[go: up one dir, main page]

JPH053816B2 - - Google Patents

Info

Publication number
JPH053816B2
JPH053816B2 JP60127825A JP12782585A JPH053816B2 JP H053816 B2 JPH053816 B2 JP H053816B2 JP 60127825 A JP60127825 A JP 60127825A JP 12782585 A JP12782585 A JP 12782585A JP H053816 B2 JPH053816 B2 JP H053816B2
Authority
JP
Japan
Prior art keywords
resin
resins
thermoplastic resin
thin film
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60127825A
Other languages
Japanese (ja)
Other versions
JPS61284419A (en
Inventor
Kunio Murakami
Minoru Kishida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP12782585A priority Critical patent/JPS61284419A/en
Publication of JPS61284419A publication Critical patent/JPS61284419A/en
Publication of JPH053816B2 publication Critical patent/JPH053816B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は架橋構造を持つ樹脂薄膜の製造方法に
関するものである。 (従来の技術) 架橋構造を持つ樹脂、特にゴム状物の薄膜を製
造する方法については、従来カレンダーロール式
シート成形機や押出シート成形機を用いてシート
化する方法が採られててきたが、薄い膜、特に
200μ以下のフイルム状膜を作ることは困難であ
つた。 (発明が解決しようとする問題点) 上記の従来方法の場合、膜厚さを薄くすると成
形用ロール等からの剥離が困難となり、これを防
ぐために離型剤を塗布したり支持材と積層したり
する方法が試みられているが、引取り速度を上げ
ると切断し易く、結果的には200μ以下の薄膜を
作ることは困難であつた。また、膜厚さが薄くな
ると厚さの制御が困難となり、均一な薄膜を作る
ことは不可能であつた。 (問題点を解決するための手段) 本発明者等はかかる問題点につき鋭意研究を重
ねた結果、次のような方法を発明するに至つた。 すなわち基体熱可塑性樹脂層の片面あるいは両
面に、架橋可能なシリコーン系樹脂、ウレタン系
樹脂、ブタジエン系樹脂、イソプレン系樹脂、ク
ロロプレン系樹脂、フツ素系樹脂より選択された
1種または2種以上の熱可塑性樹脂層を積層して
シート状となし、該積層シートを少なくとも1方
向に1.2倍以上延伸したのち、架橋可能な熱可塑
性樹脂層を架橋させて剥離することまた、積層シ
ートを同時二軸延伸法により縦横各々少なくとも
1.2倍以上延伸することを特徴とする架橋樹脂薄
膜の製造方法である。 本発明に述べる基体熱可塑性樹脂は延伸可能な
ものであれば特に限定はされないが、架橋可能な
熱可塑性樹脂の架橋可能温度より低い温度で延伸
できる樹脂が好ましい。たとえばポリエチレンテ
レフタレート等のポリエステル樹脂あるいはポリ
エチレン等のポリオレフイン樹脂あるいはポリエ
チレンテトラフルオロエチレン、ポリフツ化ビニ
リデン等のフツ素系樹脂あるいはポリビニルアル
コール樹脂等が適当である。 また、架橋可能な熱可塑性樹脂については、シ
リコーン系樹脂、ウレタン系樹脂、ブタジエン系
樹脂、イソプレン系樹脂、クロロプレン系樹脂あ
るいはフツ素系樹脂等が好ましい。シリコーン系
樹脂はジメチルシロキサン単位(CH32SiOを主
成分としており、ジメチルジクロロシランを加水
分解して生じる環状ジメチルシロキサンを酸また
はアルカリで加熱開環重合させて製造される場合
が多いが特にこの方法に限定されない。また、補
強剤や充填剤としてシリカや炭酸カルシウムある
いは酸化チタンを添加しても良い。架橋剤は過酸
化ベンゾイル、過酸化ビス2,4ジクロロベンゾ
イル、過酸化ジクミル等を使用する。 またウレタン系樹脂はジイソシアネートとポリ
エステルまたはポリエーテルを反応させて作られ
る。ジイソシアネートには1,5ナフチレンジイ
ソシアネート、N,N′(4,4′ジメチル)3,
3′ジフエニルジイソシアネート、4,4′ジフエ
ニルメタンジイソシアネート等が適用されるがこ
れらに限定されない。また、ポリエステルにはア
ジピン酸とエチレングリコールあるいはアジピン
酸とジエチレングリコールおよびトリオールを主
成分とするものが好適であるが特にこれらに限定
されない。また、ブタジエン系樹脂にはスチレン
ブタジエン樹脂、アクリロニトリルブタジエン樹
脂、シスブタジエン樹脂等がある。スチレンブタ
ジエン樹脂は水を分散媒とし、スチレンとブタジ
エンを石鹸により乳化して共重合させる方法、あ
るいはスチレンとブタジエンを溶液重合させる方
法により製造されるが、特にこれらの方法に限定
されない。また、アクリロニトリルブタジエン樹
脂は水を分散媒とし、アクリロニトリルとブタジ
エンを約3:7の比に乳化して共重合される。こ
れらの架橋剤は硫黄が好適であるがこれも特に限
定はされない。 本願発明に使用されるフツ素系樹脂はフツ化ビ
ニリデンと六フツ化プロピレンの共重合体あるい
はフツ化ビニリデンと三フツ化塩化エチレンの共
重合体等であるが、これらに限定されるものでは
ない。架橋剤は脂肪族ポリアミンの誘導体が好適
であるがこれも特に限定はされない。 上記の樹脂の成膜方法にはカレンダーロール
法、押出法あるいは溶液コーテイング法があるが
いづれの方法でも良い。また、延伸方法も特に限
定はされないが二本ロールによる一軸延伸法やテ
ンター法による一軸あるいは二軸延伸法が適して
いる。 特にテンター法による同時二軸延伸法は、積層
シートの端部のみを把持して中央部を空中に保持
したまま傷つけることなく延伸することができ、
しかも縦横に倍率を上げることができるので最適
の方法である。延伸倍率は薄膜化の効果を上げる
には、少なくとも1方向に1.2倍以上は必要であ
り、縦横各々1.2倍以上が好ましい。また、架橋
可能な熱可塑性樹脂に粘着性がある場合は、基体
熱可塑性樹脂シートの中央のみに積層する方法が
採られる。また、架橋の方法は積層シートを加熱
する方法、あるいは電子線等の放射線を積層シー
トに照射する方法等が適用できるが、特にこれら
の方法に限定されない。 本発明方法により作られた架橋樹脂薄膜は電池
セパレート、気体あるいは液体分離膜、衣料用被
覆膜等に利用できる。 (実施例) 以下、実施例により詳述する。 実施例 1 ジメチルシリコーン、気相法シリカおよび焼成
けいそう土シリカを混合し、更に架橋剤として過
酸化ベンゾイルを加えてカレンダーロール法によ
り厚さ200μのシートを作り、直ちに厚さ120μの
ポリエチレンテレフタレート未延伸フイルムの上
に積層した。該積層シートをテンター法により90
℃で縦横各々3倍に同時二軸延伸し、125℃で加
熱架橋させた後、シリコーン薄膜のみを剥離し
た。シリコーン薄膜の厚さは24μであり表1のよ
うな良好な性能を保有していた。
(Industrial Application Field) The present invention relates to a method for manufacturing a resin thin film having a crosslinked structure. (Prior art) Conventionally, the method of producing thin films of crosslinked resins, especially rubber-like materials, has been to form sheets using calender roll sheet molding machines or extrusion sheet molding machines. , thin films, especially
It was difficult to create a film-like membrane with a thickness of less than 200μ. (Problems to be Solved by the Invention) In the case of the above conventional method, when the film thickness is reduced, it becomes difficult to peel it off from the forming roll, etc., and to prevent this, a release agent is applied or laminated with a support material. However, increasing the take-up speed makes it easier to cut, and as a result, it is difficult to make a thin film of 200 μm or less. Furthermore, as the film thickness becomes thinner, it becomes difficult to control the thickness, making it impossible to form a uniform thin film. (Means for Solving the Problems) The inventors of the present invention have conducted extensive research into these problems, and as a result, have come up with the following method. That is, one or more crosslinkable silicone resins, urethane resins, butadiene resins, isoprene resins, chloroprene resins, and fluorine resins are added to one or both sides of the base thermoplastic resin layer. Thermoplastic resin layers are laminated to form a sheet, and the laminated sheet is stretched 1.2 times or more in at least one direction, and then the crosslinkable thermoplastic resin layer is crosslinked and peeled.Also, the laminated sheet is simultaneously biaxially stretched. At least vertically and horizontally by stretching method
This is a method for producing a crosslinked resin thin film, which is characterized by stretching 1.2 times or more. The base thermoplastic resin described in the present invention is not particularly limited as long as it can be stretched, but a resin that can be stretched at a temperature lower than the crosslinkable temperature of the crosslinkable thermoplastic resin is preferred. For example, polyester resins such as polyethylene terephthalate, polyolefin resins such as polyethylene, fluororesins such as polyethylenetetrafluoroethylene and polyvinylidene fluoride, or polyvinyl alcohol resins are suitable. As for the crosslinkable thermoplastic resin, silicone resins, urethane resins, butadiene resins, isoprene resins, chloroprene resins, fluorine resins, and the like are preferred. Silicone resins have dimethylsiloxane units (CH 3 ) 2 SiO as their main component, and are often manufactured by heating ring-opening polymerization of cyclic dimethylsiloxane produced by hydrolyzing dimethyldichlorosilane with acid or alkali. The method is not limited to this method. Furthermore, silica, calcium carbonate, or titanium oxide may be added as a reinforcing agent or filler. As the crosslinking agent, benzoyl peroxide, bis-2,4-dichlorobenzoyl peroxide, dicumyl peroxide, etc. are used. Urethane resins are also made by reacting diisocyanates with polyesters or polyethers. Diisocyanates include 1,5 naphthylene diisocyanate, N,N'(4,4'dimethyl)3,
3' diphenyl diisocyanate, 4,4' diphenylmethane diisocyanate, etc. are applicable, but are not limited thereto. Furthermore, polyesters containing adipic acid and ethylene glycol, or adipic acid, diethylene glycol, and triol as main components are suitable, but are not particularly limited thereto. Further, butadiene-based resins include styrene-butadiene resin, acrylonitrile-butadiene resin, cis-butadiene resin, and the like. Styrene-butadiene resin is produced by a method in which styrene and butadiene are emulsified with soap and copolymerized using water as a dispersion medium, or by a method in which styrene and butadiene are solution-polymerized, but the method is not particularly limited to these methods. Acrylonitrile butadiene resin is copolymerized by emulsifying acrylonitrile and butadiene in a ratio of about 3:7 using water as a dispersion medium. These crosslinking agents are preferably sulfur, but are not particularly limited thereto. The fluororesin used in the present invention is a copolymer of vinylidene fluoride and propylene hexafluoride, or a copolymer of vinylidene fluoride and ethylene chloride trifluoride, but is not limited to these. . The crosslinking agent is preferably an aliphatic polyamine derivative, but is not particularly limited thereto. Methods for forming the resin film include a calendar roll method, an extrusion method, and a solution coating method, and any method may be used. Further, the stretching method is not particularly limited, but uniaxial stretching using two rolls and uniaxial or biaxial stretching using a tenter method are suitable. In particular, the simultaneous biaxial stretching method using the tenter method can hold only the edges of the laminated sheet and stretch it without damaging the center while holding it in the air.
Moreover, it is the best method because it allows you to increase the magnification both vertically and horizontally. The stretching ratio needs to be 1.2 times or more in at least one direction in order to increase the effect of thinning the film, and preferably 1.2 times or more in each direction. Furthermore, if the crosslinkable thermoplastic resin has adhesive properties, a method is adopted in which it is laminated only in the center of the base thermoplastic resin sheet. Further, the crosslinking method may be a method of heating the laminated sheet, or a method of irradiating the laminated sheet with radiation such as an electron beam, but is not particularly limited to these methods. The crosslinked resin thin film produced by the method of the present invention can be used for battery separates, gas or liquid separation membranes, clothing coatings, and the like. (Example) Hereinafter, it will be explained in detail using an example. Example 1 Dimethyl silicone, vapor-grown silica, and calcined diatomaceous earth silica were mixed, benzoyl peroxide was added as a crosslinking agent, a 200μ thick sheet was made by a calender roll method, and immediately a 120μ thick polyethylene terephthalate sheet was made. Laminated on stretched film. The laminated sheet was heated to 90% by tenter method.
After simultaneously biaxially stretching 3 times in length and width at 125°C and crosslinking by heating at 125°C, only the silicone thin film was peeled off. The silicone thin film had a thickness of 24μ and had good performance as shown in Table 1.

【表】 実施例 2 クロロプレン樹脂に架橋剤として酸化亜鉛およ
びエチレンチオラレアを添加し、更に老化防止剤
としてアルドール−α−ナフチルアミンを加えて
練りロール機により混練した。更にカレンダーロ
ール機を使用して厚さ200μのシートを作り直ち
にポリエチレンテレフタレート未延伸フイルムと
積層した。該積層シートをテンター法により90℃
で縦横各々2倍に同時二軸延伸し、150℃で加熱
架橋させた後クロロプレン薄膜のみを剥離した。
クロロプレン薄膜の厚さは50μであり、良好なゴ
ム弾性を保有していた。 (発明の効果) 上述した如く本発明方法によれば、従来製造が
困難であつた200μ以下の架橋樹脂薄膜を容易に
作ることができる。
[Table] Example 2 Zinc oxide and ethylene thiorarea were added as a crosslinking agent to a chloroprene resin, and aldol-α-naphthylamine was further added as an anti-aging agent, and the mixture was kneaded using a kneading roll machine. Further, a sheet with a thickness of 200 μm was prepared using a calendar roll machine and immediately laminated with an unstretched polyethylene terephthalate film. The laminated sheet was heated to 90℃ using the tenter method.
The film was simultaneously biaxially stretched to double the length and width, and after crosslinking by heating at 150°C, only the chloroprene thin film was peeled off.
The chloroprene thin film had a thickness of 50μ and had good rubber elasticity. (Effects of the Invention) As described above, according to the method of the present invention, it is possible to easily produce a crosslinked resin thin film of 200 μm or less, which has been difficult to produce in the past.

Claims (1)

【特許請求の範囲】 1 基体熱可塑性樹脂層の片面あるいは両面に、
架橋可能なシリコーン系樹脂、ウレタン系樹脂、
ブタジエン系樹脂、イソプレン系樹脂、クロロプ
レン系樹脂、フツ素系樹脂より選択された1種ま
たは2種以上の熱可塑性樹脂層を積層してシート
状となし、該積層シートを少なくとも1方向に
1.2倍以上延伸したのち、架橋可能な熱可塑性樹
脂層を架橋させて剥離することを特徴とする架橋
樹脂薄膜の製造方法。 2 積層シートを同時二軸延伸法により縦横各々
少なくとも1.2倍以上延伸することを特徴とする
特許請求の範囲第1項記載の架橋樹脂薄膜の製造
方法。
[Claims] 1. On one or both sides of the base thermoplastic resin layer,
Crosslinkable silicone resin, urethane resin,
One or more thermoplastic resin layers selected from butadiene resin, isoprene resin, chloroprene resin, and fluorine resin are laminated to form a sheet, and the laminated sheet is oriented in at least one direction.
A method for producing a crosslinked resin thin film, which comprises stretching a crosslinkable thermoplastic resin layer by 1.2 times or more, then crosslinking and peeling off the crosslinkable thermoplastic resin layer. 2. The method for producing a crosslinked resin thin film according to claim 1, characterized in that the laminated sheet is stretched by at least 1.2 times in both length and width by a simultaneous biaxial stretching method.
JP12782585A 1985-06-12 1985-06-12 Manufacture of crosslinked resin thin film Granted JPS61284419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12782585A JPS61284419A (en) 1985-06-12 1985-06-12 Manufacture of crosslinked resin thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12782585A JPS61284419A (en) 1985-06-12 1985-06-12 Manufacture of crosslinked resin thin film

Publications (2)

Publication Number Publication Date
JPS61284419A JPS61284419A (en) 1986-12-15
JPH053816B2 true JPH053816B2 (en) 1993-01-18

Family

ID=14969599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12782585A Granted JPS61284419A (en) 1985-06-12 1985-06-12 Manufacture of crosslinked resin thin film

Country Status (1)

Country Link
JP (1) JPS61284419A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3514300B2 (en) * 2000-04-05 2004-03-31 リンテック株式会社 Room temperature curing type silicone rubber process film
JP2002226611A (en) * 2000-11-28 2002-08-14 Asahi Glass Co Ltd Ethylene-tetrafluoroethylene and tetrafluoroethylene- hexafluoropropylene copolymer films which have excellent light transmissivity

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5237982A (en) * 1975-09-20 1977-03-24 Dainippon Printing Co Ltd Method of elongation of thin films
JPS5366975A (en) * 1976-11-26 1978-06-14 Ikegai Iron Works Ltd Stretch molding of reactive high molecular material
JPS56133134A (en) * 1980-03-22 1981-10-19 Nitto Electric Ind Co Ltd Improving method for characteristic of ultramacromolecule polyethylene
JPS57137117A (en) * 1981-02-18 1982-08-24 Dainippon Printing Co Ltd Stretched film for package
JPS57176126A (en) * 1981-04-22 1982-10-29 Sekisui Chem Co Ltd Production of extremely thin resin film
JPS585226A (en) * 1981-07-02 1983-01-12 Toppan Printing Co Ltd Thin film
JPS58132520A (en) * 1982-02-01 1983-08-06 Teijin Ltd Manufacture of very thin film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5237982A (en) * 1975-09-20 1977-03-24 Dainippon Printing Co Ltd Method of elongation of thin films
JPS5366975A (en) * 1976-11-26 1978-06-14 Ikegai Iron Works Ltd Stretch molding of reactive high molecular material
JPS56133134A (en) * 1980-03-22 1981-10-19 Nitto Electric Ind Co Ltd Improving method for characteristic of ultramacromolecule polyethylene
JPS57137117A (en) * 1981-02-18 1982-08-24 Dainippon Printing Co Ltd Stretched film for package
JPS57176126A (en) * 1981-04-22 1982-10-29 Sekisui Chem Co Ltd Production of extremely thin resin film
JPS585226A (en) * 1981-07-02 1983-01-12 Toppan Printing Co Ltd Thin film
JPS58132520A (en) * 1982-02-01 1983-08-06 Teijin Ltd Manufacture of very thin film

Also Published As

Publication number Publication date
JPS61284419A (en) 1986-12-15

Similar Documents

Publication Publication Date Title
US4041206A (en) Laminated polyester film
EP2216173B1 (en) Method for producing a polyamide film coated with vinylidene chloride copolymer mixture
US3799828A (en) Synthetic papers and the method of making the same
TWI862871B (en) Polyester film containing voids, label substrate, label film, and roll label
JPH053816B2 (en)
JPH10286921A (en) Release film
JPH02185492A (en) High sensitivity thermal multilayer film and preparation of base paper for plate-making using the same
JP2000071395A (en) Packing laminated film and laminated film for deposition packing
JP3040147B2 (en) Laminated polyester film
JP2910090B2 (en) White polyester film
JP2910091B2 (en) White polyester film and method for producing the same
JP2003105115A (en) Polyester film containing cavities
JP3726456B2 (en) Simultaneously biaxially stretched polyester film and method for producing the same
JP2876651B2 (en) Antistatic white polyester film
JP3915148B2 (en) Surface treatment plastic film
JP2736207B2 (en) Manufacturing method of laminated sheet
JP4573071B2 (en) Adhesive sheet for semiconductor wafer
JP3045811B2 (en) Method for producing uniaxially stretched polyester sheet
JP3063206B2 (en) Leather-like laminate
JPH08157623A (en) Production of interior material
JPH0939140A (en) Polyester film including void for photographic printing
JP2611752B2 (en) Polyester resin film or sheet containing fine voids and method for producing the same
JPH06198814A (en) Production of silicone rubber structure
JP3485396B2 (en) Rubber film manufacturing method
JP2003127222A (en) Fine foam-containing polyester film