reducing mass productivity. Structure of the Invention The present invention involves depositing a metal with a negative standard electrode potential in an oxygen atmosphere to form an underlayer containing the metal and oxygen on a nonmagnetic substrate, and further forming a ferromagnetic metal thin film layer on the underlayer. It forms the DESCRIPTION OF THE EMBODIMENTS FIG. 1 shows an example of an apparatus for manufacturing the magnetic recording medium of the present invention. As shown in the figure, vacuum chamber 1
consists of a first vacuum chamber 2 for forming an underlayer and a second vacuum chamber 3 for forming a magnetic layer, each of which is evacuated to 10 -4 to 10 -6 torr by independent evacuation systems 4 and 5. A substrate transport system consisting of an unwinding roll 6, a guide roll 8, a vapor deposition roll 10, and a winding roll 7 is installed in the vacuum chamber 1. The non-magnetic substrate 9 is mainly made of plastic, which is first wound around an unwinding roll, and is conveyed along the guide roll 8 and the vapor deposition roll 10 in the direction of the arrow.
Finally, it is wound up on a winding roll 7. While the non-magnetic substrate 9 is being transported, the base metal 11 is vapor-deposited on the non-magnetic substrate 9 by the heating source 12 in the first vacuum chamber 2 . At this time, oxygen gas is introduced from the gas introduction system 15 and the film is formed in an oxygen atmosphere. Subsequently, the second vacuum chamber 3 is entered, where a ferromagnetic metal 13 is vapor-deposited using a heating source 14 . At this time, the main magnetic properties are determined by the incident angle of the vapor defined by the oblique vapor deposition mask 17 and the amount of oxygen introduced from the oxygen introduction system 16. The magnetic recording medium manufactured in this way is
As shown in the figure. The nonmagnetic substrate 9 is made of a plastic film with a thickness of 10 to 20 .mu.m, and films of polyester, polyimide, polyamide, polycarbonate, etc. are generally used, but the present invention is not affected by the material of the substrate. The magnetic layer 19 is generally made of an alloy based on Co, and has a magnetic flux of 1000 Å/sec.
The film formation rate is 30~50℃, the minimum vapor incidence angle is 30~50℃, and the film thickness is 1000~2000Å. Next, conditions for forming the base layer 18 will be described. (i) Underlayer formation method; Physical vapor deposition methods such as sputtering, ion plating, and vacuum evaporation were investigated as methods for forming the underlayer. In all methods, the effect of introducing oxygen gas during film formation was confirmed. We focused on the vacuum evaporation method in terms of film formation speed and simplicity. (ii) Base film formation atmosphere; first vacuum chamber 2 at 10 -5 to 10 -6
Evacuate to torr, then from gas introduction system 15
Introducing various gases such as Ar, H 2 , N 2 , CH 4 and O 2 ,
The dependence on the atmosphere or the amount introduced was investigated. As a result, it was confirmed that only O 2 gas had an effect on the atmosphere, and the amount introduced needed to be adjusted experimentally to obtain the maximum effect, taking into account the underlying material and film thickness. (iii) Base layer metal: Au, Ag,
We investigated Pt, Pd, and Cu, which have a positive standard electrode potential, and Fe, Ni, Co, Al, Sn, and Si, which have a negative standard electrode potential. the result,
There was clearly a difference between the two, with the negative standard electrode potential having a marked effect (details will be described later). Furthermore, in the case of magnetic materials such as Co and Ni, it is desirable to increase the amount of oxygen introduced to make them non-magnetic, considering the influence on magnetic properties. (iv) Base layer: The effect is seen from a base layer thickness of about 20 to 30 Å, and it tends to improve as the film thickness increases up to about 300 Å.
Above that, it tends to be saturated. Next, the magnetic properties and corrosion resistance of the magnetic recording medium obtained by the present invention will be described. First, the manufacturing conditions of the tested samples A to E are shown in the table. In addition, sample A
1 is a case where there is no underlayer, and D and E are cases where the underlayer does not contain oxygen, and both are for comparison.

【表】 標準電極電位が負の金属はいずれも酸素との親
和力が強く、酸素を多く下地層中に取り込む性質
があり、この酸素が強磁性金属薄膜層内に拡散し
磁気特性や耐食性の改善につながるものと考えら
れる。なお、前頁の表中の記号「←」は「同左」
の意味である。第3図はこれら試料の磁気特性を
示したものである。測定は試料振動型の磁束計で
行つた。横軸には磁性層形成時の酸素導入量を、
縦軸には抗磁力を示している。この図から酸素を
含有した下地層を設けることにより、抗磁力を大
幅に改善できることがわかる。これは、とりもな
おさず、従来と同じ抗磁力を得ようとした場合、
磁性層形成時の入射角をもつと低くでき、したが
つて、その分だけ蒸気を有効に使用できる量産性
が向上することになる。 第4図は各試料の耐蝕性を示すもので(この場
合、磁性層の酸素導入量が0.2/mmのものをそ
れぞれ用いた)、60℃、90%湿度中での放置日数
に対する飽和磁束密度の変化を示したものであ
る。この図より耐蝕性の低下は飽和磁束密度の低
下となつて現れるが、耐蝕性の点においても、酸
素を含有した下地層のあるものの方が優れている
ことがわかる。 これらの現象は、下地層形成時にとり込まれた
酸素が磁性層の粒界に拡散していくことによつて
ひき起こされるものとも考えられる。 発明の効果 本発明によると、量産性を低下させることな
く、高抗磁力を有しかつ耐蝕性にすぐれた磁気記
録媒体を容易に得ることができる。
[Table] All metals with a negative standard electrode potential have a strong affinity for oxygen and have the property of incorporating a large amount of oxygen into the underlying layer. This oxygen diffuses into the ferromagnetic metal thin film layer, improving magnetic properties and corrosion resistance. This is thought to lead to. In addition, the symbol "←" in the table on the previous page means "same as left."
This is the meaning of Figure 3 shows the magnetic properties of these samples. Measurements were performed using a sample vibrating type magnetometer. The horizontal axis shows the amount of oxygen introduced during magnetic layer formation.
The vertical axis shows coercive force. This figure shows that the coercive force can be significantly improved by providing an underlayer containing oxygen. This means that if you try to obtain the same coercive force as before,
The angle of incidence at the time of forming the magnetic layer can be lowered, and therefore, mass productivity can be improved by allowing effective use of steam. Figure 4 shows the corrosion resistance of each sample (in this case, magnetic layers with an oxygen introduction rate of 0.2/mm were used), and the saturation magnetic flux density versus the number of days left at 60°C and 90% humidity. This shows the changes in This figure shows that a decrease in corrosion resistance appears as a decrease in saturation magnetic flux density, but it can be seen that materials with an oxygen-containing underlayer are superior in terms of corrosion resistance as well. These phenomena are also thought to be caused by oxygen taken in during the formation of the underlayer diffusing into the grain boundaries of the magnetic layer. Effects of the Invention According to the present invention, a magnetic recording medium having high coercive force and excellent corrosion resistance can be easily obtained without reducing mass productivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による磁気記録媒体を製造する
ための装置の一例を示す図、第2図は本発明によ
る磁気記録媒体の断面図、第3図、第4図はそれ
ぞれ本発明の効果を説明するための図で、このう
ち第3図は磁性層形成時の酸素導入量と抗磁力と
の関係を示し、第4図は湿度雰囲気中での飽和磁
束密度の経時変化を示す。 1……真空槽、4,5……真空排気系、9……
非磁性基板、10……蒸着ロール、18……下地
層、19……磁性層。
FIG. 1 is a diagram showing an example of an apparatus for manufacturing a magnetic recording medium according to the present invention, FIG. 2 is a cross-sectional view of a magnetic recording medium according to the present invention, and FIGS. 3 and 4 each illustrate the effects of the present invention. FIG. 3 shows the relationship between the amount of oxygen introduced during the formation of the magnetic layer and the coercive force, and FIG. 4 shows the change over time in the saturation magnetic flux density in a humid atmosphere. 1... Vacuum chamber, 4, 5... Vacuum exhaust system, 9...
Nonmagnetic substrate, 10... Vapor deposition roll, 18... Base layer, 19... Magnetic layer.

Claims (1)

【特許請求の範囲】[Claims] 1 非磁性基板上に標準電極電位が負であるFe,
Ni,Co,Al,Sn,Siの中の少くとも一つの金属
を酸素雰囲気中で蒸着して下地層を形成し、その
後強磁性金属を蒸着して前記下地層上に強磁性金
属薄膜層を形成することを特徴とする磁気記録媒
体の製造法。
1 Fe with a negative standard electrode potential on a nonmagnetic substrate,
At least one metal among Ni, Co, Al, Sn, and Si is deposited in an oxygen atmosphere to form a base layer, and then a ferromagnetic metal is deposited to form a ferromagnetic metal thin film layer on the base layer. A method for manufacturing a magnetic recording medium, characterized by forming a magnetic recording medium.
JP57174924A 1982-10-04 1982-10-04 Magnetic recording medium and its manufacture Granted JPS5963027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57174924A JPS5963027A (en) 1982-10-04 1982-10-04 Magnetic recording medium and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57174924A JPS5963027A (en) 1982-10-04 1982-10-04 Magnetic recording medium and its manufacture

Publications (2)

Publication Number Publication Date
JPS5963027A JPS5963027A (en) 1984-04-10
JPH0572017B2 true JPH0572017B2 (en) 1993-10-08

Family

ID=15987091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57174924A Granted JPS5963027A (en) 1982-10-04 1982-10-04 Magnetic recording medium and its manufacture

Country Status (1)

Country Link
JP (1) JPS5963027A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63313322A (en) * 1987-06-17 1988-12-21 Toshiba Corp Production of magnetic recording medium

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5921085B2 (en) * 1976-05-31 1984-05-17 セイコーエプソン株式会社 magnetic recording medium

Also Published As

Publication number Publication date
JPS5963027A (en) 1984-04-10

Similar Documents

Publication Publication Date Title
US4702938A (en) Process for producing magnetic recording material
JPH0123853B2 (en)
JPS5961105A (en) Magnetic recording medium
US4521481A (en) Magnetic recording medium
US4536443A (en) Magnetic recording medium
JPH0133924B2 (en)
JPH044649B2 (en)
JPH0572017B2 (en)
JPS6148128A (en) Manufacture of magnetic recording medium
JPS5883327A (en) Magnetic recording medium
JPS5841443A (en) Manufacture of magnetic recording medium
JPS5984407A (en) Magnetic recording medium
JPS5877025A (en) Production of magnetic recording medium
JP2605803B2 (en) Magnetic recording media
JPS61139920A (en) magnetic recording medium
JPS6154024A (en) Magnetic recording medium
JPH083902B2 (en) Method for manufacturing thin film magnetic recording medium
JPS59203223A (en) Thin metallic film type magnetic recording medium
JPS592232A (en) Production of magnetic recording medium
JPS59157828A (en) Magnetic recording medium
JPH0479043B2 (en)
JPS6087425A (en) magnetic recording medium
JPH01124115A (en) Magnetic recording medium and its production
JPS60209918A (en) Thin metallic film type magnetic recording medium and its production
JPS59178626A (en) Manufacture of magnetic recording medium