JPH01204733A - Fiber-reinforced composite - Google Patents
Fiber-reinforced compositeInfo
- Publication number
- JPH01204733A JPH01204733A JP63029443A JP2944388A JPH01204733A JP H01204733 A JPH01204733 A JP H01204733A JP 63029443 A JP63029443 A JP 63029443A JP 2944388 A JP2944388 A JP 2944388A JP H01204733 A JPH01204733 A JP H01204733A
- Authority
- JP
- Japan
- Prior art keywords
- vibration
- material layer
- fiber
- damping material
- composite material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Laminated Bodies (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、人工衛星等宇宙構造体、OA機器、自動車、
ゴルフクラブなどのレジャー用品の構造材料に用いる繊
維強化複合材料に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to space structures such as artificial satellites, OA equipment, automobiles,
This invention relates to fiber-reinforced composite materials used as structural materials for leisure goods such as golf clubs.
CFRF’などの繊維強化複合材料は、カーボンやガラ
ス繊維などの無機繊維又はアラミド繊維などの有機繊維
をエポキシ樹脂、ポリイミド樹脂、ポリエーテルエーテ
ルケトン樹脂などの樹脂で固型化したものである。Fiber-reinforced composite materials such as CFRF' are made by solidifying inorganic fibers such as carbon and glass fibers or organic fibers such as aramid fibers with resins such as epoxy resins, polyimide resins, and polyether ether ketone resins.
繊維強化複合材料は、従来の金属構造材料に比較して軽
量・高強度である、繊維配向角を制御することにより所
望の機械特性を実現できる点で優れている。このため、
強く軽量化が要求される宇宙構造物・航空機・自動車・
レジャー用品などの構造材料に巾広く用いられるように
なった。Fiber-reinforced composite materials are superior in that they are lighter and stronger than conventional metal structural materials, and desired mechanical properties can be achieved by controlling the fiber orientation angle. For this reason,
Space structures, aircraft, automobiles, etc. that require strong weight reduction
It has come to be widely used as a structural material for leisure goods and other items.
この種複合材料で作製した構造体の用途の拡大に伴い、
構造体の振動が問題となっている。With the expansion of applications for structures made from this type of composite material,
Vibration of the structure is a problem.
繊維強化複合材料は軽量であり、従来の金属構造材料と
同程度の小さな振動減衰特性(損失係数η=O,OO1
〜0.01)をもつため、振動を生じ易い。また、構造
物を一体成形で作製することが多く、従来の金属構造材
料とは異なり、継手部での摩擦による振動減衰(構造減
衰)を期待できない。このため、人工衛星などの宇宙構
造物では、構造体の振動による搭載機器の破損、アンテ
ナの位置精度の低下などが生じている。このため、繊維
強化複合材料の振動減衰特性増加は、重要な課題となっ
ている。Fiber-reinforced composite materials are lightweight and have low vibration damping properties (loss coefficient η = O, OO1) comparable to conventional metal structural materials.
~0.01), it is easy to cause vibration. Furthermore, structures are often manufactured by integral molding, and unlike conventional metal structural materials, vibration damping (structural damping) due to friction at joints cannot be expected. For this reason, in space structures such as artificial satellites, vibrations of the structure cause damage to onboard equipment and a decrease in antenna position accuracy. Therefore, increasing the vibration damping properties of fiber-reinforced composite materials has become an important issue.
これら問題を解決する目的で、マトリックス樹脂の振動
減衰を増加させて複合材料の振動減衰を増加させる手法
が検討されている。これは、マトリックス樹脂にポリエ
チレングリコール・ポリプロピレングリコール・液状ゴ
ムなどの可撓性付与剤を添加し、振動減衰を増加させた
樹脂を用いて複合材料を作製する手法である。しがし可
撓性付与剤の添加により樹脂の振動減衰特性は最大10
0倍程度に大きく増加するものの、複合材料の振動減衰
特性は数倍程度の増加しか得られず効果的ではない。In order to solve these problems, methods are being considered to increase the vibration damping of a composite material by increasing the vibration damping of a matrix resin. This is a method of producing a composite material using a resin that has increased vibration damping by adding a flexibility imparting agent such as polyethylene glycol, polypropylene glycol, or liquid rubber to a matrix resin. The vibration damping properties of the resin can be increased up to 10 by adding the flexibility imparting agent.
Although the vibration damping properties of the composite material are greatly increased by a factor of about 0, the vibration damping properties of the composite material are only increased by a factor of several times and are not effective.
本発明は前記問題点を解決するものであり、その目的と
するところは大きな振動減衰特性を有する繊維強化複合
材料を提供することにある。The present invention is intended to solve the above-mentioned problems, and its purpose is to provide a fiber-reinforced composite material with high vibration damping properties.
本発明はカーボン繊維、ガラス繊維などの無機繊維又は
アラミド繊維などの有機繊維を樹脂に充填した複合材料
層と非拘束型制振材料層とを積層−強化したことを特徴
とする繊維強化複合材料である。The present invention is a fiber-reinforced composite material characterized by laminating and reinforcing a composite material layer in which a resin is filled with inorganic fibers such as carbon fibers and glass fibers, or organic fibers such as aramid fibers, and a non-restrictive damping material layer. It is.
一方向繊維強化複合材料に曲げ振動を加えた場合、振動
減衰特性ηCは、マトリックス樹脂の振動減衰特性ηm
(損失係数)及び弾性率EII1.繊維の振動減衰特性
ηf、及び弾性率Efをそれぞれ用いて次式で表わされ
る。When bending vibration is applied to a unidirectional fiber reinforced composite material, the vibration damping characteristic ηC is the vibration damping characteristic ηm of the matrix resin.
(loss coefficient) and elastic modulus EII1. It is expressed by the following equation using the vibration damping characteristic ηf and the elastic modulus Ef of the fiber, respectively.
ここでvfは繊維の体積含有率である。Here, vf is the volume content of fiber.
例えば、カーボン繊維を50Vo1%充填した場合を考
える。樹脂の弾性率は200 kg / in”程度で
あるので、弾性率比E t / E mは〜100とな
る。この場合(1)式は次式のように書き換えられる。For example, consider a case where carbon fiber is filled at 50Vo1%. Since the elastic modulus of the resin is about 200 kg/in'', the elastic modulus ratio E t /E m is ~100. In this case, equation (1) can be rewritten as the following equation.
ηc=h翳仔上り栃+ηf(2)
通常、樹脂の振動減衰特性η1は0.01以下であり、
またカーボン繊維のη、は0.002程度であるので、
(2)式よりη。は0.002程度になる。また可撓性
を付与し、樹脂のη、を増加させても、(2)式より明
らかなように、ηCの大きな増加は期待できない。ηc=h翳子上树栃+ηf(2) Usually, the vibration damping characteristic η1 of the resin is 0.01 or less,
Also, since η of carbon fiber is about 0.002,
From equation (2), η. is approximately 0.002. Furthermore, even if flexibility is imparted and η of the resin is increased, a large increase in ηC cannot be expected, as is clear from equation (2).
本発明の複合材料では、非拘束型制振材料層を設けてい
るため、前記制振材料の伸縮変形による振動減衰が生じ
る。この場合、繊維と樹脂とからなる複合材料層は基板
に相当し、基板と制振材料との組合せが数層積み重なっ
たものと考えることができる。In the composite material of the present invention, since a non-restrictive damping material layer is provided, vibration damping occurs due to expansion and contraction deformation of the damping material. In this case, the composite material layer made of fibers and resin corresponds to a substrate, and can be considered as a combination of a substrate and a damping material stacked together in several layers.
一つのユニット(複合材料層/非拘束型制振材料層)の
制振特性ηは次式で表わすことができる。The damping characteristic η of one unit (composite material layer/unconstrained damping material layer) can be expressed by the following equation.
ここでE;ヤング率、H;制振材料と基板の厚み比、E
“;損失弾性率である。また添字1,2はそれぞれ複合
材料層、非拘束型制振材料層を表わす。where E: Young's modulus, H: thickness ratio of damping material and substrate, E
"; loss modulus. Subscripts 1 and 2 represent a composite material layer and an unconstrained damping material layer, respectively.
多層化した場合の制振特性は、近似的には(3)式で得
られたものと同様なものと考えることができる。よって
(3)式より明らがなように、複合材料の振動減衰特性
は、各制振層の厚み及び損失弾性率E′が大きい程大き
い。The damping characteristics in the case of multi-layering can be considered to be approximately the same as that obtained by equation (3). Therefore, as is clear from equation (3), the vibration damping characteristics of the composite material increase as the thickness and loss modulus E' of each damping layer increases.
以下に、本発明の実施例を図によって説明する。 Embodiments of the present invention will be described below with reference to the drawings.
第1図に本発明繊維強化複合材料の断面図を示す。図に
おいて、実施例はエポキシ樹脂にカーボン繊維(一方向
)を充填した複合材料層1と、非拘束型制振材料層2と
を交互に多層に積層−強化した例を示している。非拘束
型制振材料層2には、エポキシ樹脂に芳香族重合油を添
加し、ポリアミドアミンで硬化させた硬化物に炭酸カル
シウム粉を20Vo1%充填したものを用いた。室温、
100Hzの振動環境下で損失弾性率(ビ)10”dy
n#jを有している。FIG. 1 shows a cross-sectional view of the fiber-reinforced composite material of the present invention. In the figure, the example shows an example in which a composite material layer 1 in which an epoxy resin is filled with carbon fibers (one direction) and a non-restrictive damping material layer 2 are alternately laminated and reinforced in multiple layers. For the non-restrictive damping material layer 2, a cured product obtained by adding an aromatic polymerized oil to an epoxy resin and curing it with polyamide amine was used, which was filled with 20Vo1% of calcium carbonate powder. room temperature,
Loss modulus (bi) 10”dy under 100Hz vibration environment
It has n#j.
なお、実施例ではカーボン繊維のプリプレグに前記制振
材料層2をコーティングしたものを重ね合せ、圧力下で
加熱硬化させて作製した。In the example, a carbon fiber prepreg coated with the damping material layer 2 was laminated and cured by heating under pressure.
複合材料層1の厚みは平均で100μm、制振材料層2
の厚みは平均で10−である。The average thickness of the composite material layer 1 is 100 μm, and the thickness of the damping material layer 2
The average thickness is 10-.
なお、実施例ではエポキシ系制振材料について述べたが
、これは限定されるものでなく、塩ビ系又は他の樹脂系
制振材料を適用することが可能である。また作製方法も
、実施例ではプリプレグを用いたが、他の作製方法(例
えばハンドレイアップ法)を適用することができる。In the embodiment, an epoxy-based damping material has been described, but this is not limited, and it is possible to apply a vinyl chloride-based or other resin-based damping material. Further, as for the manufacturing method, although prepreg was used in the example, other manufacturing methods (for example, hand lay-up method) can be applied.
第2図に第1図の積層体による実施例の繊維強化複合材
料と従来のエポキシ樹脂−カーボン繊維による複合材料
(CFRP)との損失係数−周波数の比較を示す。図中
、実線3は本発明複合材料特性、破線4は従来のCFR
Pの特性である。いずれも巾30I及び厚み5Iの材料
を用い、異なる固有振動数を得るために、30cmから
180 cmまで長さを変化させて測定した。損失係数
は固有振動における振動伝達関数の半値巾より求めた。FIG. 2 shows a comparison of the loss coefficient and frequency between the fiber-reinforced composite material of the embodiment of the laminate shown in FIG. 1 and a conventional epoxy resin-carbon fiber composite material (CFRP). In the figure, solid line 3 indicates the characteristics of the composite material of the present invention, and broken line 4 indicates the conventional CFR.
This is a characteristic of P. In each case, a material with a width of 30 I and a thickness of 5 I was used, and the length was varied from 30 cm to 180 cm in order to obtain different natural frequencies. The loss coefficient was determined from the half-width of the vibration transfer function at the natural vibration.
第2図に明らかなとおり、本発明の複合材料は従来のも
のに比較して各周波数とも10倍以上の損失係数が得ら
れた。As is clear from FIG. 2, the composite material of the present invention has a loss coefficient that is 10 times or more greater than that of the conventional composite material at each frequency.
以上のように本発明によれば、振動減衰の大きな繊維強
化複合材料を実現することが可能となり、人工衛星など
の宇宙構造物における搭載機器の破損やアンテナの位置
精度の低下、自動車などの騒音問題を解消できる効果を
有するものである。As described above, according to the present invention, it is possible to realize a fiber-reinforced composite material with high vibration damping, which can cause damage to onboard equipment in space structures such as artificial satellites, decrease in antenna position accuracy, and reduce noise caused by automobiles. This has the effect of solving the problem.
第1図は本発明の一実施例を示す断面図、第2図は第1
図の実施例の複合材料と従来の複合材料(CFRP)と
の損失係数を比較した図である。FIG. 1 is a sectional view showing one embodiment of the present invention, and FIG.
It is a figure comparing the loss coefficient of the composite material of the example of a figure, and a conventional composite material (CFRP).
Claims (1)
ミド繊維などの有機繊維を樹脂に充填した複合材料層と
非拘束型制振材料層とを積層一体化したことを特徴とす
る繊維強化複合材料。1. A fiber-reinforced composite material characterized by laminating and integrating a composite material layer in which a resin is filled with inorganic fibers such as carbon fibers and glass fibers, or organic fibers such as aramid fibers, and a non-restrictive damping material layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63029443A JPH01204733A (en) | 1988-02-09 | 1988-02-09 | Fiber-reinforced composite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63029443A JPH01204733A (en) | 1988-02-09 | 1988-02-09 | Fiber-reinforced composite |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01204733A true JPH01204733A (en) | 1989-08-17 |
Family
ID=12276266
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63029443A Pending JPH01204733A (en) | 1988-02-09 | 1988-02-09 | Fiber-reinforced composite |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01204733A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020086784A (en) * | 2001-05-11 | 2002-11-20 | 린통샨 | Method for forming carbon fiber layer |
GB2401346A (en) * | 2003-05-07 | 2004-11-10 | Oxford Magnet Tech | Composite material for acoustic or mechanical damping |
-
1988
- 1988-02-09 JP JP63029443A patent/JPH01204733A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020086784A (en) * | 2001-05-11 | 2002-11-20 | 린통샨 | Method for forming carbon fiber layer |
GB2401346A (en) * | 2003-05-07 | 2004-11-10 | Oxford Magnet Tech | Composite material for acoustic or mechanical damping |
GB2401346B (en) * | 2003-05-07 | 2005-04-13 | Oxford Magnet Tech | A structural composite material for acoustic damping |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11104773B2 (en) | Polymer composites possessing improved vibration damping | |
US5741574A (en) | Truss reinforced foam core sandwich | |
US6592979B1 (en) | Hybrid matrix fiber composites | |
JPH04312237A (en) | Laminated vibration damping material and fiber having the damping material in the inner layer Reinforced composite material and method for producing the same | |
WO2006037083A2 (en) | Thin ply laminates | |
JP3477188B2 (en) | Lamination damping base material and vibration damping structure obtained by laminating the same | |
US5487928A (en) | Fiber reinforced composite material and a process for the production thereof | |
US4648800A (en) | Composite flexbeam for a rotary wing aircraft | |
JP2019199062A5 (en) | ||
JP2016522101A (en) | Multi-element composite structure | |
JPH01204733A (en) | Fiber-reinforced composite | |
JPH01204735A (en) | fiber reinforced composite material | |
JPH0554825B2 (en) | ||
JPH02169633A (en) | Fiber-reinforced composite material | |
JPH0798365B2 (en) | Method for producing fiber-reinforced composite material | |
EP0531055A2 (en) | Thrust tube capable of sufficiently damping a vibration | |
US20190047248A1 (en) | Zero-CTE Quasi-Isotropic Composite Laminates With Increased Fiber Volume Percentage | |
JP2009019089A (en) | Fiber-reinforced plastic and reinforced heat-insulating composite material using the same | |
JPH04125136A (en) | Fiber reinforced composite material | |
JPH0443932B2 (en) | ||
JPH04267139A (en) | Carbon fiber reinforced composite material prepreg sheet | |
JPH02209234A (en) | Preparation of fiber reinforced composite material | |
JP2705319B2 (en) | Method for producing carbon fiber reinforced composite material | |
JPH02209235A (en) | Preparation of fiber reinforced composite material | |
JP4218416B2 (en) | Laminated body and tubular body using the same |