JPH0133924B2 - - Google Patents
Info
- Publication number
- JPH0133924B2 JPH0133924B2 JP55090252A JP9025280A JPH0133924B2 JP H0133924 B2 JPH0133924 B2 JP H0133924B2 JP 55090252 A JP55090252 A JP 55090252A JP 9025280 A JP9025280 A JP 9025280A JP H0133924 B2 JPH0133924 B2 JP H0133924B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- recording medium
- film
- substrate
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/62—Record carriers characterised by the selection of the material
- G11B5/64—Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
- G11B5/65—Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition
- G11B5/656—Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition containing Co
Landscapes
- Physical Vapour Deposition (AREA)
- Magnetic Record Carriers (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
- Thin Magnetic Films (AREA)
Description
【発明の詳細な説明】
本発明は、面内金属薄膜型の磁気記録媒体およ
びその製造方法に関するもので、その目的とする
ところは、Co−Niの磁性層にCrを添加すること
により磁気特性、および耐蝕性を改善向上させる
ことである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a longitudinal metal thin film type magnetic recording medium and a method for manufacturing the same, and an object of the present invention is to improve magnetic properties by adding Cr to a Co-Ni magnetic layer. , and improve corrosion resistance.
近年、ビデオまたはデイジタル記録の分野にお
いては、より記録の高密度化ということで、金属
薄膜型の磁気記録媒体の研究が進められている。
これは非磁性基板上にFe、Co、Ni等の強磁性金
属、またはそれらの合金、もしくは金属間化合物
を主体とする磁性層を真空蒸着法、電気メツキ
法、化学メツキ法、スパツタリング法、イオンプ
レーテイング法等の手法で直接形成させるもので
ある。特に量産性、無公害性という観点から真空
蒸着法、イオンプレーテイング法等が注目されて
いる。 In recent years, in the field of video or digital recording, research on metal thin film type magnetic recording media has been progressing in order to achieve higher recording densities.
This is a method of depositing a magnetic layer mainly made of ferromagnetic metals such as Fe, Co, and Ni, or their alloys, or intermetallic compounds on a nonmagnetic substrate using vacuum evaporation, electroplating, chemical plating, sputtering, or ion plating. It is directly formed by a method such as plating. In particular, vacuum evaporation methods, ion plating methods, etc. are attracting attention from the viewpoint of mass production and pollution-free properties.
一方、この種の磁気記録媒体として必要とされ
る条件は、まず磁気特性が優れていること、特に
抗磁力(Hc)が大きいこと(約1000O¨e前後)で
ある。このために従来から斜め蒸着という手法が
用いられているが、この方法だけでは約65度以上
の入射角(蒸着面にたてた法線に対して入射する
角度)が必要とされ、蒸発源からの蒸気が有効に
使えず量産化が難かしい。また次に必要とされる
条件は、耐蝕性に優れていることである。これに
対しては、表面処理、オーバーコート、耐蝕合金
化といつたことが一般に考えられている。工業化
のためには少なくともこれら双方のことが同時に
量産ペースで解決されなければならないが、現在
のところ満足すべき状態にまでは達成されていな
い。 On the other hand, the conditions required for this type of magnetic recording medium are first of all excellent magnetic properties, especially high coercive force (Hc) (approximately 1000 O¨e). For this purpose, a method called oblique evaporation has traditionally been used, but this method alone requires an incident angle of approximately 65 degrees or more (the angle of incidence relative to the normal to the evaporation surface), and the evaporation source It is difficult to mass-produce the steam as it cannot be used effectively. The next required condition is excellent corrosion resistance. It is generally considered that surface treatments, overcoats, and corrosion-resistant alloys can be used to solve this problem. For industrialization, at least both of these issues must be solved at the same time at a mass production pace, but so far they have not been achieved to a satisfactory level.
本発明は、前記問題点を解決するための各種磁
性材料、および成膜条件の検討試験の中から得ら
れたもので、以下に実施例をあげ図面とともに説
明する。 The present invention was obtained through examination and testing of various magnetic materials and film-forming conditions to solve the above-mentioned problems, and will be described below with reference to examples and drawings.
第1図は、試料となる面内金属薄膜型磁気記録
媒体の斜視図である。これは非磁性のガラス、プ
ラスチツク、金属等からなる非磁性基板1の上に
真空蒸着法、イオンプレーテイング法等により本
発明からなる磁性層2を形成させたものである。 FIG. 1 is a perspective view of a longitudinal metal thin film magnetic recording medium as a sample. The magnetic layer 2 of the present invention is formed on a nonmagnetic substrate 1 made of nonmagnetic glass, plastic, metal, etc. by vacuum evaporation, ion plating, or the like.
第2図は、本発明を検討した実験装置の概略図
を示す。図において、3は真空蒸着室を示し、そ
の室3内は真空ポンプ系4により排気され、適宜
の真空度に保たれている。そして室3の下方には
強磁性金属5を収納し、それを加熱溶融、蒸発さ
せる蒸発源6が設置されている。そしてその上方
にはガラス、プラスチツク、金属等の非磁性材料
よりなる非磁性基板1が基板支持台7に蒸気の方
向に対して斜めに設定されている。この斜めの角
度θ(一般に入射角と呼ばれている)は任意に可
変できるようになつている。 FIG. 2 shows a schematic diagram of an experimental apparatus in which the present invention was studied. In the figure, 3 indicates a vacuum deposition chamber, and the inside of the chamber 3 is evacuated by a vacuum pump system 4 and maintained at an appropriate degree of vacuum. An evaporation source 6 is installed below the chamber 3 to house a ferromagnetic metal 5 and heat it to melt and evaporate it. Above that, a nonmagnetic substrate 1 made of a nonmagnetic material such as glass, plastic, metal, etc. is set on a substrate support 7 obliquely with respect to the direction of the vapor. This oblique angle θ (generally called the angle of incidence) can be changed arbitrarily.
本発明者等は、この入射角を種々変化させて実
験を行つた。蒸発源6と基板1の間には必要な時
間のみ基板1に蒸着されるようにシヤツター8が
設けられている。9は蒸着中の雰囲気を決めるガ
ス導入口で、これは外部の導入ガスボンベ10と
連結されている。種々のガスを真空蒸着室3内に
導入し実験を行つた。 The present inventors conducted experiments by variously changing this angle of incidence. A shutter 8 is provided between the evaporation source 6 and the substrate 1 so that the evaporation is performed on the substrate 1 only for the necessary time. Reference numeral 9 denotes a gas introduction port that determines the atmosphere during vapor deposition, and this is connected to an external introduction gas cylinder 10. Experiments were conducted by introducing various gases into the vacuum deposition chamber 3.
次に前記問題点の解決のための磁性材料の検討
について述べる。各種強磁性金属の中で比較的容
易に抗磁力の出しやすいCo−Niを母材料として
採用した。ただし、Co−Niの場合は、Ni含有量
が55重量%以下では抗磁力が急激に低下するた
め、検討の範囲から外した。一般的な成膜条件
は、成膜速度10Å/sec〜1000Å/sec、膜厚は
500Å〜1000Å程度で、基板温度0℃〜200℃、基
板はガラスとポリイミドフイルムで行つた。次に
これらの母材料に各種元素金属(例えば、Be、
B、Mg、Al、Si、Ti、V、Cr、Mn、Fe、Cu、
Zn、Ge、Ga、Zr、Nb、Mo、Rh、Pd、Ag、
In、Sn、Pt、Au、Bi、Gd、Sm、……等)を0
〜30重量%まで逐次添加して蒸着し、できた試料
に対しては、磁気特性と耐蝕性を調べた。磁気特
性は、試料振動型の磁化測定装置(通常VSMと
呼ばれている)で、主に抗磁力と角型比を求め、
耐蝕試験は40℃、90%と60℃、90%の二水準の高
湿雰囲気中の放置試験にかけ、経時変化による腐
蝕の発生を光学顕微鏡ではん点状の変色の有無の
観察により判別するものである。これら一連の実
験より、結論的に言うと、Crを添加したものの
みが磁気特性の点でも耐蝕性の点でも優れている
ことがわかつた。 Next, a study of magnetic materials to solve the above problems will be described. Co-Ni, which is relatively easy to generate coercive force among various ferromagnetic metals, was used as the base material. However, in the case of Co-Ni, the coercive force decreases rapidly when the Ni content is 55% by weight or less, so it was excluded from the scope of study. Typical film formation conditions are a film formation rate of 10 Å/sec to 1000 Å/sec, and a film thickness of
The thickness was about 500 Å to 1000 Å, the substrate temperature was 0° C. to 200° C., and the substrate was glass and polyimide film. These base materials are then coated with various elemental metals (e.g. Be,
B, Mg, Al, Si, Ti, V, Cr, Mn, Fe, Cu,
Zn, Ge, Ga, Zr, Nb, Mo, Rh, Pd, Ag,
In, Sn, Pt, Au, Bi, Gd, Sm, etc.) is 0
It was sequentially added up to 30% by weight and deposited, and the resulting samples were examined for magnetic properties and corrosion resistance. Magnetic properties are measured mainly by measuring coercive force and squareness ratio using a sample vibrating magnetization measuring device (usually called a VSM).
Corrosion resistance tests are performed in high humidity environments at two levels: 40°C, 90% and 60°C, 90%, and the occurrence of corrosion over time is determined by observing the presence or absence of discoloration in the form of spots using an optical microscope. It is. From this series of experiments, it was concluded that only the material to which Cr was added was superior in both magnetic properties and corrosion resistance.
以下にこのことについて詳細に述べる。第3図
は、磁気特性の改善状態を示したもので、蒸気入
射角と抗磁力の関係を示している。これによる
と、ある目的の抗磁力を得ようとした場合より低
い入射角でよいことがわかる。例えば1000O¨eは
45度〜50度の入射角で得られる。次に、Co−Cr
−Niに材料を絞つてさらに成膜速度、基板温度.
Cr組成.基板材料.膜厚.真空度.雰囲気ガス
といつた成膜条件との関係を詳細に検討した。 This will be discussed in detail below. FIG. 3 shows the state of improvement in the magnetic properties, and shows the relationship between the vapor incidence angle and the coercive force. According to this, it can be seen that a lower incident angle is sufficient than when trying to obtain a certain desired coercive force. For example, 1000O¨e is
Obtained at an angle of incidence of 45 degrees to 50 degrees. Next, Co−Cr
-Narrowing down the material to Ni and further improving film formation speed and substrate temperature.
Cr composition. Substrate material. Film thickness. Degree of vacuum. The relationship between atmospheric gas and film formation conditions was investigated in detail.
その結果、Cr組成と真空度、特に残留ガス中
の酸素分圧が重要であることがわかつた。これら
のことを第4図と第5図に示した。この時、Cr
の組成は原子吸光分析により求めた。これらの図
より、(i)抗磁力Hcが大幅に増加するためには添
加するCrの量に制限領域があること、すなわち
2〜15重量%の範囲であること。(ii)蒸着中の真空
度、特に残留ガス中の酸素分圧が10-4torrを越え
て大となると、Hcが急激に減少し始め、Cr添加
の効果がなくなることが判明した。これらのCr
添加量または残留ガス中の酸素分圧等の効果は、
Co−Ni磁性層の蒸着時における結晶成長への影
響のためであると思われるが、はつきりしたこと
はまだわかつていない。 As a result, it was found that Cr composition and vacuum degree, especially oxygen partial pressure in residual gas, are important. These are shown in FIGS. 4 and 5. At this time, Cr
The composition was determined by atomic absorption spectrometry. From these figures, (i) there is a limit to the amount of Cr added in order to significantly increase the coercive force Hc, that is, it must be in the range of 2 to 15% by weight. (ii) It was found that when the degree of vacuum during vapor deposition, especially when the partial pressure of oxygen in the residual gas exceeds 10 -4 torr, Hc begins to decrease rapidly and the effect of Cr addition disappears. These Cr
The effects of the amount added or the partial pressure of oxygen in the residual gas are as follows:
This is thought to be due to the effect on crystal growth during the deposition of the Co--Ni magnetic layer, but the exact cause has not yet been determined.
なお、本発明はCo−Niに対するCrの添加量を
限定するものであるが、他の元素金属を含む場合
においても、この関係を満たすときは、本発明の
範囲内とするものである。 Although the present invention limits the amount of Cr added to Co-Ni, even when other elemental metals are included, as long as this relationship is satisfied, the scope of the present invention falls within the scope of the present invention.
次に本発明の他の実施例について説明する。 Next, other embodiments of the present invention will be described.
第6図は、本発明による磁気記録媒体を工業規
模で製造実施するための装置の一例で、真空槽内
にフイルム搬送系を設置し、連続蒸着することに
より長尺の磁気記録媒体を得ることができるもの
である。図において、第2図の装置と同じところ
は同じ番号を付し、異なるところを説明すると、
11は巻出しロールで、プラスチツクフイルム1
2が捲回されていて、そのフイルム12が円筒状
キヤン13に添つて搬送され、この時円筒状キヤ
ン13も同方向に回転していて、走行を補助し、
続いて巻取りロール14で巻取られる。この間、
円筒状キヤン13の下方で蒸着が行われる。15
はマスクで、蒸気の斜め成分を制御するものであ
る。この時は高範囲な入射角成分を含むが、最小
入射角θminで入射角を代表させている。この装
置により作製した磁性膜を第2図の静的な成膜条
件で作製した磁性膜とその特性の比較を行つたと
ころ、磁気特性、耐蝕性とも両者は基本的に一致
していた。次にそれらの効果をまとめて述べる。 FIG. 6 shows an example of an apparatus for producing the magnetic recording medium according to the present invention on an industrial scale, in which a film transport system is installed in a vacuum chamber and a long magnetic recording medium is obtained by continuous vapor deposition. It is something that can be done. In the figure, the same parts as the device in Figure 2 are given the same numbers, and the different parts are explained as follows:
11 is an unwinding roll, and plastic film 1
2 is wound, and the film 12 is conveyed along with the cylindrical can 13. At this time, the cylindrical can 13 is also rotating in the same direction to assist the traveling.
Subsequently, it is wound up with a winding roll 14. During this time,
Vapor deposition takes place below the cylindrical can 13. 15
is a mask that controls the oblique components of vapor. At this time, a wide range of incident angle components is included, but the minimum incident angle θmin is representative of the incident angle. When the characteristics of the magnetic film produced using this apparatus were compared with those of the magnetic film produced under the static film forming conditions shown in FIG. 2, both magnetic properties and corrosion resistance were basically the same. Next, we will summarize their effects.
(i) 磁気特性:蒸着時に残留ガス中のO2分圧を
10-4torr以下の状態に保ち、かつCrの含有量を
Co−Ni−Crに対して2〜15%とした磁性層は
45度近くの入射角で1000O¨e近くの抗磁力が得
られ、また角型比も0.9以上のものが得られ、
理想的な磁気特性となつている。第6図の連続
蒸着機を使用してCrを入れない従来の方法で
は4〜5m/minのフイルム速度で膜厚500Å、
抗磁力1000O¨eの試料を作製していたが、Crを
入れる本発明によるものでは同じ入力パワーで
約30m/minの速度までスピードアツプが可能
となつた。(i) Magnetic properties: O 2 partial pressure in residual gas during evaporation
10 -4 torr or less and reduce the Cr content.
The magnetic layer with 2 to 15% of Co-Ni-Cr is
A coercive force of nearly 1000O¨e was obtained at an incident angle of nearly 45 degrees, and a squareness ratio of over 0.9 was obtained.
It has ideal magnetic properties. In the conventional method using a continuous evaporator shown in Fig. 6 without adding Cr, the film thickness is 500 Å at a film speed of 4 to 5 m/min.
A sample with a coercive force of 1000 O¨e was prepared, but with the present invention, in which Cr is added, the speed can be increased to about 30 m/min with the same input power.
(ii) 耐蝕性:Crは耐蝕性金属として一般に知ら
れており、メツキ等に盛んに使用されている
が、前述の加速された耐蝕試験においてもCr
を添加した試料に関してはそうでないものに比
べて耐蝕性が向上している。この一例を第7図
に示した。この図よりCrを添加したものは両
試験において100日以上たつても変化が見られ
ていない。腐蝕の発生は、はん点状の変色が起
こり、そこが剥離してくるもので磁気記録媒体
にとつては致命的な問題であるが、かなり改善
された。(ii) Corrosion resistance: Cr is generally known as a corrosion-resistant metal and is widely used for plating, etc.; however, in the accelerated corrosion resistance test mentioned above, Cr
Corrosion resistance of the samples with the addition of chlorine was improved compared to the samples without the addition of . An example of this is shown in FIG. This figure shows that in both tests, no change was observed in the products to which Cr was added even after more than 100 days. Corrosion, which is a fatal problem for magnetic recording media as it causes speckled discoloration and peeling, has been considerably improved.
以上述べたように本発明に基づくCrの添加は
磁気特性の改善のみならず、耐蝕性の向上にもな
り、金属薄膜型磁気記録媒体の工業化に多大の貢
献をするものである。 As described above, the addition of Cr according to the present invention not only improves the magnetic properties but also improves the corrosion resistance, making a great contribution to the industrialization of metal thin film magnetic recording media.
第1図は本発明による磁気記録媒体の斜視図、
第2図は本発明の製造方法を実施するために使用
する実験装置の概略断面正面図、第3図、第4
図、第5図は磁気記録媒体の磁気特性図、第6図
は本発明の製造方法を実施するために使用する製
造装置の概略断面正面図、第7図は磁気記録媒体
の耐蝕性を示す図である。
1……非磁性基板、2……磁性層、3……真空
蒸着室、5……磁性金属、6……蒸発源、12…
…非磁性基板(プラスチツクフイルム)、13…
…円筒状キヤン。
FIG. 1 is a perspective view of a magnetic recording medium according to the present invention;
Figure 2 is a schematic cross-sectional front view of the experimental equipment used to carry out the manufacturing method of the present invention, Figures 3 and 4.
5 shows the magnetic characteristics of the magnetic recording medium, FIG. 6 shows a schematic cross-sectional front view of the manufacturing equipment used to carry out the manufacturing method of the present invention, and FIG. 7 shows the corrosion resistance of the magnetic recording medium. It is a diagram. DESCRIPTION OF SYMBOLS 1... Nonmagnetic substrate, 2... Magnetic layer, 3... Vacuum deposition chamber, 5... Magnetic metal, 6... Evaporation source, 12...
...Nonmagnetic substrate (plastic film), 13...
...Cylindrical can.
Claims (1)
体において、前記磁性層が主にCoとNiとCrとか
らなり、かつCrの含有量がCoとNiとCrに対して
2〜15%であることを特徴とする面内金属薄膜型
磁気記録媒体。 2 非磁性基板上に主にCoとNiとCrとからな
り、かつCrの含有量がCoとNiとCrに対して2〜
15%である磁性層を形成するに際し、前記磁性層
を10-4Torr以下の酸素分圧からなる残留ガス中
で真空蒸着により成膜することを特徴とする面内
金属薄膜型磁気記録媒体の製造方法。[Claims] 1. A magnetic recording medium in which a magnetic layer is formed on a non-magnetic substrate, wherein the magnetic layer mainly consists of Co, Ni, and Cr, and the content of Cr is greater than that of Co, Ni, and Cr. An in-plane metal thin film type magnetic recording medium characterized in that the magnetic flux is 2 to 15%. 2 Mainly composed of Co, Ni, and Cr on a non-magnetic substrate, and the content of Cr is 2 to 2 with respect to Co, Ni, and Cr.
15%, the magnetic layer is formed by vacuum evaporation in a residual gas having an oxygen partial pressure of 10 -4 Torr or less. Production method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9025280A JPS5715406A (en) | 1980-07-02 | 1980-07-02 | Thin-metalic-film type magnetic recording medium and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9025280A JPS5715406A (en) | 1980-07-02 | 1980-07-02 | Thin-metalic-film type magnetic recording medium and manufacture thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5715406A JPS5715406A (en) | 1982-01-26 |
JPH0133924B2 true JPH0133924B2 (en) | 1989-07-17 |
Family
ID=13993299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9025280A Granted JPS5715406A (en) | 1980-07-02 | 1980-07-02 | Thin-metalic-film type magnetic recording medium and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5715406A (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57134907A (en) * | 1981-02-13 | 1982-08-20 | Fuji Photo Film Co Ltd | Magnetic recording medium |
JPS57170505A (en) * | 1981-04-13 | 1982-10-20 | Nippon Gakki Seizo Kk | Tape for magnetic recording |
JPS57207307A (en) * | 1981-06-16 | 1982-12-20 | Nippon Gakki Seizo Kk | Magnetic recording tape and manufacture thereof |
JPS5917216A (en) * | 1982-07-20 | 1984-01-28 | Ulvac Corp | Magnetic recorder and its manufacture |
JPS5961013A (en) * | 1982-09-29 | 1984-04-07 | Fuji Photo Film Co Ltd | Magnetic recording medium |
JPS5961105A (en) * | 1982-09-30 | 1984-04-07 | Fuji Photo Film Co Ltd | Magnetic recording medium |
JPS61189609A (en) * | 1985-02-18 | 1986-08-23 | Tohoku Tokushuko Kk | Magnetic material for magnetic recording medium |
JPS61204830A (en) * | 1985-03-08 | 1986-09-10 | Nec Corp | Magnetic storage body |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1297936A (en) * | 1969-02-22 | 1972-11-29 | ||
JPS6034169A (en) * | 1983-08-02 | 1985-02-21 | 金子農機株式会社 | Tobacco drying control apparatus |
-
1980
- 1980-07-02 JP JP9025280A patent/JPS5715406A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5715406A (en) | 1982-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4323629A (en) | Metallic thin film magnetic recording medium | |
GB1599161A (en) | Magnetic recording medium and method of making the same | |
JPH0133924B2 (en) | ||
US4521481A (en) | Magnetic recording medium | |
US4002546A (en) | Method for producing a magnetic recording medium | |
US4663193A (en) | Process for manufacturing magnetic recording medium | |
US4536443A (en) | Magnetic recording medium | |
JPS6153770B2 (en) | ||
JPS63186844A (en) | amorphous material | |
US4645690A (en) | Method of manufacturing a magnetic media | |
JPH0219524B2 (en) | ||
JPS6032964B2 (en) | Method for manufacturing magnetic recording media | |
JPH0462163B2 (en) | ||
JPH053048B2 (en) | ||
JPH0572017B2 (en) | ||
JPS62229522A (en) | Magnetic recording medium | |
JPS58194135A (en) | Magnetic recording medium | |
JPS60163233A (en) | Magnetic recording medium and its production | |
JPS61294629A (en) | Magnetic recording medium | |
JPS62150518A (en) | Magnetic recording medium | |
JPS58188333A (en) | Magnetic recording medium | |
JPS59203223A (en) | Thin metallic film type magnetic recording medium | |
JPS6154024A (en) | Magnetic recording medium | |
JPH0512765B2 (en) | ||
JPS592231A (en) | Production of magnetic recording medium |