[go: up one dir, main page]

JPH05341283A - Liquid crystal display element - Google Patents

Liquid crystal display element

Info

Publication number
JPH05341283A
JPH05341283A JP4152108A JP15210892A JPH05341283A JP H05341283 A JPH05341283 A JP H05341283A JP 4152108 A JP4152108 A JP 4152108A JP 15210892 A JP15210892 A JP 15210892A JP H05341283 A JPH05341283 A JP H05341283A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal display
substrate
glass substrate
minute
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4152108A
Other languages
Japanese (ja)
Other versions
JP3032084B2 (en
Inventor
Kenjiro Hamanaka
賢二郎 浜中
Takashi Kishimoto
隆 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP4152108A priority Critical patent/JP3032084B2/en
Publication of JPH05341283A publication Critical patent/JPH05341283A/en
Application granted granted Critical
Publication of JP3032084B2 publication Critical patent/JP3032084B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To obtain a liquid crystal display element reducing the diameter of a projection lens while holding the availability of a lighting beam high in the case of using it for a liquid projector and miniaturizing a device and reducing its cost. CONSTITUTION:Minute lenses 13 and 14 are arrayed and formed on both surfaces of the substrate 11 of a lighting beam incident side between both glass substrates 11, 12 of a liquid crystal element 5 in one-to-one correspondence in each pixel opening part 15A of a liquid crystal layer 15. Thus, the lighting beam is converged on each pixel opening part 15A of the liquid crystal layer. In such a manner, when the array of the minute lenses are formed on both surfaces of the glass substrate 11, luminous flux, as well inclined by an angle thetais refracted by the minute lens 13 and further refracted by the minute lens 14 of the other surface side at the point of time of converging in the vicinity of the pixel opening part 15A of the liquid crystal layer and the direction of the main beam is bended in parallel to an optical axis.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、テレビ画面、コンピュ
ータ出力画面等を拡大表示するための液晶投影装置、い
わゆる液晶プロジェクタあるいは液晶プロジェクション
テレビに有用な液晶表示素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device useful for enlarging and displaying a television screen, a computer output screen, etc., a so-called liquid crystal projector or a liquid crystal projection television.

【0002】[0002]

【従来の技術】液晶プロジェクタ光学系の代表例を図3
に示す。メタルハライドランプ1から射出した光束を凹
面鏡2で反射させた後又は直接にコンデンサレンズ3で
コリメートし、リレーレンズ4を介して液晶表示素子5
(以下LCDと略記する)を照明する。LCD5には、
テレビ映像やパソコン画面等が表示されており、この表
示画面が投影レンズ6によってスクリーン7上に拡大投
影される。
2. Description of the Related Art A typical example of a liquid crystal projector optical system is shown in FIG.
Shown in. After reflecting the light flux emitted from the metal halide lamp 1 by the concave mirror 2 or directly collimating it by the condenser lens 3, the liquid crystal display element 5 is passed through the relay lens 4.
(Hereinafter abbreviated as LCD) is illuminated. LCD5 has
A television image, a personal computer screen, etc. are displayed, and this display screen is enlarged and projected on the screen 7 by the projection lens 6.

【0003】リレーレンズ4は、LCD5を照明した光
を投影レンズ6の位置に絞り込むようにすることによ
り、投影レンズ6の口径が大きくなくても、光のケラレ
がそれほど大きくならないようになっている。実際のラ
ンプ1は点光源ではなく有限の大きさを持っているた
め、図中点線で示されるような光線は投影レンズ6上で
光軸から離れた位置に到達する。従って、投影レンズ6
の口径をこの分だけ大きくする必要がある。
The relay lens 4 narrows the light illuminating the LCD 5 to the position of the projection lens 6 so that the vignetting of the light does not become so large even if the diameter of the projection lens 6 is not large. .. Since the actual lamp 1 is not a point light source but has a finite size, the light rays shown by the dotted line in the figure reach the position on the projection lens 6 which is away from the optical axis. Therefore, the projection lens 6
It is necessary to increase the caliber of this.

【0004】例えば、照明光の平行度を±θ=±6°程
度とし、リレーレンズ4と投影レンズ6との間隔をL=
200mmとすると、 投影レンズ6上での光束の広が
りはおよそ、
For example, the parallelism of the illumination light is about ± θ = ± 6 °, and the distance between the relay lens 4 and the projection lens 6 is L =.
If the distance is 200 mm, the spread of the light flux on the projection lens 6 is approximately

【数1】 2Ltanθ=42mm (1) 程度となり、従って投影レンズ6の口径は42mm以上
必要となる。
## EQU00001 ## 2Ltan .theta. = 42 mm (1) Therefore, the diameter of the projection lens 6 needs to be 42 mm or more.

【0005】一方、LCD5は、配線領域、画素毎のT
FT(画素トランジスタ)領域など、光を透過できない
部分いわゆるブラックマトリクスを持ち、一般に開口率
は全液晶パネル面積の30%ないし40%程度と低く、
これ以外の部分に入射する光は上記ブラックマトリクス
によりカットされて利用できないといった問題がある。
On the other hand, the LCD 5 has a wiring area and a T for each pixel.
It has a so-called black matrix that cannot transmit light, such as an FT (pixel transistor) region, and generally has a low aperture ratio of about 30% to 40% of the total liquid crystal panel area.
There is a problem that the light incident on the other portions is cut off by the black matrix and cannot be used.

【0006】これを解決する一方法として、図4に示す
ように、LCDを構成する2枚のガラス基板11、12
のうち光の入射する側のガラス基板11に、各画素に対
向して微小レンズ13を設け、入射光を微小レンズ13
により画素開口部15に集光させることにより、LCD
を透過する光量を増加させる方法が従来から提案されて
いる。
As a method for solving this problem, as shown in FIG. 4, two glass substrates 11 and 12 constituting an LCD are used.
A microlens 13 is provided on the glass substrate 11 on the light incident side of the microlens 13 so as to face each pixel and
By focusing on the pixel opening 15 by
Conventionally, a method of increasing the amount of light passing through the light source has been proposed.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記の
素子構造ではLCD透過後の光束は、照明光の広がり角
±θに加え、微小レンズ13のNA(開口数)に相当す
る角度±αが足されて±(θ+α)だけ広がることにな
る。αは微小レンズ13の各レンズ径をd、ガラス基板
11の厚みをt、屈折率をnとすれば、
However, in the above element structure, the luminous flux after passing through the LCD has an angle ± α corresponding to the NA (numerical aperture) of the minute lens 13 in addition to the spread angle ± θ of the illumination light. It will be expanded by ± (θ + α). α is the lens diameter of the minute lens 13, d is the thickness of the glass substrate 11, and n is the refractive index.

【数2】α=tan-1[dn/2t] (2) と表され、例えば、d=140μm、n=1.53、t
=1.1mmとすれば、α=5.6°と、θとほぼ同程
度の大きさになる。従って、明るさを向上させるために
微小レンズ13を挿入する場合、投影レンズ6の口径を
[Expression 2] α = tan −1 [dn / 2t] (2), for example, d = 140 μm, n = 1.53, t
= 1.1 mm, α = 5.6 °, which is about the same as θ. Therefore, when the microlens 13 is inserted to improve the brightness, the aperture of the projection lens 6 should be set to

【数3】2ltan(θ+α)=82mm (3) と大きくする必要があり、装置の小型化が難しい、投影
レンズのコスト高になる等の問題が生じる。
## EQU00003 ## It is necessary to increase the value to 2 ltan (.theta. +. Alpha.) = 82 mm (3), which causes problems such as difficulty in downsizing the apparatus and increasing cost of the projection lens.

【0008】[0008]

【課題を解決するための手段】上述のような従来技術の
問題点を解決するため、本発明ではLCDを構成する2
枚のガラス基板の少なくとも一方のガラス基板の両面に
それぞれ、液晶層の各画素開口部と対応させて微小レン
ズを配列形成した。
In order to solve the problems of the prior art as described above, the present invention comprises an LCD.
Microlenses were arrayed on both surfaces of at least one of the glass substrates so as to correspond to the respective pixel openings of the liquid crystal layer.

【0009】[0009]

【作用】本発明によれば、LCDガラス基板の片面のみ
に微小レンズのアレイを設ける場合に比べて、LCD透
過後の光束の広がりを小さく抑えることができ、投影レ
ンズの口径を従来より大幅に小さくすることができる。
According to the present invention, the spread of the light flux after passing through the LCD can be suppressed to be smaller than that in the case where an array of minute lenses is provided on only one side of the LCD glass substrate, and the aperture of the projection lens can be made larger than before. Can be made smaller.

【0010】[0010]

【実施例】以下本発明を図面に示した実施例に基づき詳
細に説明する。図1は本発明の一実施例を示すLCDの
拡大断面図であり、液晶プロジェクタにおけるLCD5
の配置は図3と同様でよい。図1においてLCD5は、
2枚の透明ガラス基板11、12間に液晶層15を挟み
周辺を封止して構成され、両ガラス基板11、12のう
ち照明光入射側の基板11の両面に微小レンズ13、1
4が配列形成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the embodiments shown in the drawings. FIG. 1 is an enlarged sectional view of an LCD showing an embodiment of the present invention.
The arrangement may be the same as in FIG. In FIG. 1, the LCD 5 is
A liquid crystal layer 15 is sandwiched between two transparent glass substrates 11 and 12, and the periphery is sealed, and microlenses 13 and 1 are provided on both surfaces of the glass substrate 11 and 12 on the illumination light incident side.
4 are formed in an array.

【0011】微小レンズ13、14は、例えばソーダラ
イムガラスからなる基板11の両面に、公知のイオン交
換法を用いて屈折率分布型レンズとして作製できる。す
なわち、基板ガラスの両面をイオン透過防止の機能を有
する金属膜等のマスク膜で被覆し、このマスク膜にフォ
トリソグラフィにより所定のレンズ配列パターンで開口
を設け、この開口を通してガラスの屈折率を高めるイオ
ンをガラス中のアルカリイオンとの交換で拡散させる方
法で作製することができる。この方法で得られるレンズ
13、14は、屈折率が基板表面で最大で、基板肉厚内
に向け放射方向に次第に減少する屈折率分布を有する。
The minute lenses 13 and 14 can be manufactured as a gradient index lens on both surfaces of the substrate 11 made of soda lime glass by using a known ion exchange method. That is, both surfaces of the substrate glass are covered with a mask film such as a metal film having a function of preventing ion permeation, and openings are formed in this mask film by photolithography in a predetermined lens array pattern to increase the refractive index of the glass through the openings. It can be prepared by a method of diffusing ions by exchanging with alkaline ions in glass. The lenses 13 and 14 obtained by this method have a refractive index distribution in which the refractive index is maximum on the substrate surface and gradually decreases in the radial direction toward the substrate thickness.

【0012】基板両面の微小レンズ13、14は共に、
液晶層15の各画素開口部15A単位に1対1に対応さ
せて配列形成する。これにより、照明光が液晶層の各画
素開口部15Aに集光されるようにする。即ち、微小レ
ンズ13の焦点距離は、ガラス基板内において基板11
の厚みに略等しくなるように作製する。また同様に基板
他面側の微小レンズ14の焦点距離も、レンズ13と略
等しく作製する。
The microlenses 13 and 14 on both sides of the substrate are
The pixel openings 15A of the liquid crystal layer 15 are arrayed in a one-to-one correspondence. As a result, the illumination light is focused on each pixel opening 15A of the liquid crystal layer. That is, the focal length of the minute lens 13 is the same as that of the substrate 11 within the glass substrate.
To be approximately equal to the thickness. Similarly, the focal length of the minute lens 14 on the other surface side of the substrate is made substantially the same as that of the lens 13.

【0013】このようにガラス基板11の両面に微小レ
ンズのアレイを形成すると、角度θだけ傾いた光束も微
小レンズ13で屈折して、液晶層の画素開口部15Aの
近傍に集光する時点で、さらに他面側の微小レンズ14
で屈折して、主光線の方向が光軸に平行に曲げられる。
従ってLCD5から射出する光束の広がり角は、従来図
4の構成において±(θ+α)であったのが±αと大幅
に小さくでき、よって投影レンズ6の口径は
When an array of minute lenses is formed on both surfaces of the glass substrate 11 in this way, a light beam inclined by an angle θ is also refracted by the minute lens 13 and condensed at the vicinity of the pixel opening 15A of the liquid crystal layer. , The minute lens 14 on the other side
It is refracted at and the direction of the chief ray is bent parallel to the optical axis.
Therefore, the divergence angle of the light beam emitted from the LCD 5 is ± (θ + α) in the configuration of FIG. 4 in the related art, but can be significantly reduced to ± α.

【数4】2ltanθ=39mm (4) と大幅に小口径化できる。## EQU4 ## The diameter can be significantly reduced to 2 ltan θ = 39 mm (4).

【0014】なお微小レンズ13、14のそれぞれの配
列ピッチは、図3のようにLCD5の前にリレーレンズ
4を挿入する場合、その収束角度に合わせてLCDの画
素ピッチに対し僅かにずらせて、リレーレンズ4を透過
後収束して伝搬する光を微小レンズ13、14で液晶層
の各画素開口部15Aに入射させるようにする。
When the relay lens 4 is inserted in front of the LCD 5 as shown in FIG. 3, the array pitch of the minute lenses 13 and 14 is slightly shifted from the pixel pitch of the LCD in accordance with the convergence angle, The light that has converged and propagated after passing through the relay lens 4 is made incident on each pixel opening 15A of the liquid crystal layer by the minute lenses 13 and 14.

【0015】また図1では省略していたが、両面に微小
レンズ13、14の各アレイを備えたガラス基板11を
用いてLCD5を構成する場合、図2に示すような具体
的構成がその代表例として挙げられる。図2で、ガラス
基板11の液晶層25と対向する側の面には、ガラス中
からのアルカリ成分の溶出を防止する被膜20がコーテ
ィングされており、その上にブラックマトリクス21、
カラーフィルタ22、レベルコート材23、透明導電膜
24が設けられる。
Although not shown in FIG. 1, when the LCD 5 is constructed using the glass substrate 11 having the arrays of the microlenses 13 and 14 on both sides, a concrete construction as shown in FIG. 2 is typical. Take as an example. In FIG. 2, the surface of the glass substrate 11 facing the liquid crystal layer 25 is coated with a coating film 20 for preventing the elution of alkaline components from the glass, and a black matrix 21,
A color filter 22, a level coat material 23, and a transparent conductive film 24 are provided.

【0016】また他方のガラス基板12の液晶層25に
対向する側の面には、配線部28、TFT部26、画素
電極27が設けられ、これと前記ガラス基板11との間
に液晶を封入してLCDとする。アルカリ溶出防止膜2
0は、例えばSiO2を液相でディッピングした後、焼
成して膜とすることによって得られ、透明導電膜24、
画素電極27は例えばITO膜等が用いられる。
A wiring portion 28, a TFT portion 26, and a pixel electrode 27 are provided on the surface of the other glass substrate 12 facing the liquid crystal layer 25, and liquid crystal is sealed between this and the glass substrate 11. To make LCD. Alkali elution prevention film 2
0 is obtained, for example, by dipping SiO 2 in a liquid phase and then baking it to form a film.
For the pixel electrode 27, for example, an ITO film or the like is used.

【0017】なお、図1、2では2枚のガラス基板1
1、12のうちの一方のみに微小レンズ13、14を形
成したが、例えば図1の微小レンズ付ガラス基板11と
同じものを反対側のガラス基板12に用いて、微小レン
ズアレイの4層構造としてもよい。この場合、LCD射
出後の光束の広がり角は、微小レンズのNAに対応する
±αではなく、照明光の平行度±θとなる。
In FIGS. 1 and 2, two glass substrates 1 are used.
The microlenses 13 and 14 are formed on only one of the microlenses 1 and 12, but the same glass substrate 11 with microlenses of FIG. 1 is used as the glass substrate 12 on the opposite side to form a four-layer structure of a microlens array. May be In this case, the divergence angle of the light flux after exiting the LCD is not ± α corresponding to the NA of the minute lens, but the parallelism of the illumination light ± θ.

【0018】[0018]

【発明の効果】従来は、LCDの光利用効率を上げるた
めに微小レンズのアレイをLCD直前に配置すると、投
影レンズ上での光束の広がりが大きくなり、従って投影
レンズの口径を大きくする必要があったが、本発明によ
り、LCDの光利用効率を大きく保ちつつ、投影レンズ
の口径を小さくでき、装置の小型化と低コスト化に極め
て有効である。
In the prior art, when an array of minute lenses is arranged immediately in front of the LCD in order to improve the light utilization efficiency of the LCD, the spread of the light flux on the projection lens becomes large, so that it is necessary to increase the aperture of the projection lens. However, according to the present invention, the aperture of the projection lens can be made small while keeping the light utilization efficiency of the LCD large, which is extremely effective for downsizing and cost reduction of the device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す断面図FIG. 1 is a sectional view showing an embodiment of the present invention.

【図2】本発明の他の実施例を示す断面図FIG. 2 is a sectional view showing another embodiment of the present invention.

【図3】液晶プロジェクタの概略断面図FIG. 3 is a schematic sectional view of a liquid crystal projector.

【図4】従来のレンズ付き液晶表示素子を示す断面図FIG. 4 is a sectional view showing a conventional liquid crystal display device with a lens.

【符号の説明】[Explanation of symbols]

1 光源ランプ 2 凹面鏡 3 コンデンサレンズ 4 リレーレンズ 5 液晶表示素子(LCD) 6 投影レンズ 11 ガラス基板 12 ガラス基板 13 微小レンズ 14 微小レンズ 15 液晶層 15A 画素開口部 20 アルカリ溶出防止膜 21 ブラックマトリクス 22 カラーフィルタ 23 レベルコート層 24 透明導電膜 25 液晶層 26 TFT(画素トランジスタ) 27 画素透明電極 28 配線部 1 Light Source Lamp 2 Concave Mirror 3 Condenser Lens 4 Relay Lens 5 Liquid Crystal Display Device (LCD) 6 Projection Lens 11 Glass Substrate 12 Glass Substrate 13 Micro Lens 14 Micro Lens 15 Liquid Crystal Layer 15A Pixel Opening 20 Alkali Elution Prevention Film 21 Black Matrix 22 Color Filter 23 Level coat layer 24 Transparent conductive film 25 Liquid crystal layer 26 TFT (pixel transistor) 27 Pixel transparent electrode 28 Wiring part

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 一対のガラス基板と、これら基板間に設
けられた液晶層とを有する液晶表示素子において、前記
ガラス基板のうち少なくとも一方のガラス基板の両面に
それぞれ、前記液晶層の各画素開口部に対応させて微小
レンズを配列形成したことを特徴とする液晶表示素子。
1. A liquid crystal display device comprising a pair of glass substrates and a liquid crystal layer provided between the substrates, wherein at least one glass substrate of the glass substrates is provided on both sides thereof with respective pixel openings of the liquid crystal layer. A liquid crystal display device, characterized in that minute lenses are formed in an array corresponding to each part.
【請求項2】 前記基板両面の微小レンズはいずれも、
平行光を入射させたとき基板の反対面近傍に集光するよ
うな光学特性を有している請求項1に記載の液晶表示素
子。
2. The micro lenses on both sides of the substrate are
The liquid crystal display element according to claim 1, which has optical characteristics such that when parallel light is incident, the light is condensed near the opposite surface of the substrate.
【請求項3】 前記微小レンズは、基板表面を屈折率最
大として基板肉厚内に向けて放射方向に次第に減少する
屈折率分布を有している請求項1、2のいずれかに記載
の液晶表示素子。
3. The liquid crystal according to claim 1, wherein the microlens has a refractive index distribution in which the substrate surface has a maximum refractive index and gradually decreases in the radial direction toward the inside of the substrate thickness. Display element.
【請求項4】 前記微小レンズは、光源に対向する側の
ガラス基板のみに備えられている請求項1、2、3のい
ずれかに記載の液晶表示素子。
4. The liquid crystal display device according to claim 1, wherein the minute lens is provided only on the glass substrate facing the light source.
【請求項5】 前記微小レンズを形成したガラス基板の
少なくとも一方の面に、ガラス中のアルカリイオン溶出
を防止する透明被膜をコーティングした請求項1、2、
3、4のいずれかに記載の液晶表示素子。
5. A transparent coating for preventing elution of alkali ions in glass is coated on at least one surface of the glass substrate on which the minute lenses are formed.
3. The liquid crystal display element according to any one of 3 and 4.
【請求項6】 前記微小レンズを形成したガラス基板の
少なくとも一方の面に、透明導電膜をコーティングした
請求項1、2、3、4、5のいずれかに記載の液晶表示
素子。
6. The liquid crystal display element according to claim 1, wherein at least one surface of the glass substrate on which the minute lenses are formed is coated with a transparent conductive film.
【請求項7】 前記微小レンズを形成したガラス基板の
少なくとも一方の面に、ブラックマトリクスを設けた請
求項1、2、3、4、5、6のいずれかに記載の液晶表
示素子。
7. The liquid crystal display device according to claim 1, wherein a black matrix is provided on at least one surface of the glass substrate on which the minute lenses are formed.
【請求項8】 前記微小レンズを形成したガラス基板の
少なくとも一方の面に、各画素に対応した複数色のカラ
ーフィルタを設けた請求項1、2、3、4、5、6、7
のいずれかに記載の液晶表示素子。
8. The color filters of a plurality of colors corresponding to the respective pixels are provided on at least one surface of the glass substrate on which the minute lenses are formed, respectively.
5. The liquid crystal display device according to any one of 1.
JP4152108A 1992-06-11 1992-06-11 Liquid crystal display device Expired - Fee Related JP3032084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4152108A JP3032084B2 (en) 1992-06-11 1992-06-11 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4152108A JP3032084B2 (en) 1992-06-11 1992-06-11 Liquid crystal display device

Publications (2)

Publication Number Publication Date
JPH05341283A true JPH05341283A (en) 1993-12-24
JP3032084B2 JP3032084B2 (en) 2000-04-10

Family

ID=15533233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4152108A Expired - Fee Related JP3032084B2 (en) 1992-06-11 1992-06-11 Liquid crystal display device

Country Status (1)

Country Link
JP (1) JP3032084B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5990992A (en) * 1997-03-18 1999-11-23 Nippon Sheet Glass Co., Ltd. Image display device with plural planar microlens arrays
KR20020090894A (en) * 2001-05-28 2002-12-05 소니 가부시끼 가이샤 Liquid crystal display device and projective liquid crystal display apparatus
US8009251B2 (en) 2006-06-13 2011-08-30 Au Optronics Corporation High brightness liquid crystal display
US8279360B2 (en) 2009-04-22 2012-10-02 Sony Corporation Projection type liquid crystal display apparatus
US9766379B2 (en) 2014-10-07 2017-09-19 Seiko Epson Corporation Microlens array substrate, electrooptical device including microlens array substrate, projection type display apparatus, and manufacturing method of microlens array substrate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101228400B1 (en) 2008-09-01 2013-02-01 니혼 테크노 가부시키가이샤 Liquid material consisting of hydrogen and oxygen, regasified gas consisting of hydrogen and oxygen obtained from the liquid material, method and system for making the liquid material and the regasified gas, and fuel which consists of the liquid material and the regasified gas and does not generate carbon dioxide gas

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5990992A (en) * 1997-03-18 1999-11-23 Nippon Sheet Glass Co., Ltd. Image display device with plural planar microlens arrays
KR20020090894A (en) * 2001-05-28 2002-12-05 소니 가부시끼 가이샤 Liquid crystal display device and projective liquid crystal display apparatus
US8009251B2 (en) 2006-06-13 2011-08-30 Au Optronics Corporation High brightness liquid crystal display
US8879028B2 (en) 2006-06-13 2014-11-04 Au Optronics Corporation High brightness liquid crystal display
US8279360B2 (en) 2009-04-22 2012-10-02 Sony Corporation Projection type liquid crystal display apparatus
US9766379B2 (en) 2014-10-07 2017-09-19 Seiko Epson Corporation Microlens array substrate, electrooptical device including microlens array substrate, projection type display apparatus, and manufacturing method of microlens array substrate

Also Published As

Publication number Publication date
JP3032084B2 (en) 2000-04-10

Similar Documents

Publication Publication Date Title
US5455694A (en) Liquid crystal display with pixel shape same as image of light source through microlens
KR0130057B1 (en) A projection type liquid crystal
JPH0351882A (en) Projection-type image display device
US5337186A (en) Transmissive image display device
US6680762B2 (en) Projection liquid crystal display apparatus wherein overall focal point of the lens is shifted to increase effective aperture ratio
US5359440A (en) Image display apparatus with microlens plate having mutually fused together lenses resulting in hexagonal shaped microlenses
US5764323A (en) Transmission type display device with aspheric microlenses
US5321789A (en) Projection display apparatus, and light guide tube/light valve for use in the same
US5430562A (en) Liquid crystal light valve including between light and light valve microlenses and two reflecting layers with a matrix of openings
JP2927679B2 (en) Liquid crystal display
JPH03136004A (en) Image display device
JPH05346578A (en) Liquid crystal display panel
JP3032084B2 (en) Liquid crystal display device
JPH04251221A (en) Liquid crystal display device and projection type display device using this device
KR940000591B1 (en) Color image display device of projection type
JPS6291916A (en) Projection type liquid crystal display device
JPH0588161A (en) Liquid crystal display element
JPH06208112A (en) Direct-view display device
JPH06222355A (en) Light valve device and display device using the device
JP2520186B2 (en) Projection type image display device
JP3083859B2 (en) Projection display device
JPH06242411A (en) Light valve device and display device using it
JPH01303483A (en) liquid crystal display device
JPH06118370A (en) Light valve device and display device using the device
JP3452020B2 (en) projector

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees