JPH0554825B2 - - Google Patents
Info
- Publication number
- JPH0554825B2 JPH0554825B2 JP63237053A JP23705388A JPH0554825B2 JP H0554825 B2 JPH0554825 B2 JP H0554825B2 JP 63237053 A JP63237053 A JP 63237053A JP 23705388 A JP23705388 A JP 23705388A JP H0554825 B2 JPH0554825 B2 JP H0554825B2
- Authority
- JP
- Japan
- Prior art keywords
- composite material
- fiber
- material layer
- reinforced composite
- fibers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Laminated Bodies (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は人工衛星等宇宙構造体、OA機器、自
動車、ゴルフクラブなどのレジヤー用品の構造材
料に用いる繊維強化複合材料に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a fiber-reinforced composite material used as a structural material for space structures such as artificial satellites, office automation equipment, automobiles, and leisure goods such as golf clubs.
従来より上記目的に用いられる繊維強化複合材
料として例えばCFRPなどが知られている。
Conventionally, CFRP and the like have been known as fiber-reinforced composite materials used for the above purpose.
CFRPなどの繊維強化複合材料は、カーボンや
ガラス繊維などの無機繊維又はアラミド繊維など
の有機繊維をエポキシ樹脂、ポリイミド樹脂、ポ
リエーテルエーテルケトン樹脂などの樹脂で固型
化したものである。 Fiber-reinforced composite materials such as CFRP are made by solidifying inorganic fibers such as carbon and glass fibers or organic fibers such as aramid fibers with resins such as epoxy resins, polyimide resins, and polyether ether ketone resins.
繊維強化複合材料は、従来の金属構造材料に比
較して、軽量・高強度である、繊維配向角を制御
することにより所望の機械特性を実現できる点で
優れている。このため、強く軽量化が要求される
宇宙構造物・航空機・自動車・レジヤー用品など
の構造材料に幅広く用いられる用になつてきてい
る。 Fiber-reinforced composite materials are superior to conventional metal structural materials in that they are lightweight and strong, and desired mechanical properties can be achieved by controlling the fiber orientation angle. For this reason, it has come to be widely used as a structural material for space structures, aircraft, automobiles, leisure goods, etc., where weight reduction is strongly required.
ところで、この種の複合材料を用いた構造体の
用途拡大に伴い、構造体の振動が問題となつてい
る。
By the way, as the uses of structures using this type of composite material expand, vibration of the structures has become a problem.
繊維強化複合材料は、軽量であり、従来の金属
材料と同程度の小さな振動減衰特性(損失係数η
=0.001〜0.02)をもつため、振動を生じやすい。
また、構造物を一体成型で作製することが多く、
従来の金属構造材料の場合と異なり、継手部での
摩擦による構造減衰を期待できない。 Fiber-reinforced composite materials are lightweight and have small vibration damping properties (loss coefficient η
= 0.001 to 0.02), it is easy to cause vibration.
In addition, structures are often manufactured by integral molding,
Unlike conventional metal structural materials, structural damping due to friction at joints cannot be expected.
例えば、人工衛星などの宇宙構造物では、構造
体の振動による搭載機器の破損、アンテナの位置
精度低下などが生じている。このため、繊維強化
複合材料の振動減衰特性増加は重要な課題となつ
ている。 For example, in space structures such as artificial satellites, vibrations of the structure cause damage to onboard equipment and a decrease in antenna position accuracy. Therefore, increasing the vibration damping properties of fiber-reinforced composite materials has become an important issue.
これらの問題点を解決する目的で、繊維強化複
合材料の一部に拘束型制振材料を適用したサンド
イツチ構成を用い、拘束型制振機構により振動減
衰特性を増加させる手法が検討されている。しか
し、前記手法の場合、大きな振動減衰特性が実現
できるものの、前記特性が温度により急激に変化
するため構造材料としては有効ではない。 In order to solve these problems, a method is being considered that uses a sandwich structure in which a restrained damping material is applied to a part of a fiber-reinforced composite material, and increases the vibration damping characteristics by a restrained vibration damping mechanism. However, in the case of the above method, although a large vibration damping property can be achieved, the property changes rapidly depending on the temperature, so it is not effective as a structural material.
本発明は前記問題点を解決するものであり、そ
の目的とするところは、広い温度領域で大きな振
動減衰特性を有する繊維強化複合材料を提供する
ことにある。 The present invention is intended to solve the above problems, and its purpose is to provide a fiber-reinforced composite material that has large vibration damping properties over a wide temperature range.
上記目的を達成するため、本発明の繊維強化複
合材料においては、カーボン繊維、ガラス繊維な
どの無機繊維又はアラミド繊維などの有機繊維を
樹脂に充填した複合材料層と、該複合材料層間に
各々介在させた互いにガラス転移温度が異なる二
種以上の拘束型制振材料層とを有するものであ
る。
In order to achieve the above object, the fiber-reinforced composite material of the present invention includes a composite material layer in which a resin is filled with inorganic fibers such as carbon fibers and glass fibers, or organic fibers such as aramid fibers, and a composite material layer that is interposed between the composite material layers. It has two or more types of constrained vibration damping material layers having different glass transition temperatures.
第1の繊維強化複合材料層/制振材料層/第2
の繊維強化複合材料層からなるサンドイツチ構成
の損失係数ηcは次式で与えられる。
First fiber reinforced composite material layer/damping material layer/second
The loss coefficient η c of a sanderch structure consisting of fiber-reinforced composite material layers is given by the following equation.
ηc=13E3h3/E1h1(h1+2h2+h3/2h1)2・g・η2
/(1+g)2+(g・η2)2…(1)
ここで、E;ヤング率、h;厚み、G;せん断
弾性率、f;周波数、ρ;密度、η;損失係数で
ある。 η c =13E 3 h 3 /E 1 h 1 (h 1 +2h 2 +h 3 /2h 1 ) 2・g・η 2
/(1+g) 2 +(g・η 2 ) 2 …(1) Here, E: Young's modulus, h: thickness, G: shear modulus, f: frequency, ρ: density, η: loss coefficient.
添字1、2及び3はそれぞれ第1の繊維強化複
合材料層、制振材料層及び第2の繊維強化複合材
料層を示す。 Subscripts 1, 2, and 3 indicate the first fiber-reinforced composite material layer, the damping material layer, and the second fiber-reinforced composite material layer, respectively.
(1)式より明らかなように、損失係数ηcは制振材
料層の損失係数η2が大きい程大きい。制振材料層
の損失係数η2はガラス転移温度領域で最大となる
が、温度に伴い急激に変化するため、損失係数ηc
が大きな値をもつ温度領域は限定される傾向にあ
つた。 As is clear from equation (1), the loss coefficient η c increases as the loss coefficient η 2 of the damping material layer increases. The loss coefficient η 2 of the damping material layer is maximum in the glass transition temperature region, but it changes rapidly with temperature, so the loss coefficient η c
The temperature range in which the value of was large tended to be limited.
本発明の複合材料では、異なるガラス転移温度
領域をもつ拘束型制振材料を二層以上設けてあ
る。各ガラス転移温度T0、T1、T2…Toとすると
(T0<T1<T2…<To)温度T0の近傍では、ガラ
ス転移温度T0をもつ制振材料層が主体となり、
繊維強化複合材料層とガラス転移温度T1、T2…
Toを有する制振材料層を積層一体化した複合材
料層が前述の第1及び第2の複合材料層に相当す
る。前記(1)、(2)式より明らかなように、カラス転
移温度T0をもつ制振材料層の作用により、損失
係数ηcは大きな値をもつ。 In the composite material of the present invention, two or more layers of constrained damping materials having different glass transition temperature ranges are provided. Assuming that each glass transition temperature T 0 , T 1 , T 2 ...T o is (T 0 < T 1 < T 2 ... < T o ), in the vicinity of the temperature T 0 , the damping material layer with the glass transition temperature T 0 is Become the subject,
Fiber-reinforced composite material layer and glass transition temperature T 1 , T 2 ...
A composite material layer in which vibration damping material layers having T o are laminated and integrated corresponds to the above-mentioned first and second composite material layers. As is clear from the above equations (1) and (2), the loss coefficient η c has a large value due to the action of the damping material layer having the glass transition temperature T 0 .
また温度T0より高温では、ガラス転移温度T1
…Toをもつ制振材料層がぞそれぞれ主体となり、
前記制振材料層の作用により、損失係数ηcは大き
な値をもつ。 Furthermore, at temperatures higher than T 0 , the glass transition temperature T 1
...The damping material layer with T o becomes the main body,
Due to the action of the damping material layer, the loss coefficient η c has a large value.
よつて本発明の複合材料は、温度T0〜Toの領
域で、すなわち広い温度領域で大きな損失係数ηc
をもつ。 Therefore, the composite material of the present invention has a large loss coefficient η c in the temperature range T 0 to T o , that is, in a wide temperature range.
have.
拘束型制振材料は、ビスフエノール型エポキシ
樹脂、ポリオールまたはその重合体のポリグリシ
ジルエーデルであるエポキシ樹脂、ポリイソシア
ネート化合物とポリオール樹脂とを反応させて得
られるポリウレタン系樹脂などの熱硬化性樹脂を
ベースとしたもの、又は、ポリオレフイン樹脂、
塩化ビニル樹脂、アクリル樹脂などの熱可塑性樹
脂をベースにしたもの等公知のものが使用でき
る。また、これら材料としては、それぞれのガラ
ス転移領域で、弾性率50Kgf/mm2以下、好ましく
は10Kgf/mm2以下のもの、力学的損失tanδは0.1
以上のもの、好ましくは0.5以上のものが使用で
きる。 Restraint-type damping materials include thermosetting resins such as bisphenol-type epoxy resins, epoxy resins that are polyglycidyl ethers of polyols or their polymers, and polyurethane resins obtained by reacting polyisocyanate compounds and polyol resins. Based on or polyolefin resin,
Known materials such as those based on thermoplastic resins such as vinyl chloride resin and acrylic resin can be used. In addition, these materials have an elastic modulus of 50 Kgf/mm 2 or less, preferably 10 Kgf/mm 2 or less, and a mechanical loss tan δ of 0.1 in each glass transition region.
or more, preferably 0.5 or more can be used.
以下に本発明の実施例を図によつて説明する。 Embodiments of the present invention will be described below with reference to the drawings.
第1図に本発明繊維強化複合材料の断面図を示
す。 FIG. 1 shows a cross-sectional view of the fiber-reinforced composite material of the present invention.
図において、実施例はエポキシ樹脂にカーボン
繊維(一方向)を充填した複合材料層1と、−10
℃、20℃及び50℃にそれぞれガラス転移温度をも
つ拘束型制振材料層2〜4とを交互に多層に積層
一体化した例を示している。 In the figure, the example shows a composite material layer 1 made of epoxy resin filled with carbon fiber (unidirectional) and -10
An example is shown in which restrained vibration damping material layers 2 to 4 having glass transition temperatures of 20°C, 20°C, and 50°C are alternately laminated and integrated.
拘束型制振材料層2〜4は、ビスフエノールA
型エポキシ樹脂をベースに、モノエポキシ樹脂の
添加によりガラス転移温度を調整し作製した材料
を用いた。 The constrained vibration damping material layers 2 to 4 are bisphenol A
A material was used that was made based on a type epoxy resin and the glass transition temperature was adjusted by adding a monoepoxy resin.
なお実施例では、カーボン繊維のプリプレグに
前記制振材料層2〜4をコーテイングしたものを
重ね合せ、圧力下で加熱硬化させて一体化した。 In the example, a carbon fiber prepreg coated with the damping material layers 2 to 4 was laminated and integrated by heating and curing under pressure.
複合材料層1の厚みは平均200μm、制振材料
層2〜4の厚みは平均20μmである。 The average thickness of the composite material layer 1 is 200 μm, and the average thickness of the damping material layers 2 to 4 is 20 μm.
第2図に第1図に示す実施例の繊維強化複合材
料と、実施例の制振材料層2〜4に代えて20℃に
ガラス転移温度をもつ制振材料のみを用いた従来
の繊維強化複合材料の損失係数の比較を示す。図
中、黒丸は従来の複合材料の特性、白丸は本発明
複合材料の特性である。損失係数ηcは、300mm長
さのビーム材を用い、その共振周波数における自
由減衰振動より求めた。 Figure 2 shows the fiber-reinforced composite material of the example shown in Figure 1 and a conventional fiber-reinforced composite material using only a damping material having a glass transition temperature of 20°C in place of the damping material layers 2 to 4 of the example. A comparison of loss factors of composite materials is shown. In the figure, the black circles are the characteristics of the conventional composite material, and the white circles are the characteristics of the composite material of the present invention. The loss coefficient η c was determined from free damping vibration at the resonant frequency using a beam material with a length of 300 mm.
図より、従来の複合材料では損失係数が0.1以
上を示す温度巾は〜30℃であるが、本発明の複合
材料では前記温度巾は〜80℃と2倍以上になつて
いる。 As shown in the figure, in the conventional composite material, the temperature range in which the loss coefficient is 0.1 or more is ~30°C, but in the composite material of the present invention, the temperature range is ~80°C, which is more than double.
第1図に示す実施例の繊維強化複合材料の曲げ
弾性率は9500Kg/mm2であり、制振材料層を設けな
い場合の14000Kg/mm2に比較して若干小さくなつ
ているが、構造材料として用いるうえに問題はな
い。 The flexural modulus of the fiber-reinforced composite material of the example shown in Figure 1 is 9500 Kg/mm 2 , which is slightly smaller than 14000 Kg/mm 2 when no damping material layer is provided. There is no problem in using it as
以上のように本発明によれば、広い温度領域で
振動減衰特性の大きな繊維強化複合材料を実現す
ることが可能となり、人工衛星などの宇宙構造物
における搭載機器の破損やアンテナの位置精度低
下及び自動車などの騒音問題を解決できる効果を
有するものである。
As described above, according to the present invention, it is possible to realize a fiber-reinforced composite material with high vibration damping characteristics over a wide temperature range. This has the effect of solving noise problems caused by automobiles, etc.
第1図は本発明の実施例を示す断面図、第2図
は第1図の実施例の複合材料と、従来の単一な制
振材料層と繊維強化複合材料層を積層一体化した
複合材料の損失係数の比較を示した図である。
1……複合材料層、2〜4……拘束型制振材料
層。
Fig. 1 is a cross-sectional view showing an embodiment of the present invention, and Fig. 2 is a composite material in which the composite material of the embodiment of Fig. 1 is laminated and integrated with a conventional single vibration damping material layer and a fiber reinforced composite material layer. FIG. 3 is a diagram showing a comparison of loss coefficients of materials. 1...Composite material layer, 2-4...Restricted vibration damping material layer.
Claims (1)
はアラミド繊維などの有機繊維を樹脂に充填した
複合材料層と、該複合材料層間に各々介在させた
互いにガラス転移温度が異なる二種以上の拘束型
制振材料層とを有することを特徴とする繊維強化
複合材料。1. A composite material layer in which a resin is filled with inorganic fibers such as carbon fibers and glass fibers, or organic fibers such as aramid fibers, and two or more types of constrained vibration damping devices each having a different glass transition temperature and interposed between the composite material layers. A fiber-reinforced composite material comprising a material layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63237053A JPH0284329A (en) | 1988-09-20 | 1988-09-20 | Fiber reinforced composite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63237053A JPH0284329A (en) | 1988-09-20 | 1988-09-20 | Fiber reinforced composite material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0284329A JPH0284329A (en) | 1990-03-26 |
JPH0554825B2 true JPH0554825B2 (en) | 1993-08-13 |
Family
ID=17009716
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63237053A Granted JPH0284329A (en) | 1988-09-20 | 1988-09-20 | Fiber reinforced composite material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0284329A (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0428542A (en) * | 1990-05-24 | 1992-01-31 | Toray Ind Inc | Oscillation attenuation material |
US7537827B1 (en) * | 2006-12-13 | 2009-05-26 | Henkel Corporation | Prepreg laminates |
JP2009078422A (en) * | 2007-09-26 | 2009-04-16 | Toray Ind Inc | Vibration-damping fiber-reinforced composite material |
KR20250105470A (en) | 2016-09-20 | 2025-07-08 | 애버리 데니슨 코포레이션 | Multilayer tape |
HUE063943T2 (en) * | 2018-03-19 | 2024-02-28 | Avery Dennison Corp | Multilayer constrained-layer damping |
CA3100502A1 (en) | 2018-05-17 | 2019-11-21 | Henry W. Milliman | Partial coverage multilayer damping laminate |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5193770A (en) * | 1975-02-14 | 1976-08-17 | Danpinguseinoo jusurufukugokinzokuban | |
JPS5411705U (en) * | 1977-06-21 | 1979-01-25 | ||
JPS5890700A (en) * | 1981-11-25 | 1983-05-30 | 横浜ゴム株式会社 | Sound isolating material |
JPS6122934A (en) * | 1984-03-30 | 1986-01-31 | 日本電気株式会社 | Damping material |
JPH0324763Y2 (en) * | 1985-03-30 | 1991-05-29 |
-
1988
- 1988-09-20 JP JP63237053A patent/JPH0284329A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH0284329A (en) | 1990-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11104773B2 (en) | Polymer composites possessing improved vibration damping | |
US4356678A (en) | Composite structure | |
US6074475A (en) | Thermosetting syntactic foams and their preparation | |
JPH04312237A (en) | Laminated vibration damping material and fiber having the damping material in the inner layer Reinforced composite material and method for producing the same | |
DE4212646A1 (en) | Fibre reinforced plastic light wt. - comprises concave shaped backing of epoxy] bonded carbon@ fibre laminate with reflecting metal plating on front side, and foam layer | |
JPH0554825B2 (en) | ||
US5487928A (en) | Fiber reinforced composite material and a process for the production thereof | |
JPH01204735A (en) | fiber reinforced composite material | |
JPH0443931B2 (en) | ||
EP0610402A4 (en) | Improved damping in composite structures through stress coupling. | |
JPH0443932B2 (en) | ||
JPH01204733A (en) | Fiber-reinforced composite | |
JPH04125136A (en) | Fiber reinforced composite material | |
JPH0798365B2 (en) | Method for producing fiber-reinforced composite material | |
EP0531055A2 (en) | Thrust tube capable of sufficiently damping a vibration | |
JPH0668594B2 (en) | Carbon fiber reinforced thermosetting resin camera shutter blades | |
JPH04267139A (en) | Carbon fiber reinforced composite material prepreg sheet | |
JP4218416B2 (en) | Laminated body and tubular body using the same | |
JPH02209234A (en) | Preparation of fiber reinforced composite material | |
JP2705319B2 (en) | Method for producing carbon fiber reinforced composite material | |
JPH02209235A (en) | Preparation of fiber reinforced composite material | |
JPH03120035A (en) | Manufacture of fiber-reinforced composite material | |
JPH03120036A (en) | Manufacture of fiber-reinforced composite material | |
JPH02235631A (en) | Method for producing fiber-reinforced composite materials | |
JPH044233A (en) | Fiber-reinforced composite material prepreg sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070813 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080813 Year of fee payment: 15 |
|
LAPS | Cancellation because of no payment of annual fees |