[go: up one dir, main page]

JPH0571872B2 - - Google Patents

Info

Publication number
JPH0571872B2
JPH0571872B2 JP59242242A JP24224284A JPH0571872B2 JP H0571872 B2 JPH0571872 B2 JP H0571872B2 JP 59242242 A JP59242242 A JP 59242242A JP 24224284 A JP24224284 A JP 24224284A JP H0571872 B2 JPH0571872 B2 JP H0571872B2
Authority
JP
Japan
Prior art keywords
heat storage
pipe
latent heat
storage container
storage material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59242242A
Other languages
Japanese (ja)
Other versions
JPS61122489A (en
Inventor
Yoshifumi Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59242242A priority Critical patent/JPS61122489A/en
Publication of JPS61122489A publication Critical patent/JPS61122489A/en
Publication of JPH0571872B2 publication Critical patent/JPH0571872B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/021Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material and the heat-exchanging means being enclosed in one container
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は空気調和装置に関するもので、特に潜
熱蓄熱材を用いた装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an air conditioner, and particularly to a device using a latent heat storage material.

(従来の技術) 従来のこの種の装置は1例として第3図a,b
に示すように、箱形の蓄熱容器2に潜熱蓄熱材1
を封入し、前記蓄熱容器2内に空気調和装置の冷
媒配管に接続するパイプ6と該パイプ6に固着さ
れた横フイン4を具備した熱交換器3を配置し構
成するようなものであつた。また潜熱蓄熱材とし
ては芒硝系の材料が用いられていた。(例えば、
町田他、「温室用潜熱蓄熱材の開発および実証試
験」日本太陽エネルギー学会、第9回研究発表会
講演論文集、(1983.12.6〜8)49〜50頁) (発明が解決しようとする問題点) 従来の装置においては、第3図a,bから理解
されるように、蓄熱容器2内で潜熱蓄熱材1と横
フイン4を具備した熱交換器3の伝熱面との距
離・間隔が大きく隔たる部分が生じるような構成
であつたので、前記潜熱蓄熱材1が伝熱面に凝固
又は融解し、固相又は液相の厚みが増加するにつ
れて、容易に凝固又は融解しない部分が生じ、効
率的にかつ迅速に蓄熱できない欠点があり、また
蓄熱容器2が比較的大きな箱形容器であるため蓄
熱容量を変更するため簡単に該容器の形状を変更
することは極めて困難であるという欠点があつ
た。前記固相又は液相の厚みの増加により効率的
かつ迅速に蓄熱できないことについてつぎの第2
図により説明する。第2図a〜dは蓄熱容器2内
における凝固時、融解時における潜熱蓄熱材1の
熱抵抗の変化を示している図である。横軸はパイ
プ6の伝熱面からの距離を表わし、縦軸は熱抵抗
を表わしている。横軸のlは蓄熱容器2内のパイ
プ6からのもつとも遠いところの潜熱蓄熱1まで
の距離を表わしている。
(Prior art) An example of a conventional device of this type is shown in Fig. 3 a and b.
As shown in the figure, a latent heat storage material 1 is placed in a box-shaped heat storage container 2.
A heat exchanger 3 having a pipe 6 connected to a refrigerant pipe of an air conditioner and a horizontal fin 4 fixed to the pipe 6 was arranged inside the heat storage container 2. . Furthermore, a mirabilite-based material was used as a latent heat storage material. (for example,
Machida et al., "Development and demonstration test of latent heat storage material for greenhouses," Japan Society of Solar Energy, Proceedings of the 9th Research Conference, (December 6-8, 1983), pp. 49-50) (Problems to be solved by the invention) Point) In the conventional device, as can be understood from FIGS. 3a and 3b, the distance/interval between the latent heat storage material 1 and the heat transfer surface of the heat exchanger 3 equipped with the horizontal fins 4 in the heat storage container 2 As the latent heat storage material 1 solidifies or melts on the heat transfer surface, and as the thickness of the solid phase or liquid phase increases, there are parts that do not easily solidify or melt. However, since the heat storage container 2 is a relatively large box-shaped container, it is extremely difficult to easily change the shape of the container in order to change the heat storage capacity. There were flaws. Regarding the inability to efficiently and quickly store heat due to the increase in the thickness of the solid phase or liquid phase, the following 2.
This will be explained using figures. 2A to 2D are diagrams showing changes in the thermal resistance of the latent heat storage material 1 during solidification and melting in the heat storage container 2. FIG. The horizontal axis represents the distance from the heat transfer surface of the pipe 6, and the vertical axis represents the thermal resistance. 1 on the horizontal axis represents the distance from the pipe 6 in the heat storage container 2 to the farthest latent heat storage 1.

今、凝固時、熱抵抗が急激に大きくなり、伝熱
特性が急激に低下するときの固相の厚みをaとし
融解時、熱抵抗が急激に大きくなり伝熱特性が急
激に低下するときの液相の厚みをbとする。第2
図aは凝固時、第2図bは融解時を示し、固相の
厚みaより液相の厚みbが大の場合を示してい
る。また第2図cは凝固時、第2図dは融解時を
示しているが、固相の厚みaは液相の厚みbと同
じか、大の場合を示している。第2図各図に示す
ようにa又はbにおいて熱抵抗が急激に変化する
場合がある。
Let us now assume that the thickness of the solid phase when the thermal resistance suddenly increases and the heat transfer characteristics suddenly decrease during solidification is a. Let the thickness of the liquid phase be b. Second
Figure a shows the solidified state, and Figure 2 b shows the melted state, where the thickness b of the liquid phase is greater than the thickness a of the solid phase. Further, FIG. 2c shows the solidified state, and FIG. 2d shows the melted state, where the thickness a of the solid phase is the same as or larger than the thickness b of the liquid phase. As shown in each figure in FIG. 2, the thermal resistance may change rapidly at point a or b.

ところで第3図bの平面図に示す従来の蓄熱容
器2においては、パイプ6の伝熱面9から最遠端
の潜熱蓄熱材までの距離lが大きかつたため、つ
まりl>a又はl>bであつたためになかなか凝
固又は融解しない部分が生じていた。また潜熱蓄
熱材が液体の状態の時には対流が生じ、蓄熱容器
内の上下方向や水平方向に温度むらを生じてい
た。これらの要因により効率的にかつ迅速に蓄熱
できないという欠点があつた。
By the way, in the conventional heat storage container 2 shown in the plan view of FIG. 3b, the distance l from the heat transfer surface 9 of the pipe 6 to the farthest end of the latent heat storage material is large, that is, l>a or l>b. Because of this, there were some parts that did not solidify or melt easily. Furthermore, when the latent heat storage material is in a liquid state, convection occurs, causing temperature unevenness in the vertical and horizontal directions within the heat storage container. Due to these factors, there was a drawback that heat could not be stored efficiently and quickly.

(問題点を解決するための手段) 本発明はこれらの前記欠点を除去するために、
蓄熱容器を細長い柱状体の中空密閉容器とし、ま
た熱交換器に前記蓄熱容器を上下に貫通する冷媒
配管に接続するパイプと、蓄熱容器の内側面に接
するように前記パイプに縦フインと横フインとを
設けて、パイプの伝熱面が潜熱蓄熱材に短い距離
で対向するように構成するとともに、潜熱蓄熱材
として熱伝導率の小さいかつ定温で融解・凝固時
の潜熱が利用できる潜熱蓄熱材を充填した潜熱蓄
熱ユニツトとした。
(Means for solving the problems) In order to eliminate these drawbacks, the present invention has the following features:
The heat storage container is an elongated columnar hollow sealed container, and the heat exchanger has a pipe connected to a refrigerant pipe that passes through the heat storage container up and down, and a vertical fin and a horizontal fin on the pipe so as to be in contact with the inner surface of the heat storage container. The heat transfer surface of the pipe is configured to face the latent heat storage material at a short distance, and the latent heat storage material has a low thermal conductivity and can utilize the latent heat during melting and solidification at a constant temperature. This is a latent heat storage unit filled with

(作用) 本発明を前記の通り構成したので、蓄熱容器内
の潜熱蓄熱材は容易に一様に凝固又は融解し、効
率的にかつ迅速に蓄熱できるように作用し、また
蓄熱容器を柱状体の中空密閉容器としたので、高
さを変えたユニツトを準備することで、異つた蓄
熱容量のユニツトを各種設けることができる。
(Function) Since the present invention is configured as described above, the latent heat storage material in the heat storage container can be easily and uniformly solidified or melted, and the heat storage material can be efficiently and quickly stored. Since it is a hollow sealed container, various units with different heat storage capacities can be provided by preparing units with different heights.

(実施例) 第1図a,b,cは本発明の1実施例であつて
第1図aは側面断面図、第1図bは平面断面図、
第1図cはパイプの締付保持装置の側面断面図で
ある。第1図各図において、1は潜熱蓄熱材、2
は蓄熱容器、3は熱交換器、である。蓄熱容器2
は例えば5cm×5cm×100cmの柱状体の中空密閉
容器であつて、中央部には熱交換器3を構成する
パイプ6が貫通しており、上面2−1及び下面2
−2にはパイプ6を密閉する締付保持装置7が設
けられている。図示していないがパイプ6には冷
暖房システムよりの配管が接続されるようになつ
ている。従つて冷媒がパイプ6内に流出入する
が、冷媒は例えばR−11である。蓄熱容器2は
潜熱蓄熱材1の充填口が設けられているが、充填
口は例えば上面2−1に充填後は密閉閉塞できる
ような構造のものが適宜設けられる。
(Embodiment) FIGS. 1a, b, and c show one embodiment of the present invention, in which FIG. 1a is a side sectional view, FIG. 1b is a plan sectional view,
FIG. 1c is a side sectional view of the pipe clamping and holding device. In each figure of Fig. 1, 1 is a latent heat storage material, 2
is a heat storage container, and 3 is a heat exchanger. Heat storage container 2
is a hollow sealed container with a columnar shape of, for example, 5 cm x 5 cm x 100 cm, and a pipe 6 constituting the heat exchanger 3 passes through the center, and the upper surface 2-1 and the lower surface 2-1 are connected to each other.
-2 is provided with a tightening holding device 7 for sealing the pipe 6. Although not shown, the pipe 6 is connected to piping from an air conditioning system. Therefore, a refrigerant flows into and out of the pipe 6, and the refrigerant is, for example, R-11. The heat storage container 2 is provided with a filling port for the latent heat storage material 1, and the filling port is appropriately provided, for example, on the upper surface 2-1 with a structure that can be closed tightly after filling.

熱交換器3は前記パイプ6と縦フイン5と横フ
イン4により構成されている。縦フイン5は1端
がパイプ6の外周面で長手方向に固着し、他端が
蓄熱容器2の内側面2−3に僅の間隙を有して接
するようにパイプ6の外側面から前記内側面2−
3に向い放射状に複数の平板状部材で形成されて
いる。横フイン4は、端面がパイプ6の外周面と
縦フイン5に水平方向で固着し他端が蓄熱容器2
の内側面2−3に僅の間隙を有して接しており、
かつ前記パイプ6の長手方向に一定間隔で配置さ
れた複数の平板状部材で形成されている。
The heat exchanger 3 is composed of the pipe 6, vertical fins 5, and horizontal fins 4. The vertical fins 5 are fixed in the longitudinal direction on the outer peripheral surface of the pipe 6, and the other end is connected from the outer surface of the pipe 6 to the inner surface so that the other end contacts the inner surface 2-3 of the heat storage container 2 with a slight gap. Side 2-
It is formed of a plurality of flat plate-like members radially facing 3. The horizontal fin 4 has an end surface fixed horizontally to the outer peripheral surface of the pipe 6 and the vertical fin 5, and the other end is fixed to the heat storage container 2.
is in contact with the inner surface 2-3 with a slight gap,
It is formed of a plurality of flat plate-like members arranged at regular intervals in the longitudinal direction of the pipe 6.

第1図cにおいて、7−1は貫通部締付キヤツ
プ8はゴムパツキン11は取付座である。締付保
持装置7において、潜熱蓄熱材1が漏れる恐れの
あるので、蓄熱容器2に設けた取付座11にパイ
プ6がゴムパツキン8を介して貫通部締付キヤツ
プ7−1により締めつけ圧着している。前記の通
り構成した蓄熱容器2に潜熱蓄熱材1が充填密閉
される。潜熱蓄熱材1は熱伝導率の小さなかつ定
温で融解・凝固時の潜熱ができるものであるが、
本実施例では10゜〜30℃の範囲で融解・凝固時の
潜熱が利用できるものとしてココナツトアルコー
ルを充填したが、このココナツトアルコールに
は、高級アルコールとして開発された花王石鹸株
式会社製の商品名「カルコール」の使用が望まし
い。第1図bに示す如く、パイプ6の伝熱面9と
の最遠部の距離xは、第3図に示した従来のもの
の距離lと比べると凝固又は融解しない部分が生
じにくいようになつてることが理解される。
In FIG. 1c, reference numeral 7-1 indicates a through-portion tightening cap 8, and a rubber packing 11 indicates a mounting seat. In the clamping and holding device 7, since there is a risk that the latent heat storage material 1 may leak, the pipe 6 is clamped and crimped to the mounting seat 11 provided on the heat storage container 2 via the rubber packing 8 by the penetrating part clamping cap 7-1. . The heat storage container 2 configured as described above is filled with the latent heat storage material 1 and sealed. The latent heat storage material 1 has a low thermal conductivity and can generate latent heat during melting and solidification at a constant temperature.
In this example, coconut alcohol was filled as it can utilize the latent heat during melting and solidification in the range of 10° to 30°C. It is preferable to use the product name "Calcol". As shown in FIG. 1b, the distance x between the farthest part of the pipe 6 and the heat transfer surface 9 is such that a portion that does not solidify or melt is less likely to occur compared to the distance l of the conventional pipe shown in FIG. It is understood that

前記第2図a〜dの図に関連して、本実施例の
作用を説明する。
The operation of this embodiment will be explained with reference to the figures of FIGS. 2a to 2d.

(1) 熱交換器3のパイプ6内に熱媒を流し、完全
に融解している潜熱蓄熱材1を凝固させる場合
でa<b、x=aの時。
(1) When a heat medium is flowed into the pipe 6 of the heat exchanger 3 to solidify the completely melted latent heat storage material 1, and a<b and x=a.

熱交換器3の伝熱面に固相が析出し第2図aに
示されるように熱抵抗は増加し、伝熱特性は低下
していくが、本発明の実施例ではx=aに構成し
たので、蓄熱容器2内の潜熱蓄熱材1は、伝熱特
性が急激に低下する以前に完全に凝固し、また熱
交換器3の横フイン4、縦フイン5により、蓄熱
容器2内の上下方向、水平方向の温度むらなく凝
固できる。
A solid phase precipitates on the heat transfer surface of the heat exchanger 3, and as shown in FIG. 2a, the thermal resistance increases and the heat transfer characteristics deteriorate. However, in the embodiment of the present invention, Therefore, the latent heat storage material 1 in the heat storage container 2 is completely solidified before its heat transfer characteristics suddenly decrease, and the horizontal fins 4 and vertical fins 5 of the heat exchanger 3 are able to prevent the upper and lower parts of the heat storage container 2. Solidification is possible with uniform temperature in both direction and horizontal direction.

(2) 熱交換器3のパイプ6内に熱媒を流し完全に
凝固している潜熱蓄熱材1を融解させる場合
で、a<b、x=aの時。
(2) When a heating medium is flowed into the pipe 6 of the heat exchanger 3 to melt the completely solidified latent heat storage material 1, and when a<b and x=a.

熱交換器3の伝熱面に液相が生じ第2図bに示
されるように、伝熱特性は低下していくがx=a
であるので、蓄熱容器2内の潜熱蓄熱材1は伝熱
特性が急激に低下する以前に完全に融解し、また
熱交換器の横フイン4、縦フイン5により、蓄熱
容器2の上下方向、水平方向の温度むらなく融解
できる。
A liquid phase is generated on the heat transfer surface of the heat exchanger 3, and as shown in FIG. 2b, the heat transfer characteristics deteriorate, but x=a
Therefore, the latent heat storage material 1 in the heat storage container 2 is completely melted before its heat transfer characteristics suddenly decrease, and the horizontal fins 4 and vertical fins 5 of the heat exchanger allow the heat storage material 1 in the vertical direction of the heat storage container 2 to Can be melted evenly in horizontal direction.

第2図c,dはa≧b、x=bの場合である
が、第2図a,bと説明は同様であるから省略す
る。
FIGS. 2c and d show the case where a≧b and x=b, but since the explanation is the same as that of FIGS. 2a and 2b, the explanation will be omitted.

本発明に1実施例として第1図bに示したもの
は平面断面が正方形のものであるが、他の実施例
として、蓄熱容器2の平面断面が円形のものであ
つてもよい。勿論この場合には横フイレ4の形状
は円形となる。この他の実施例については円形の
形状以外は前記の1実施例と同様の構成、作用で
あるから図示等は省略する。
The heat storage container 2 shown in FIG. 1B as an embodiment of the present invention has a square planar cross section, but as another embodiment, the heat storage container 2 may have a circular planar cross section. Of course, in this case, the shape of the horizontal fillet 4 is circular. The other embodiments have the same structure and operation as the first embodiment described above except for the circular shape, so illustrations, etc. are omitted.

(発明の効果) 以上、説明したように、この発明を実施した本
装置は潜熱蓄熱材を効率的かつ迅速に凝固・融解
させることができまた複数組み合せて構成するこ
とができるので次の利点がある。
(Effects of the Invention) As explained above, the present device embodying the present invention can efficiently and quickly solidify and melt latent heat storage materials, and can be constructed by combining multiple materials, so it has the following advantages: be.

(1) 冷暖房システムに組み込めば効率的かつ迅速
な蓄熱が可能で設備容量の低減が達成できる。
(1) By incorporating it into a heating and cooling system, it is possible to efficiently and quickly store heat and reduce the equipment capacity.

(2) 蓄熱容量は本装置の高さを変えたり複数組み
合せて可変にできるので空調システムの規模に
応じて柔軟に対処できる。
(2) The heat storage capacity can be varied by changing the height of this device or by combining multiple devices, so it can be flexibly handled depending on the scale of the air conditioning system.

(3) 本装置に充填する潜熱蓄熱材は金属への腐蝕
性がなく、また一度充填すれば長期間にわたり
性能を保持して使用できる。
(3) The latent heat storage material filled in this device is not corrosive to metal, and once filled, it can maintain its performance for a long period of time.

(4) 潜熱蓄熱ユニツトとして種々の応用が考えら
れる。
(4) Various applications can be considered as a latent heat storage unit.

等の効果がある。There are other effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,b,cは本発明の1実施例であつて
第1図aは側面断面図、第1図bは平面断面図、
第1図cはパイプの締付保持装置の側面断面図で
ある。第2図a,b,c,dは熱抵抗の変化を示
す図である。第3図a,bは従来の装置の図で、
第3図aは側面断面図、第3図bは平面断面図で
ある。 1…潜熱蓄熱材、2…蓄熱容器、3…熱交換
器、4…横フイン、5…縦フイン、6…パイプ、
7…締付保持装置、8…ゴムパツキン、9…パイ
プ伝熱面、l,x…パイプ伝熱面9と最遠部の潜
熱蓄熱材までの距離、a…凝固時、熱抵抗が急激
に大きくなり、伝熱特性が急激に低下するときの
固相の厚み、b…融解時、熱抵抗が急激に大きく
なり、伝熱特性が急激に低下するときの液相の厚
み。
Figures 1a, b, and c show one embodiment of the present invention, in which Figure 1a is a side sectional view, Figure 1b is a planar sectional view,
FIG. 1c is a side sectional view of the pipe clamping and holding device. FIGS. 2a, b, c, and d are diagrams showing changes in thermal resistance. Figures 3a and 3b are diagrams of the conventional device,
FIG. 3a is a side sectional view, and FIG. 3b is a plan sectional view. 1... Latent heat storage material, 2... Heat storage container, 3... Heat exchanger, 4... Horizontal fin, 5... Vertical fin, 6... Pipe,
7...Tightening and holding device, 8...Rubber packing, 9...Pipe heat transfer surface, l, x...Distance between pipe heat transfer surface 9 and the farthest latent heat storage material, a...Thermal resistance increases rapidly during solidification , the thickness of the solid phase when the heat transfer characteristics suddenly decrease, and b... the thickness of the liquid phase when the thermal resistance suddenly increases and the heat transfer characteristics suddenly decrease during melting.

Claims (1)

【特許請求の範囲】 1 上面および下面の中央部に貫通パイプ6の締
付保持装置7を有するとともに、潜熱蓄熱材1の
充填口10を具備した柱状体の中空密閉の蓄熱容
器2と 該蓄熱容器の上面および下面を貫通し前記締付
保持装置7に保持される冷媒配管に接続するパイ
プ6と、一端が該パイプ6の外周面で長手方向に
固着し他端が該蓄熱容器2の内側面に僅かの間隙
を有して接するように放射状に形成された複数の
平板状の縦フイン5と、端面が前記パイプ6の外
周面と縦フイン5に水平方向で固着し他端が蓄熱
容器2の内側面に僅かの間隙を有して接しかつ前
記パイプ6の長手方向に一定間隙で配置された複
数の平板状の横フイン4とを有する熱交換器3と
により構成され、 前記蓄熱容器2の内部に熱伝導率の小さなかつ
定温で融解・凝固時の潜熱が利用できる潜熱蓄熱
材を充填したことを特徴とする潜熱蓄熱ユニツ
ト。 2 蓄熱容器2の内部に10゜〜30℃の範囲で融
解・凝固時の潜熱が利用できる潜熱蓄熱材として
ココナツトアルコールを充填した特許請求の範囲
第1項記載の潜熱蓄熱ユニツト。
[Scope of Claims] 1. A hollow, sealed columnar heat storage container 2 having a tightening and holding device 7 for a through pipe 6 at the center of its upper and lower surfaces, and a filling port 10 for a latent heat storage material 1; A pipe 6 penetrates the upper and lower surfaces of the container and connects to the refrigerant pipe held by the clamping and holding device 7, and one end is fixed longitudinally on the outer peripheral surface of the pipe 6 and the other end is fixed inside the heat storage container 2. A plurality of flat plate-shaped vertical fins 5 are formed radially so as to be in contact with the side surfaces with a slight gap, and an end surface is fixed to the outer peripheral surface of the pipe 6 and the vertical fins 5 in a horizontal direction, and the other end is a heat storage container. a heat exchanger 3 having a plurality of flat horizontal fins 4 that are in contact with the inner surface of the heat storage container 2 with a slight gap and arranged at constant intervals in the longitudinal direction of the pipe 6; 1. A latent heat storage unit characterized in that a latent heat storage material having a low thermal conductivity and capable of utilizing latent heat during melting and solidification at a constant temperature is filled inside the unit. 2. The latent heat storage unit according to claim 1, wherein the inside of the heat storage container 2 is filled with coconut alcohol as a latent heat storage material that can utilize the latent heat during melting and solidification in the range of 10° to 30°C.
JP59242242A 1984-11-19 1984-11-19 Latent heat accumulating unit Granted JPS61122489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59242242A JPS61122489A (en) 1984-11-19 1984-11-19 Latent heat accumulating unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59242242A JPS61122489A (en) 1984-11-19 1984-11-19 Latent heat accumulating unit

Publications (2)

Publication Number Publication Date
JPS61122489A JPS61122489A (en) 1986-06-10
JPH0571872B2 true JPH0571872B2 (en) 1993-10-08

Family

ID=17086354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59242242A Granted JPS61122489A (en) 1984-11-19 1984-11-19 Latent heat accumulating unit

Country Status (1)

Country Link
JP (1) JPS61122489A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109880596B (en) * 2019-02-12 2021-03-02 武汉博茗低碳产业股份有限公司 Gradient phase change heat storage body and preparation method thereof

Also Published As

Publication number Publication date
JPS61122489A (en) 1986-06-10

Similar Documents

Publication Publication Date Title
US3720198A (en) Heat storage elements, a method for producing them and devices comprising heat storage elements
CN102084206B (en) Device and method for cooling components by means of magnetizable phase change material
CN109792013A (en) Battery case for automobile batteries temperature management
JP5395765B2 (en) Batteries provided with coolant, and assembled batteries provided with coolant
US12322774B2 (en) Battery pack and vehicle
CN106252787A (en) A kind of battery thermal management system cooled down based on phase-change material and Air Coupling
JPS59180255A (en) Thermoelectric device
Sasaguchi et al. Phase change heat transfer during melting and resolidification of melt around cylindrical heat source (s)/sink (s)
CN1016272B (en) Container for holding melting-crystallizing high latent heat energy storage medium
Kanimozhi et al. Charging and discharging processes of thermal energy storage system using phase change materials
US4362207A (en) Integrated heat exchange and heat storage system using low-temperature reactions
CN209804740U (en) Battery module
JPH0571872B2 (en)
KR102079910B1 (en) Latent heat storage apparatus using phase change material
US3822150A (en) High temperature battery package and a method of assembling same
JPS62284193A (en) Heat transfer pipe
CN111162349A (en) A temperature-adjustable lithium titanate battery module
JPS6022279B2 (en) heat storage device
JP2014185827A (en) Constant temperature holder
JPH05295356A (en) Particulate heat-storage material using heat of fusion of substance
GB2412427A (en) Latent heat storage module comprising phase change material within metallic sphere
CN219779008U (en) battery pack
JPH0989481A (en) Heat storage body
CN118919932B (en) Radiator and battery
JPH01196499A (en) Regenerative container