JP3032084B2 - Liquid crystal display device - Google Patents
Liquid crystal display deviceInfo
- Publication number
- JP3032084B2 JP3032084B2 JP4152108A JP15210892A JP3032084B2 JP 3032084 B2 JP3032084 B2 JP 3032084B2 JP 4152108 A JP4152108 A JP 4152108A JP 15210892 A JP15210892 A JP 15210892A JP 3032084 B2 JP3032084 B2 JP 3032084B2
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- crystal display
- glass substrate
- microlenses
- display device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Liquid Crystal (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、テレビ画面、コンピュ
ータ出力画面等を拡大表示するための液晶投影装置、い
わゆる液晶プロジェクタあるいは液晶プロジェクション
テレビに有用な液晶表示素子に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device useful for a liquid crystal projection device for enlarging and displaying a television screen, a computer output screen, etc., a so-called liquid crystal projector or a liquid crystal projection television.
【0002】[0002]
【従来の技術】液晶プロジェクタ光学系の代表例を図3
に示す。メタルハライドランプ1から射出した光束を凹
面鏡2で反射させた後又は直接にコンデンサレンズ3で
コリメートし、リレーレンズ4を介して液晶表示素子5
(以下LCDと略記する)を照明する。LCD5には、
テレビ映像やパソコン画面等が表示されており、この表
示画面が投影レンズ6によってスクリーン7上に拡大投
影される。2. Description of the Related Art A typical example of a liquid crystal projector optical system is shown in FIG.
Shown in After the light flux emitted from the metal halide lamp 1 is reflected by the concave mirror 2 or directly collimated by the condenser lens 3, the liquid crystal display element 5 is relayed through the relay lens 4.
(Hereinafter abbreviated as LCD). LCD5 has
A television image, a personal computer screen, and the like are displayed, and this display screen is enlarged and projected on a screen 7 by the projection lens 6.
【0003】リレーレンズ4は、LCD5を照明した光
を投影レンズ6の位置に絞り込むようにすることによ
り、投影レンズ6の口径が大きくなくても、光のケラレ
がそれほど大きくならないようになっている。実際のラ
ンプ1は点光源ではなく有限の大きさを持っているた
め、図中点線で示されるような光線は投影レンズ6上で
光軸から離れた位置に到達する。従って、投影レンズ6
の口径をこの分だけ大きくする必要がある。The relay lens 4 narrows the light illuminating the LCD 5 to the position of the projection lens 6 so that the vignetting of the light is not so large even if the diameter of the projection lens 6 is not large. . Since the actual lamp 1 is not a point light source but has a finite size, a light ray indicated by a dotted line in the figure reaches a position on the projection lens 6 away from the optical axis. Therefore, the projection lens 6
It is necessary to increase the caliber of this.
【0004】例えば、照明光の平行度を±θ=±6°程
度とし、リレーレンズ4と投影レンズ6との間隔をL=
200mmとすると、 投影レンズ6上での光束の広が
りはおよそ、[0004] For example, the parallelism of the illumination light is about ± θ = ± 6 °, and the distance between the relay lens 4 and the projection lens 6 is L =
Assuming 200 mm, the spread of the light beam on the projection lens 6 is approximately
【数1】 2Ltanθ=42mm (1) 程度となり、従って投影レンズ6の口径は42mm以上
必要となる。1 Ltan θ = 42 mm (1) Therefore, the diameter of the projection lens 6 needs to be 42 mm or more.
【0005】一方、LCD5は、配線領域、画素毎のT
FT(画素トランジスタ)領域など、光を透過できない
部分いわゆるブラックマトリクスを持ち、一般に開口率
は全液晶パネル面積の30%ないし40%程度と低く、
これ以外の部分に入射する光は上記ブラックマトリクス
によりカットされて利用できないといった問題がある。On the other hand, the LCD 5 has a wiring area and a T for each pixel.
It has a so-called black matrix that cannot transmit light, such as an FT (pixel transistor) region. Generally, the aperture ratio is as low as about 30% to 40% of the entire liquid crystal panel area.
There is a problem that light incident on other portions is cut by the black matrix and cannot be used.
【0006】これを解決する一方法として、図4に示す
ように、LCDを構成する2枚のガラス基板11、12
のうち光の入射する側のガラス基板11に、各画素に対
向して微小レンズ13を設け、入射光を微小レンズ13
により画素開口部15に集光させることにより、LCD
を透過する光量を増加させる方法が従来から提案されて
いる。As one method for solving this problem, as shown in FIG. 4, two glass substrates 11 and 12 constituting an LCD are provided.
A microlens 13 is provided on the glass substrate 11 on the side where light is incident so as to face each pixel.
Condensing the light on the pixel opening 15 by the
Conventionally, a method of increasing the amount of light transmitted through the light has been proposed.
【0007】[0007]
【発明が解決しようとする課題】しかしながら、上記の
素子構造ではLCD透過後の光束は、照明光の広がり角
±θに加え、微小レンズ13のNA(開口数)に相当す
る角度±αが足されて±(θ+α)だけ広がることにな
る。αは微小レンズ13の各レンズ径をd、ガラス基板
11の厚みをt、屈折率をnとすれば、However, in the above-described element structure, the luminous flux transmitted through the LCD has an angle ± α corresponding to the NA (numerical aperture) of the minute lens 13 in addition to the spread angle ± θ of the illumination light. Then, it spreads by ± (θ + α). α is, if each lens diameter of the microlens 13 is d, the thickness of the glass substrate 11 is t, and the refractive index is n,
【数2】α=tan-1[dn/2t] (2) と表され、例えば、d=140μm、n=1.53、t
=1.1mmとすれば、α=5.6°と、θとほぼ同程
度の大きさになる。従って、明るさを向上させるために
微小レンズ13を挿入する場合、投影レンズ6の口径をΑ = tan −1 [dn / 2t] (2), for example, d = 140 μm, n = 1.53, t
= 1.1 mm, α = 5.6 °, which is almost the same size as θ. Therefore, when the micro lens 13 is inserted to improve the brightness, the diameter of the projection lens 6 is reduced.
【数3】2ltan(θ+α)=82mm (3) と大きくする必要があり、装置の小型化が難しい、投影
レンズのコスト高になる等の問題が生じる。## EQU3 ## It is necessary to make it as large as 21 tan (.theta. +. Alpha.) = 82 mm (3), which causes problems such as difficulty in downsizing the apparatus and increase in cost of the projection lens.
【0008】[0008]
【課題を解決するための手段】上述のような従来技術の
問題点を解決するため、本発明ではLCDを構成する2
枚のガラス基板の少なくとも一方のガラス基板の両面に
それぞれ、液晶層の各画素開口部と対応させて微小レン
ズを配列形成した。In order to solve the problems of the prior art as described above, in the present invention, a liquid crystal display (LCD) is constructed.
Microlenses were arrayed on both surfaces of at least one of the glass substrates so as to correspond to the respective pixel openings of the liquid crystal layer.
【0009】[0009]
【作用】本発明によれば、LCDガラス基板の片面のみ
に微小レンズのアレイを設ける場合に比べて、LCD透
過後の光束の広がりを小さく抑えることができ、投影レ
ンズの口径を従来より大幅に小さくすることができる。According to the present invention, the spread of the luminous flux after passing through the LCD can be suppressed smaller than in a case where an array of minute lenses is provided only on one side of the LCD glass substrate, and the aperture of the projection lens can be made larger than before. Can be smaller.
【0010】[0010]
【実施例】以下本発明を図面に示した実施例に基づき詳
細に説明する。図1は本発明の一実施例を示すLCDの
拡大断面図であり、液晶プロジェクタにおけるLCD5
の配置は図3と同様でよい。図1においてLCD5は、
2枚の透明ガラス基板11、12間に液晶層15を挟み
周辺を封止して構成され、両ガラス基板11、12のう
ち照明光入射側の基板11の両面に微小レンズ13、1
4が配列形成されている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the embodiments shown in the drawings. FIG. 1 is an enlarged sectional view of an LCD showing an embodiment of the present invention.
May be the same as in FIG. In FIG. 1, the LCD 5
The liquid crystal layer 15 is sandwiched between the two transparent glass substrates 11 and 12, and the periphery thereof is sealed.
4 are formed in an array.
【0011】微小レンズ13、14は、例えばソーダラ
イムガラスからなる基板11の両面に、公知のイオン交
換法を用いて屈折率分布型レンズとして作製できる。す
なわち、基板ガラスの両面をイオン透過防止の機能を有
する金属膜等のマスク膜で被覆し、このマスク膜にフォ
トリソグラフィにより所定のレンズ配列パターンで開口
を設け、この開口を通してガラスの屈折率を高めるイオ
ンをガラス中のアルカリイオンとの交換で拡散させる方
法で作製することができる。この方法で得られるレンズ
13、14は、屈折率が基板表面で最大で、基板肉厚内
に向け放射方向に次第に減少する屈折率分布を有する。The microlenses 13 and 14 can be formed as refractive index distribution type lenses on both sides of a substrate 11 made of, for example, soda lime glass by using a known ion exchange method. That is, both surfaces of the substrate glass are covered with a mask film such as a metal film having a function of preventing ion transmission, openings are formed in the mask film by photolithography in a predetermined lens arrangement pattern, and the refractive index of the glass is increased through the openings. It can be produced by a method in which ions are diffused by exchange with alkali ions in glass. The lenses 13, 14 obtained in this way have a refractive index distribution in which the refractive index is greatest at the substrate surface and gradually decreases in the radial direction towards the substrate thickness.
【0012】基板両面の微小レンズ13、14は共に、
液晶層15の各画素開口部15A単位に1対1に対応さ
せて配列形成する。これにより、照明光が液晶層の各画
素開口部15Aに集光されるようにする。即ち、微小レ
ンズ13の焦点距離は、ガラス基板内において基板11
の厚みに略等しくなるように作製する。また同様に基板
他面側の微小レンズ14の焦点距離も、レンズ13と略
等しく作製する。The micro lenses 13 and 14 on both sides of the substrate are
An array is formed in a one-to-one correspondence with each pixel opening 15A of the liquid crystal layer 15. Thereby, the illumination light is focused on each pixel opening 15A of the liquid crystal layer. That is, the focal length of the minute lens 13 is
It is manufactured so as to be approximately equal in thickness to Similarly, the focal length of the microlenses 14 on the other side of the substrate is made substantially the same as the lens 13.
【0013】このようにガラス基板11の両面に微小レ
ンズのアレイを形成すると、角度θだけ傾いた光束も微
小レンズ13で屈折して、液晶層の画素開口部15Aの
近傍に集光する時点で、さらに他面側の微小レンズ14
で屈折して、主光線の方向が光軸に平行に曲げられる。
従ってLCD5から射出する光束の広がり角は、従来図
4の構成において±(θ+α)であったのが±αと大幅
に小さくでき、よって投影レンズ6の口径はWhen an array of microlenses is formed on both sides of the glass substrate 11 as described above, a light beam inclined by an angle θ is refracted by the microlenses 13 and converges near the pixel opening 15A of the liquid crystal layer. And the microlenses 14 on the other side
And the direction of the chief ray is bent parallel to the optical axis.
Therefore, the divergence angle of the light beam emitted from the LCD 5 can be significantly reduced to ± α, which was ± (θ + α) in the conventional configuration of FIG.
【数4】2ltanθ=39mm (4) と大幅に小口径化できる。## EQU4 ## The diameter can be greatly reduced to 2 ltan θ = 39 mm (4).
【0014】なお微小レンズ13、14のそれぞれの配
列ピッチは、図3のようにLCD5の前にリレーレンズ
4を挿入する場合、その収束角度に合わせてLCDの画
素ピッチに対し僅かにずらせて、リレーレンズ4を透過
後収束して伝搬する光を微小レンズ13、14で液晶層
の各画素開口部15Aに入射させるようにする。When the relay lens 4 is inserted in front of the LCD 5 as shown in FIG. 3, the arrangement pitch of the micro lenses 13 and 14 is slightly shifted from the pixel pitch of the LCD in accordance with the convergence angle. Light that converges and propagates through the relay lens 4 is made incident on each pixel opening 15A of the liquid crystal layer by the minute lenses 13 and 14.
【0015】また図1では省略していたが、両面に微小
レンズ13、14の各アレイを備えたガラス基板11を
用いてLCD5を構成する場合、図2に示すような具体
的構成がその代表例として挙げられる。図2で、ガラス
基板11の液晶層25と対向する側の面には、ガラス中
からのアルカリ成分の溶出を防止する被膜20がコーテ
ィングされており、その上にブラックマトリクス21、
カラーフィルタ22、レベルコート材23、透明導電膜
24が設けられる。Although not shown in FIG. 1, when the LCD 5 is formed using the glass substrate 11 provided with the arrays of the microlenses 13 and 14 on both sides, a specific configuration as shown in FIG. 2 is a representative example. As an example. In FIG. 2, the surface of the glass substrate 11 on the side facing the liquid crystal layer 25 is coated with a coating 20 for preventing elution of the alkali component from the glass.
A color filter 22, a level coating material 23, and a transparent conductive film 24 are provided.
【0016】また他方のガラス基板12の液晶層25に
対向する側の面には、配線部28、TFT部26、画素
電極27が設けられ、これと前記ガラス基板11との間
に液晶を封入してLCDとする。アルカリ溶出防止膜2
0は、例えばSiO2を液相でディッピングした後、焼
成して膜とすることによって得られ、透明導電膜24、
画素電極27は例えばITO膜等が用いられる。A wiring portion 28, a TFT portion 26, and a pixel electrode 27 are provided on the surface of the other glass substrate 12 facing the liquid crystal layer 25, and liquid crystal is sealed between the wiring portion 28, the glass substrate 11, and the glass substrate 11. To make an LCD. Alkali elution prevention film 2
0 is obtained, for example, by dipping SiO 2 in a liquid phase and then baking to form a film.
As the pixel electrode 27, for example, an ITO film or the like is used.
【0017】なお、図1、2では2枚のガラス基板1
1、12のうちの一方のみに微小レンズ13、14を形
成したが、例えば図1の微小レンズ付ガラス基板11と
同じものを反対側のガラス基板12に用いて、微小レン
ズアレイの4層構造としてもよい。この場合、LCD射
出後の光束の広がり角は、微小レンズのNAに対応する
±αではなく、照明光の平行度±θとなる。1 and 2, two glass substrates 1 are shown.
Although the microlenses 13 and 14 are formed on only one of the microlenses 1 and 12, for example, the same glass substrate 11 with microlenses as shown in FIG. It may be. In this case, the spread angle of the light beam after the emission from the LCD is not ± α corresponding to the NA of the minute lens, but is ± Parallelism of the illumination light.
【0018】[0018]
【発明の効果】従来は、LCDの光利用効率を上げるた
めに微小レンズのアレイをLCD直前に配置すると、投
影レンズ上での光束の広がりが大きくなり、従って投影
レンズの口径を大きくする必要があったが、本発明によ
り、LCDの光利用効率を大きく保ちつつ、投影レンズ
の口径を小さくでき、装置の小型化と低コスト化に極め
て有効である。Conventionally, if an array of minute lenses is arranged immediately before the LCD in order to increase the light use efficiency of the LCD, the spread of the light beam on the projection lens becomes large, so that it is necessary to increase the aperture of the projection lens. However, according to the present invention, the aperture of the projection lens can be reduced while keeping the light use efficiency of the LCD large, which is extremely effective in reducing the size and cost of the device.
【図1】本発明の一実施例を示す断面図FIG. 1 is a sectional view showing one embodiment of the present invention.
【図2】本発明の他の実施例を示す断面図FIG. 2 is a sectional view showing another embodiment of the present invention.
【図3】液晶プロジェクタの概略断面図FIG. 3 is a schematic sectional view of a liquid crystal projector.
【図4】従来のレンズ付き液晶表示素子を示す断面図FIG. 4 is a sectional view showing a conventional liquid crystal display device with a lens.
1 光源ランプ 2 凹面鏡 3 コンデンサレンズ 4 リレーレンズ 5 液晶表示素子(LCD) 6 投影レンズ 11 ガラス基板 12 ガラス基板 13 微小レンズ 14 微小レンズ 15 液晶層 15A 画素開口部 20 アルカリ溶出防止膜 21 ブラックマトリクス 22 カラーフィルタ 23 レベルコート層 24 透明導電膜 25 液晶層 26 TFT(画素トランジスタ) 27 画素透明電極 28 配線部 DESCRIPTION OF SYMBOLS 1 Light source lamp 2 Concave mirror 3 Condenser lens 4 Relay lens 5 Liquid crystal display element (LCD) 6 Projection lens 11 Glass substrate 12 Glass substrate 13 Micro lens 14 Micro lens 15 Liquid crystal layer 15A Pixel opening 20 Alkali elution prevention film 21 Black matrix 22 Color Filter 23 Level coat layer 24 Transparent conductive film 25 Liquid crystal layer 26 TFT (pixel transistor) 27 Pixel transparent electrode 28 Wiring section
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G02F 1/1335 G02B 3/00 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) G02F 1/1335 G02B 3/00
Claims (7)
けられた液晶層とを有する液晶表示素子において、前記
ガラス基板のうち少なくとも一方のガラス基板の両面に
それぞれ、前記液晶層の各画素開口部に対応させて微小
レンズを配列し、これら微小レンズの焦点距離をこれら
微小レンズを形成したガラス基板の厚みに略等しくした
ことを特徴とする液晶表示素子。1. A liquid crystal display device having a pair of glass substrates and a liquid crystal layer provided between the substrates, wherein each pixel opening of the liquid crystal layer is provided on both surfaces of at least one of the glass substrates. Micro lenses are arranged corresponding to each part, and the focal length of these micro lenses is
A liquid crystal display device characterized in that the thickness is substantially equal to the thickness of the glass substrate on which the microlenses are formed .
大として基板肉厚内に向けて放射方向に次第に減少する
屈折率分布を有している請求項1に記載の液晶表示素
子。2. The liquid crystal display element according to claim 1, wherein the microlenses have a refractive index distribution that gradually decreases in a radial direction toward the inside of the substrate thickness with the substrate surface having a maximum refractive index.
ガラス基板のみに備えられている請求項1,2のいずれ
かに記載の液晶表示素子。3. The liquid crystal display device according to claim 1, wherein the microlenses are provided only on the glass substrate facing the light source.
少なくとも一方の面に、ガラス中のアルカリイオン溶出
を防止する透明被膜をコーティングした請求項1,2,
3のいずれかに記載の液晶表示素子。4. A glass substrate on which said microlenses are formed, wherein at least one surface of said glass substrate is coated with a transparent film for preventing elution of alkali ions in the glass.
4. The liquid crystal display device according to any one of 3.
少なくとも一方の面に、透明導電膜をコーティングした
請求項1,2,3,4のいずれかに記載の液晶表示素
子。5. The liquid crystal display device according to claim 1, wherein at least one surface of the glass substrate on which the microlenses are formed is coated with a transparent conductive film.
少なくとも一方の面に、ブラックマトリクスを設けた請
求項1,2,3,4,5のいずれかに記載の液晶表示素
子。6. The liquid crystal display device according to claim 1, wherein a black matrix is provided on at least one surface of the glass substrate on which the microlenses are formed.
少なくとも一方の面に、各画素に対応した複数色のカラ
ーフィルタを設けた請求項1,2,3,4,5,6のい
ずれかに記載の液晶表示素子。7. The glass substrate according to claim 1, wherein a plurality of color filters corresponding to respective pixels are provided on at least one surface of the glass substrate on which the microlenses are formed. The liquid crystal display element as described in the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4152108A JP3032084B2 (en) | 1992-06-11 | 1992-06-11 | Liquid crystal display device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4152108A JP3032084B2 (en) | 1992-06-11 | 1992-06-11 | Liquid crystal display device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05341283A JPH05341283A (en) | 1993-12-24 |
JP3032084B2 true JP3032084B2 (en) | 2000-04-10 |
Family
ID=15533233
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4152108A Expired - Fee Related JP3032084B2 (en) | 1992-06-11 | 1992-06-11 | Liquid crystal display device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3032084B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010023997A1 (en) | 2008-09-01 | 2010-03-04 | 日本テクノ株式会社 | Liquid material comprising hydrogen and oxygen, regasified gas comprising hydrogen and oxygen produced from the liquid material, process and apparatus for producing the liquid material and regasified gas, and fuel that does not evolve carbon dioxide and comprises the liquid material and regasified gas |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5990992A (en) * | 1997-03-18 | 1999-11-23 | Nippon Sheet Glass Co., Ltd. | Image display device with plural planar microlens arrays |
JP2002350823A (en) * | 2001-05-28 | 2002-12-04 | Sony Corp | Liquid crystal display element and projection type liquid crystal display device |
US8009251B2 (en) | 2006-06-13 | 2011-08-30 | Au Optronics Corporation | High brightness liquid crystal display |
JP5499618B2 (en) | 2009-04-22 | 2014-05-21 | ソニー株式会社 | Projection type liquid crystal display device |
JP6450965B2 (en) | 2014-10-07 | 2019-01-16 | セイコーエプソン株式会社 | Microlens array substrate, electro-optical device including microlens array substrate, and projection display device |
-
1992
- 1992-06-11 JP JP4152108A patent/JP3032084B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010023997A1 (en) | 2008-09-01 | 2010-03-04 | 日本テクノ株式会社 | Liquid material comprising hydrogen and oxygen, regasified gas comprising hydrogen and oxygen produced from the liquid material, process and apparatus for producing the liquid material and regasified gas, and fuel that does not evolve carbon dioxide and comprises the liquid material and regasified gas |
Also Published As
Publication number | Publication date |
---|---|
JPH05341283A (en) | 1993-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5353133A (en) | A display having a standard or reversed schieren microprojector at each picture element | |
US5455694A (en) | Liquid crystal display with pixel shape same as image of light source through microlens | |
EP0598608A1 (en) | Direct-view display apparatus | |
KR0130057B1 (en) | A projection type liquid crystal | |
JPH0351882A (en) | Projection-type image display device | |
JP2809089B2 (en) | Transmissive liquid crystal display | |
JPH0756158A (en) | Flat panel display device using backproject screen | |
JPH07191318A (en) | Color liquid crystal display device | |
US5337186A (en) | Transmissive image display device | |
US6680762B2 (en) | Projection liquid crystal display apparatus wherein overall focal point of the lens is shifted to increase effective aperture ratio | |
EP0609055B1 (en) | Light valve apparatus and display system using same | |
JP2927679B2 (en) | Liquid crystal display | |
JP3032084B2 (en) | Liquid crystal display device | |
JPH05346578A (en) | Liquid crystal display panel | |
JP3331238B2 (en) | Direct-view display device | |
JPH04251221A (en) | Liquid crystal display device and projection type display device using this device | |
JP2889458B2 (en) | Direct-view display device | |
KR940000591B1 (en) | Color image display device of projection type | |
JP3620303B2 (en) | Rear projection display | |
JP3083859B2 (en) | Projection display device | |
JPH01303483A (en) | liquid crystal display device | |
JP2998811B2 (en) | Transmissive screen and rear projection type image display device using the same | |
JPH06242411A (en) | Light valve device and display device using it | |
JPH06222355A (en) | Light valve device and display device using it | |
JPH0363626A (en) | Projection type color liquid crystal display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |