[go: up one dir, main page]

JPH055796B2 - - Google Patents

Info

Publication number
JPH055796B2
JPH055796B2 JP21058285A JP21058285A JPH055796B2 JP H055796 B2 JPH055796 B2 JP H055796B2 JP 21058285 A JP21058285 A JP 21058285A JP 21058285 A JP21058285 A JP 21058285A JP H055796 B2 JPH055796 B2 JP H055796B2
Authority
JP
Japan
Prior art keywords
crucible
magnetic field
magnetic
raw material
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21058285A
Other languages
Japanese (ja)
Other versions
JPS6270286A (en
Inventor
Shigeo Nonaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP21058285A priority Critical patent/JPS6270286A/en
Publication of JPS6270286A publication Critical patent/JPS6270286A/en
Publication of JPH055796B2 publication Critical patent/JPH055796B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はシリコンや砒化ガリウムなどの単結晶
を、磁場を印加することによつて製造する単結晶
製造装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a single crystal manufacturing apparatus for manufacturing a single crystal of silicon, gallium arsenide, or the like by applying a magnetic field.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

現在よく用いられている単結晶の製造方法の一
つとしてチヨクラルスキー法(CZ法)と呼ばれ
る方法がある。これは高温に加熱されたルツボ内
の原料融液を結晶化し、生成する単結晶とルツボ
を互いに逆方向にまたは同方向に回転させつつ前
記単結晶を徐々に引き上げ成長させるようにした
方法である。この方法は、結晶育成に当り結晶の
材料となる原料融液の入つたルツボを使用する点
が特徴であり、大きな直径の結晶が得られる等の
多くの利点がある。
One of the methods for producing single crystals that is commonly used today is the Czyochralski method (CZ method). This is a method in which a raw material melt in a crucible heated to a high temperature is crystallized, and the single crystal to be produced is gradually pulled up and grown while rotating the crucible and the crucible in opposite directions or in the same direction. . This method is characterized by the use of a crucible containing a raw material melt, which is the material for crystals, during crystal growth, and has many advantages, such as the ability to obtain crystals with large diameters.

しかし、このCZ法による単結晶においては、
ルツボの外から熱を加えるので、僅かの入熱変動
や外乱により、ルツボ内の融液の自然対流による
上昇流は乱されて温度変動を生ずるという問題が
ある。
However, in the single crystal produced by this CZ method,
Since heat is applied from outside the crucible, there is a problem in that slight fluctuations in heat input or disturbances can disturb the upward flow of the melt in the crucible due to natural convection, resulting in temperature fluctuations.

この温度変動を抑制し、単結晶を生成する原料
融液の安定化を図り併せて、ルツボによる汚染を
防止して単結晶の品質の向上を図るため、ルツボ
に垂直な方向または水平方向に磁場を印加して融
液の実効粘性を高めることが提案されている(特
公昭58−50951号公報)。その結果、温度変動は抑
制されたが、垂直方向の磁場、すなわち縦磁場を
印加した場合、ルツボの内周壁面の温度と単結晶
の界面温度との間に大きな温度差が生じるため、
単結晶生成のためにはルツボ自体の温度を高温度
にすることを余儀なくされ、これに起因して上記
ルツボが融解するおそれがある。
In order to suppress this temperature fluctuation and stabilize the raw material melt that produces single crystals, as well as prevent contamination from the crucible and improve the quality of the single crystals, magnetic field is applied in the direction perpendicular or horizontal to the crucible. It has been proposed to increase the effective viscosity of the melt by applying . As a result, temperature fluctuations were suppressed, but when a perpendicular magnetic field, that is, a longitudinal magnetic field, was applied, a large temperature difference occurred between the temperature of the inner peripheral wall of the crucible and the interface temperature of the single crystal.
In order to produce a single crystal, it is necessary to raise the temperature of the crucible itself to a high temperature, which may cause the crucible to melt.

これに対処するために等軸対象的かつ放射状の
カスプ磁場を印加して融液面に対して水平方向の
磁力線を作ることが提案されている(特開昭58−
217493号公報)。
To deal with this, it has been proposed to apply an equiaxially symmetrical and radial cusp magnetic field to create horizontal lines of magnetic force with respect to the melt surface (Japanese Patent Application Laid-Open No. 1983-1996-
Publication No. 217493).

ところがこの方法は、マグネツトが上下に2個
必要なため、高さ方向に充分なスペースが必要と
なる。しかも、ルツボ融液面の低下に伴い磁場中
心を移動させるべくマグネツトを移動しなければ
ならない。さらに融液面に対して垂直方向上部の
マグネツトによつて発生する磁力線は炉の下方ま
たは上方まで洩れて磁束を発生され、これが炉の
下部または上部に設けたセンサー類やコントロー
ル機能を有する機器に悪影響を与えるおそれがあ
る。またマグネツトが2段になるため、製造コス
トが増大するという問題もある。
However, this method requires two magnets, one above the other, and thus requires sufficient space in the height direction. Furthermore, the magnet must be moved to move the center of the magnetic field as the melt level in the crucible decreases. Furthermore, the magnetic lines of force generated by the upper magnet perpendicular to the melt surface leak to the bottom or top of the furnace and generate magnetic flux, which is transmitted to sensors and control equipment installed at the bottom or top of the furnace. There is a risk of adverse effects. Furthermore, since the magnets are arranged in two stages, there is also the problem that manufacturing costs increase.

さらにまた、従来の横磁場印加の場合には、ル
ツボの周方向の磁界が不均一になるという欠点が
ある。
Furthermore, in the case of applying a conventional transverse magnetic field, there is a drawback that the magnetic field in the circumferential direction of the crucible becomes non-uniform.

〔発明の目的〕[Purpose of the invention]

本発明は、上述した点に鑑みてなされたもので
あり、ルツボの外側部に磁気シールドを設けるこ
とにより原料融液の結晶界面とルツボの内壁面と
の温度勾配を緩やかにして、大口径かつ純度の高
い単結晶の製造に好適な単結晶製造装置を提供す
ることを目的とする。
The present invention has been made in view of the above-mentioned points, and by providing a magnetic shield on the outside of the crucible, the temperature gradient between the crystal interface of the raw material melt and the inner wall surface of the crucible is made gentler, and a large-diameter and It is an object of the present invention to provide a single crystal manufacturing apparatus suitable for manufacturing a single crystal with high purity.

〔発明の概要〕[Summary of the invention]

本発明者は、ルツボの外側部に設けられた磁界
発生用コイルによつて生成される磁界内に磁気シ
ールドを配設することによつて、磁力線の向きを
原料融液面と略水平方向に屈曲させ、これにより
ルツボ内の原料融液の温度分布を結晶成長にとつ
て最適の状態にすることができることを見出し
た。
The inventor of the present invention has realized that by arranging a magnetic shield within the magnetic field generated by a magnetic field generating coil provided on the outside of the crucible, the direction of the magnetic lines of force is aligned approximately horizontally with the surface of the raw material melt. It has been found that by bending the crucible, the temperature distribution of the raw material melt in the crucible can be brought into an optimal state for crystal growth.

本発明は、上記知見に基いてなされたものであ
り、より詳しくは、高温に加熱されるルツボ内の
原料融液を結晶化し、該結晶を成長させつつ徐々
にルツボから引き上げるようにした単結晶製造装
置において、前記ルツボの外側部に、該ルツボ内
に磁界を発生させる磁界発生用コイルと、該磁界
発生用コイルから発生する磁力線の方向が少なく
ともルツボ内の原料融液表面近傍において該液面
に対して略水平方向に向くように該磁力線を屈曲
させる磁気シールドとが配設されてなることを特
徴とするものである。
The present invention has been made based on the above findings, and more specifically, a single crystal is produced in which a raw material melt in a crucible that is heated to a high temperature is crystallized, and the crystal is gradually pulled out of the crucible while growing. In the manufacturing apparatus, a magnetic field generating coil for generating a magnetic field in the crucible is disposed on the outside of the crucible, and the direction of the magnetic field lines generated from the magnetic field generating coil is at least in the vicinity of the raw material melt surface in the crucible at the liquid level. The device is characterized by being provided with a magnetic shield that bends the lines of magnetic force so as to be oriented substantially horizontally with respect to the magnetic field.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を図面に示す一実施例に基づいて
詳細に説明する。
Hereinafter, the present invention will be explained in detail based on an embodiment shown in the drawings.

第1図において、符号1は、加熱ヒータ2によ
つて加熱されるルツボであつて、これらは炉3内
に内包されている。またルツボ1内には、例え
ば、シリコン融液からなる原料融液4が容れられ
ている。単結晶体(単に単結晶ともいう)5を引
き上げる回転軸6ならびにルツボ1を回転させる
回転軸7を軸中心として磁気シールド8が設けら
れ、磁気シールドの形状は、円筒状、柵状あるい
は網状のいずれであつてもよく、磁力線の方向を
屈曲させるのに有効な形状、材質が選ばれる。ま
た、磁気シールドの位置は、磁界発生用コイル9
によつて発生する磁力線9aの方向が原料融液4
の液表面近傍で液面と略平行となるように配設さ
れる。磁力線の方向が最適の態様になるように、
ルツボ1もしくは磁気シールド8および(また
は)コイル9は上下左右に移動できるように形成
されていることが好ましい。
In FIG. 1, reference numeral 1 denotes a crucible heated by a heater 2, which is housed in a furnace 3. Further, the crucible 1 contains a raw material melt 4 made of, for example, a silicon melt. A magnetic shield 8 is provided around a rotating shaft 6 for pulling up a single crystal (also simply referred to as a single crystal) 5 and a rotating shaft 7 for rotating the crucible 1, and the shape of the magnetic shield is cylindrical, fence-like, or net-like. Any of these may be used, and the shape and material are selected to be effective in bending the direction of the lines of magnetic force. Also, the position of the magnetic shield is the magnetic field generation coil 9.
The direction of the magnetic lines of force 9a generated by the raw material melt 4
is arranged near the liquid surface so as to be approximately parallel to the liquid surface. So that the direction of the magnetic field lines is optimal,
It is preferable that the crucible 1 or the magnetic shield 8 and/or the coil 9 be formed so as to be movable vertically and horizontally.

磁界が第1図に示すような態様の場合、ルツボ
1および(または)単結晶5を回転軸7および
(または)6をお互いに両方向または逆方向に回
転することにより、ルツボ1内の原料融液4内に
は、第2図に示す矢示方向に循環流が生成する。
つまり、上記ルツボ1の底面1aの近傍あるいは
単結晶5の界面5aの近傍ではルツボ1ないし単
結晶5の回転による遠心力により半径方向外側の
流れを生じ、また、ルツボ1の側壁面1bの近傍
では加熱ヒータ2により鉛直上向きの自然対流が
生じる。このような流れに対して、磁界発生用コ
イル9の磁力線9aが上記流れに対して略直角方
向の場合、融液の流れに制動がかかり、流速が小
さくなる。
When the magnetic field is in the form shown in FIG. 1, the raw material melt in the crucible 1 is caused by rotating the crucible 1 and/or the single crystal 5 with the rotating shafts 7 and/or 6 in both directions or in opposite directions. A circulating flow is generated in the liquid 4 in the direction of the arrow shown in FIG.
That is, in the vicinity of the bottom surface 1a of the crucible 1 or in the vicinity of the interface 5a of the single crystal 5, a radially outward flow is generated due to the centrifugal force due to the rotation of the crucible 1 or the single crystal 5, and also in the vicinity of the side wall surface 1b of the crucible 1. In this case, vertically upward natural convection is generated by the heater 2 . With respect to such a flow, when the magnetic lines of force 9a of the magnetic field generating coil 9 are substantially perpendicular to the flow, the flow of the melt is braked and the flow velocity becomes small.

これを数式で表すと下記の通りになる。 This can be expressed numerically as follows.

F=−σvB2 F:電磁力 σ:電気伝導率 v:融液の流速 B:磁束密度 このように、本発明によると、融液界面での流
れはさほど電磁力の影響を受けず、上記加熱ヒー
タ2により加熱された融液界面は、従来の縦磁場
による単結晶の引上げ手段に比べて円滑に流れ、
大きな温度勾配を作らない方向に作用する。ま
た、上記ルツボ1の側壁面1bは高温にさらされ
ているため、ルツボ壁面かにのコンタミネーシヨ
ンが横磁場を印加しない限り問題となるが、本発
明によると、上記側壁面1b近傍の原料融液4は
減速され、これによりコンタミネーシヨンを低減
することができる。
F=-σvB 2 F: Electromagnetic force σ: Electrical conductivity v: Melt flow velocity B: Magnetic flux density As described above, according to the present invention, the flow at the melt interface is not significantly affected by the electromagnetic force, and the above The melt interface heated by the heater 2 flows more smoothly than in conventional single crystal pulling means using a vertical magnetic field.
Acts in a direction that does not create large temperature gradients. Furthermore, since the side wall surface 1b of the crucible 1 is exposed to high temperatures, contamination of the crucible wall surface becomes a problem unless a transverse magnetic field is applied, but according to the present invention, the raw material near the side wall surface 1b The melt 4 is decelerated, thereby reducing contamination.

第3図に示される図は、本発明の装置によつて
生ずる原料融液4内の典型的な等温度分布曲線を
示したものであり、この等温度分布曲線10a
は、上記ルツボ1の原料融液4の界面での温度勾
配が小さく、加熱ヒータ2からむやみに加熱する
必要が無いことを示している。
The diagram shown in FIG. 3 shows a typical isotemperature distribution curve in the raw material melt 4 produced by the apparatus of the present invention, and this isotemperature distribution curve 10a
This indicates that the temperature gradient at the interface of the raw material melt 4 of the crucible 1 is small, and there is no need for unnecessary heating from the heater 2.

また、本発明によれば、単結晶5の海面下の温
度が上記原料融液4中のいずれの位置でも略同じ
になるため、結晶化が一層促進されるという効果
がある。
Further, according to the present invention, since the temperature of the single crystal 5 below the sea surface is approximately the same at any position in the raw material melt 4, there is an effect that crystallization is further promoted.

ところで、第1図に示す本発明の実施例は、磁
束密度を略均一にするような磁束分布になるよう
に形成されているが、第4図に示す別の実施例
は、加熱ヒータ2と磁気シールド8の配置を上下
逆に構成した場合の例である。この例の場合、ル
ツボ1の回転中心部では縦磁場効果が、またルツ
ボ1の周辺部では横磁場効果が得られるという特
長がある。
By the way, the embodiment of the present invention shown in FIG. 1 is formed to have a magnetic flux distribution that makes the magnetic flux density approximately uniform, but in another embodiment shown in FIG. This is an example in which the magnetic shield 8 is arranged upside down. This example has the advantage that a vertical magnetic field effect can be obtained at the center of rotation of the crucible 1, and a transverse magnetic field effect can be obtained at the periphery of the crucible 1.

本発明の磁気シールド8は交番磁界内では渦電
流損により、一種の熱源となり得るため、加熱ヒ
ータ2の代わり、またはその補助ヒータとして適
用できる。なお、図中には示されていないが、上
記磁気シールドを炉内に置く方がいい場合もあ
る。さらに、底部のある磁気シールドも他の一実
施例であり、この場合、磁束を略直角に横切る面
で発熱作用が大となり、熱源として有用である。
Since the magnetic shield 8 of the present invention can act as a kind of heat source due to eddy current loss in an alternating magnetic field, it can be applied in place of the heater 2 or as an auxiliary heater thereof. Although not shown in the figure, there are cases where it is better to place the magnetic shield inside the furnace. Furthermore, a magnetic shield with a bottom is another example, and in this case, the heat generating effect is large on a plane that crosses the magnetic flux at a substantially right angle, and is useful as a heat source.

磁界発生用コイル9は常電導の他、超電導ある
いは永久磁石によつても代用することができる。
さらに磁力線9aの改良のため積層鉄心を上記コ
イル9の近傍に設けることもできる。
The magnetic field generating coil 9 can be replaced by a normal conductor, a superconductor, or a permanent magnet.
Furthermore, a laminated core may be provided near the coil 9 to improve the magnetic lines of force 9a.

〔発明の効果〕〔Effect of the invention〕

本発明の単結晶製造装置は、磁界発生用コイル
から発生する磁力線の方向を、原料融液表面近傍
において該液面に対して略水平方向に屈曲させる
磁気シールドを有しているので、ルツボ内の原料
融液の温分布を結晶成長にとつて最適の状態にす
ることができ、ルツボからのコンタミネーシヨン
を防止して均質にして高純度でしかも大口径の単
結晶を製造することができる。
The single crystal manufacturing apparatus of the present invention has a magnetic shield that bends the direction of the magnetic lines of force generated from the magnetic field generating coil in a direction substantially horizontal to the raw material melt surface near the surface of the raw material melt, so that The temperature distribution of the raw material melt can be optimized for crystal growth, making it possible to prevent contamination from the crucible and produce homogeneous, high-purity, large-diameter single crystals. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る単結晶製造装置の断面
図、第2図は、本発明のルツボ内の原料融液の流
れ分布と磁力線分布を示す図、第3図は、本発明
の原料融液の等温線分布を示す図、第4図は、本
発明の他の実施例に係る単結晶製造装置の断面図
である。 1……ルツボ、1a……ルツボ底部、1b……
ルツボ側壁部、2……加熱ヒータ、3……炉、4
……原料融液、5……単結晶体、6……単結晶引
き上げ回転軸、7……ルツボ回転軸、8……磁気
シールド、9……磁場発生用コイル、9a……磁
力線、10a……等温線。
FIG. 1 is a cross-sectional view of the single crystal production apparatus according to the present invention, FIG. 2 is a diagram showing the flow distribution and magnetic field line distribution of the raw material melt in the crucible of the present invention, and FIG. 3 is a diagram showing the raw material melt of the present invention. FIG. 4, which is a diagram showing the isothermal distribution of the melt, is a sectional view of a single crystal manufacturing apparatus according to another embodiment of the present invention. 1... Crucible, 1a... Crucible bottom, 1b...
Crucible side wall, 2... Heater, 3... Furnace, 4
... Raw material melt, 5 ... Single crystal, 6 ... Single crystal pulling rotation axis, 7 ... Crucible rotation axis, 8 ... Magnetic shield, 9 ... Coil for magnetic field generation, 9a ... Lines of magnetic force, 10a ... ...Isotherms.

Claims (1)

【特許請求の範囲】[Claims] 1 高温に加熱されるルツボ内の原料融液を結晶
化し、該結晶を成長させつつ徐々にルツボから引
き上げるようにした単結晶製造装置において、前
記ルツボの外側部に、該ルツボ内に磁界を発生さ
せる磁界発生用コイルと、該磁界発生用コイルか
ら発生する磁力線の方向が少なくともルツボ内の
原料融液表面近傍において該液面に対して略水平
方向に向くように該磁力線を屈曲させる磁気シー
ルドとが配設されてなることを特徴とする、単結
晶製造装置。
1. In a single crystal manufacturing apparatus that crystallizes a raw material melt in a crucible that is heated to a high temperature and gradually pulls the crystal out of the crucible while growing the crystal, a magnetic field is generated inside the crucible on the outside of the crucible. a magnetic field generating coil, and a magnetic shield that bends the magnetic lines of force generated from the magnetic field generating coil so that the direction of the lines of magnetic force is oriented substantially horizontally to the liquid surface at least in the vicinity of the surface of the raw material melt in the crucible. A single-crystal manufacturing device characterized by being provided with.
JP21058285A 1985-09-24 1985-09-24 Apparatus for producting single crystal Granted JPS6270286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21058285A JPS6270286A (en) 1985-09-24 1985-09-24 Apparatus for producting single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21058285A JPS6270286A (en) 1985-09-24 1985-09-24 Apparatus for producting single crystal

Publications (2)

Publication Number Publication Date
JPS6270286A JPS6270286A (en) 1987-03-31
JPH055796B2 true JPH055796B2 (en) 1993-01-25

Family

ID=16591699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21058285A Granted JPS6270286A (en) 1985-09-24 1985-09-24 Apparatus for producting single crystal

Country Status (1)

Country Link
JP (1) JPS6270286A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2572070B2 (en) * 1987-07-20 1997-01-16 東芝セラミツクス株式会社 Single crystal manufacturing method
JPH10297994A (en) * 1997-04-25 1998-11-10 Sumitomo Sitix Corp Silicon single crystal growth method
DE10102126A1 (en) * 2001-01-18 2002-08-22 Wacker Siltronic Halbleitermat Method and device for producing a single crystal from silicon
JP7160006B2 (en) * 2019-09-19 2022-10-25 信越半導体株式会社 Single crystal pulling apparatus and single crystal pulling method

Also Published As

Publication number Publication date
JPS6270286A (en) 1987-03-31

Similar Documents

Publication Publication Date Title
US4830703A (en) Single crystal growth apparatus
US4565671A (en) Single crystal manufacturing apparatus
JPH01153589A (en) Pulling of single crystal and apparatus therefor
KR100204522B1 (en) Single crystal growth method and device
JPH0825836B2 (en) Silicon single crystal manufacturing equipment
JP2561072B2 (en) Single crystal growth method and apparatus
JPS61222984A (en) Unit for single crystal production
JPH055796B2 (en)
JPH0212920B2 (en)
JPS5850953B2 (en) crystal growth method
JP2567539B2 (en) FZ method silicon single crystal ingot growth method and apparatus
JP7230781B2 (en) Single crystal pulling apparatus and single crystal pulling method
JP2002104896A (en) Method of growing single crystal and growing device
JPS6036392A (en) Apparatus for pulling single crystal
JPS5930795A (en) Single crystal pulling device
US5935327A (en) Apparatus for growing silicon crystals
JPH10167875A (en) Device for producing single crystal
JPS63215587A (en) Single crystal manufacturing method
WO2022163091A1 (en) Single crystal pulling device and single crystal pulling method
JPS6278184A (en) Single crystal growth apparatus
JPS6033297A (en) Pulling device for single crystal semiconductor
JP2623390B2 (en) Silicon single crystal rod growth method
JPH026382A (en) Apparatus for pulling up single crystal
JPS61186282A (en) Production of single crystal
JPS6278185A (en) Single crystal growth and apparatus therefor