[go: up one dir, main page]

JPH0564467B2 - - Google Patents

Info

Publication number
JPH0564467B2
JPH0564467B2 JP59184033A JP18403384A JPH0564467B2 JP H0564467 B2 JPH0564467 B2 JP H0564467B2 JP 59184033 A JP59184033 A JP 59184033A JP 18403384 A JP18403384 A JP 18403384A JP H0564467 B2 JPH0564467 B2 JP H0564467B2
Authority
JP
Japan
Prior art keywords
component
amount
heat treatment
manufacturing
conversion device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59184033A
Other languages
Japanese (ja)
Other versions
JPS6161459A (en
Inventor
Mikihiko Nishitani
Yoichi Harada
Kosuke Ikeda
Toshio Yamashita
Noboru Yoshigami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59184033A priority Critical patent/JPS6161459A/en
Publication of JPS6161459A publication Critical patent/JPS6161459A/en
Publication of JPH0564467B2 publication Critical patent/JPH0564467B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F39/00Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
    • H10F39/10Integrated devices
    • H10F39/12Image sensors
    • H10F39/191Photoconductor image sensors

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、フアクシミリ等の各種OA機器に用
いられる原稿と1対1に対応する光センサアレイ
等の光電変換装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a photoelectric conversion device such as a photosensor array that corresponds one-to-one with a document used in various office automation equipment such as a facsimile machine.

従来例の構成とその問題点 第1図は、光電変換装置の光センサアレイ部の
要部斜視図である。
Configuration of a conventional example and its problems FIG. 1 is a perspective view of a main part of a photosensor array section of a photoelectric conversion device.

従来、原稿と1対1に対応する光センサアレイ
を備えた画像情報入力装置いわゆる密着形イメー
ジセンサの絶縁基板として、コーニング社の7059
ガラス基板1を用いており、光導電素子2として
は不純物Cuを含んだCdS・Se蒸着膜をCdC12雰
囲気中、500〜600℃で熱処理したものを用いてい
る。不純物としてのCuは、CdS・Se中において
は深いアクセプター準位として作用し、CdS・Se
の光導電特性に大きな影響を与える。そのため、
製造工程においてCdS・Se中のCu量をコントロ
ールすることは必要不可欠のことである。
Conventionally, Corning Corporation's 7059
A glass substrate 1 is used, and the photoconductive element 2 is a CdS/Se vapor-deposited film containing impurity Cu, which is heat-treated at 500 to 600° C. in a CdC12 atmosphere. Cu as an impurity acts as a deep acceptor level in CdS/Se.
has a great influence on the photoconductive properties of Therefore,
It is essential to control the amount of Cu in CdS/Se during the manufacturing process.

なお、同図において3は共通電極、4は個別電
極である。
In addition, in the figure, 3 is a common electrode, and 4 is an individual electrode.

しかしながら、従来のCdS・Se:Cuの蒸着工
程において、CdS・Seの膜厚及び蒸着中のCu量
を制御して製造したとしても、第2図に示すよう
に100ルクス、10V印加のもとでの各光センサア
レイの平均の光電流値が30〜50μAと広範囲にわ
たつてばらついている。このばらつきの要因の1
つとして考えられることは、用いる絶縁基板中の
Cu量である。CdS・Se光センサの特性を決める
不純物としてのCuは、きわめて微量、具体的に
は0.01mol%程度で充分その働きをするため、た
とえば、基板中に含まれるCu量が多いと熱処理
工程時に基板からCdS・Se蒸着膜中にCuが拡散
し、蒸着工程だけでCu量が制御できずに特性ば
らつきの原因となる。
However, in the conventional CdS/Se:Cu evaporation process, even if the CdS/Se film thickness and the amount of Cu during evaporation are controlled, as shown in Figure 2, under 100 lux and 10V application. The average photocurrent value of each optical sensor array varies over a wide range from 30 to 50 μA. One of the causes of this variation
One possibility is that the insulating substrate used
It is the amount of Cu. Cu, which is an impurity that determines the characteristics of CdS/Se optical sensors, has a very small amount, specifically about 0.01 mol%, which is sufficient for its function. As a result, Cu diffuses into the CdS/Se deposited film, and the amount of Cu cannot be controlled during the deposition process alone, causing variations in characteristics.

以上のような特性ばらつきは、工程における歩
留り低下や、周辺回路に柔軟性を広く持たせる必
要が生じ不都合である。
The above-mentioned variations in characteristics are inconvenient because they reduce yield in the process and require peripheral circuits to have a wide range of flexibility.

発明の目的 本発明は、以上に述べような観点から、特性ば
らつきが少ない安定した品質を持つた光センサア
レイを実現する製造方法の提供を目的とする。
OBJECTS OF THE INVENTION From the viewpoints described above, the present invention aims to provide a manufacturing method for realizing an optical sensor array having stable quality with little variation in characteristics.

発明の構成 上記目的達成のため本発明の光電変換装置の製
造方法は、Cuの含有量が0.001wt%以下のBaO−
Al2O3−B2O3−SiO2ガラス基板上に、Cdと族
の主成分とした島状の光電素子列を主走査方向に
形成する形成工程、形成工程後、光電素子列を
500℃以上600℃以下の温度範囲で熱処理する熱処
理工程、熱処理工程後、光電素子列の上に信号取
り出し用の電極を形成する工程を含む製造方法で
ある。
Structure of the Invention In order to achieve the above object, the method for manufacturing a photoelectric conversion device of the present invention is a method for manufacturing a photoelectric conversion device of the present invention.
A formation process in which island-shaped photoelectric element arrays containing Cd and group members as main components are formed in the main scanning direction on an Al 2 O 3 -B 2 O 3 -SiO 2 glass substrate. After the formation process, the photoelectric element array is
This manufacturing method includes a heat treatment step of performing heat treatment in a temperature range of 500° C. or more and 600° C. or less, and a step of forming electrodes for signal extraction on the photoelectric element array after the heat treatment step.

実施例の説明 先に述べたように、光センサとしてCdS・Se光
導電素子を用いる場合、CdS・Se中に含まれる
Cu不純物量が大きくその特性に影響を与えるこ
とがわかつている。実際、製造工程における光セ
ンサアレイの光電流の平均値のヒスグラムは、第
2図のようであつたが、その際に使用したコーニ
ング社の7059ガラス基板の成分および基板中に不
純物として含まれるCu量を原子吸光光度法を用
いて分析・調査した結果、基板の主成分は
SiO248wt%、BaO25wt%、B2O315wt%、
Al2O3wt%であり、Cuの含有量は0.0008wt%〜
0.003wt%の範囲で各ロツトごとにばらついてい
ることがわかつた。このことは第2図に示したよ
うな光センサアレイの光電流の平均値のばらつき
の要因の1つであると推察される。
Explanation of Examples As mentioned earlier, when using a CdS/Se photoconductive element as an optical sensor, the CdS/Se contains
It is known that the amount of Cu impurity greatly affects its properties. In fact, the histogram of the average value of the photocurrent of the optical sensor array during the manufacturing process was as shown in Figure 2. As a result of analyzing and investigating the amount using atomic absorption spectrophotometry, the main components of the substrate were
SiO2 48wt%, BaO25wt%, B2O3 15wt %,
Al 2 O 3 wt%, Cu content is 0.0008wt%~
It was found that each lot varied within a range of 0.003wt%. This is presumed to be one of the causes of the variation in the average value of photocurrent of the optical sensor array as shown in FIG.

そこで、コーニング社の7059基板に含まれる
Cu量が、0.003wt%のものと0.0008wt%のものと
を基板として、その上にCdS・Se光導電膜を形成
し、その過程における膜中のCu量を原子吸光光
度法を用いて評価した。第3図にその結果を示し
ている。
Therefore, it is included in Corning's 7059 board.
A CdS/Se photoconductive film was formed on substrates with a Cu content of 0.003wt% and 0.0008wt%, and the amount of Cu in the film was evaluated using atomic absorption spectrometry during the process. did. Figure 3 shows the results.

第3図のA、B、CはそれぞれCdS・Seの真空
蒸着によつて形成した直後の膜中のCu量、CdCl2
雰囲気中熱処理前のプレアニール直後の膜中の
Cu量、CdCl2雰囲気中熱処理直後の膜中のCu量
をプロツトしており、aは、基板中Cu量0.003wt
%の場合、bは基板中Cu量0.0008wt%の場合で
ある。この実験より基板中Cu量が、0.003wt%の
ものについては、基板に含まれるCuが、CdS・
Se膜中に拡散していることが明らかになつた。
A, B, and C in Fig. 3 are the amount of Cu in the film immediately after being formed by vacuum evaporation of CdS/Se, and CdCl 2
In the film immediately after pre-annealing before heat treatment in an atmosphere
The amount of Cu in the film immediately after heat treatment in a CdCl 2 atmosphere is plotted, and a is the amount of Cu in the substrate, 0.003wt.
%, b is the case where the amount of Cu in the substrate is 0.0008wt%. From this experiment, when the amount of Cu in the substrate was 0.003wt%, the Cu contained in the substrate was
It became clear that Se was diffused into the film.

さらに、工程実験として、コーニング社の7059
ガラス基板のうち、Cuの含有量が0.001wt%程度
以下のものだけを用いて光センサアレイを製造し
たところ、その品質を示す代表的なパラメータで
ある各光センサアレイの光電流の平均値のヒスト
グラムは第4図のようになり、第2図に比べてそ
のばらつきが小さくなつていることが確認され
た。また、主成分の組成比がコーニング7059とは
異なるが、他のBaO−Al2O3−B2O3−SiO2系ガ
ラス基板の場合においても同様な結果が得られ
た。
Furthermore, as a process experiment, Corning's 7059
When optical sensor arrays were manufactured using only glass substrates with a Cu content of about 0.001wt% or less, the average value of photocurrent of each optical sensor array, which is a typical parameter that indicates the quality, was The histogram was as shown in FIG. 4, and it was confirmed that the variation was smaller than in FIG. 2. Furthermore, although the composition ratio of the main components was different from that of Corning 7059, similar results were obtained with other BaO-Al2O3-B2O3 - SiO2 glass substrates .

発明の効果 以上のように本発明はCuの含有量が0.001wt%
以下の絶縁性基板を用いるので、光センサアレイ
を構成する−族化合物光導電膜に添加する
Cu量の制御性を向上させ、特に低濃度のCu量に
特に有効であり、安定した品質の光電変換装置が
製造できる効果がある。
Effects of the invention As described above, the present invention has a Cu content of 0.001wt%.
Since the following insulating substrate is used, it is added to the - group compound photoconductive film that constitutes the optical sensor array.
It improves the controllability of the amount of Cu, is particularly effective for low concentrations of Cu, and has the effect of making it possible to manufacture photoelectric conversion devices with stable quality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は光電変換装置の光センサアレイ部の要
部斜視図、第2図は従来工程における光センサア
レイの光電流の平均値のヒストグラム、第3図は
基板中Cu量と各工程における光導電膜中のCu量
の関係を示したグラフ、第4図は本発明による光
センサアレイの光電流の平均値のヒストグラムで
ある。 1……絶縁基板、2……光導電素子、3……共
通電極、4……個別電極。
Figure 1 is a perspective view of the main parts of the photosensor array section of a photoelectric conversion device, Figure 2 is a histogram of the average photocurrent of the photosensor array in the conventional process, and Figure 3 is the amount of Cu in the substrate and the amount of light in each process. FIG. 4, a graph showing the relationship between the amount of Cu in the conductive film, is a histogram of the average value of photocurrent of the optical sensor array according to the present invention. 1...Insulating substrate, 2...Photoconductive element, 3...Common electrode, 4...Individual electrode.

Claims (1)

【特許請求の範囲】 1 Cuの含有量が0.001wt%以下のBaO−Al2O3
−B2O3−SiO2ガラス基板上に、Cdと族化合物
をの主成分とした島状の光電素子列を主走査方向
に形成する形成工程、前記形成工程後、光電素子
列を500℃以上600℃以下の温度範囲で熱処理する
熱処理工程、前記熱処理工程後、前記光電素子列
の上に信号取り出し用の電極を形成する工程を含
むことを特徴とする光電変換装置の製造方法。 2 ガラス基板の主成分が、SiO2成分48wt%、
BaO成分25wt%、B2O3成分15wt%およびAl2O3
成分11wt%であることを特徴とする特許請求の
範囲第1項記載の光電変換装置の製造方法。
[Claims] 1 BaO-Al 2 O 3 with a Cu content of 0.001wt% or less
A formation step of forming island-shaped photoelectric element arrays containing Cd and group compounds as main components on a -B 2 O 3 -SiO 2 glass substrate in the main scanning direction; after the formation step, the photoelectric element arrays are heated at 500°C. A method for manufacturing a photoelectric conversion device, comprising a heat treatment step of performing heat treatment in a temperature range of 600° C. or less, and a step of forming a signal extraction electrode on the photoelectric element array after the heat treatment step. 2 The main component of the glass substrate is SiO2 component 48wt%,
BaO component 25wt%, B2O3 component 15wt% and Al2O3
2. The method for manufacturing a photoelectric conversion device according to claim 1, wherein the content of the component is 11 wt%.
JP59184033A 1984-09-03 1984-09-03 Manufacturing method of photoelectric conversion device Granted JPS6161459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59184033A JPS6161459A (en) 1984-09-03 1984-09-03 Manufacturing method of photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59184033A JPS6161459A (en) 1984-09-03 1984-09-03 Manufacturing method of photoelectric conversion device

Publications (2)

Publication Number Publication Date
JPS6161459A JPS6161459A (en) 1986-03-29
JPH0564467B2 true JPH0564467B2 (en) 1993-09-14

Family

ID=16146181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59184033A Granted JPS6161459A (en) 1984-09-03 1984-09-03 Manufacturing method of photoelectric conversion device

Country Status (1)

Country Link
JP (1) JPS6161459A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56167240A (en) * 1980-05-29 1981-12-22 Toshiba Corp Photoelectric converter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56167240A (en) * 1980-05-29 1981-12-22 Toshiba Corp Photoelectric converter

Also Published As

Publication number Publication date
JPS6161459A (en) 1986-03-29

Similar Documents

Publication Publication Date Title
US4900370A (en) Solar battery
DE2654429C2 (en) A method of manufacturing a photocell having a photosensitive semiconductive substrate made of the alloy Cd x Hg 1 - x Te
EP0142114B1 (en) Method of manufacturing a solar cell
DE3780598T2 (en) COMPONENTS AND COMPONENT MANUFACTURE WITH BORSILICATE GLASS.
DE3423159C2 (en)
US3890525A (en) Photoconductive target of an image pickup tube comprising graded selenium-tellurium layer
JPH0564467B2 (en)
EP0146967B1 (en) Photoconductive target of image pickup tube and manufacturing method thereof
US3486059A (en) High sensitivity photoconductor for image pickup tube
JPS6047752B2 (en) friction tube target
JP3019866B2 (en) Manufacturing method of optical sensor
KR0139818B1 (en) Photodiodes with image sensors for facsimile mounting
Ressel et al. Investigation of photodoping kinetics in amorphous Ge-chalcogenides
US4814237A (en) Thin-film electroluminescent element
JP2538252B2 (en) Optical sensor manufacturing method
JPH07109900B2 (en) Optical sensor manufacturing method
JP2502783B2 (en) Optical sensor manufacturing method
AT347503B (en) METHOD FOR GENERATING A GLASS PROTECTIVE LAYER ON THE SURFACE OF SEMICONDUCTOR COMPONENTS
US4608514A (en) Photoconductive target of the image pickup tube
JPH0564468B2 (en)
SU747092A1 (en) Electrochrome glass
JPH04120430A (en) Platinum temperature sensor
JP2658078B2 (en) Manufacturing method of optical sensor
KR940006932B1 (en) Image sensor
JPS5816288B2 (en) Kodo Denta Getsutono Seizouhouhou