[go: up one dir, main page]

JPH05339763A - Coil spring manufacturing method - Google Patents

Coil spring manufacturing method

Info

Publication number
JPH05339763A
JPH05339763A JP1357491A JP1357491A JPH05339763A JP H05339763 A JPH05339763 A JP H05339763A JP 1357491 A JP1357491 A JP 1357491A JP 1357491 A JP1357491 A JP 1357491A JP H05339763 A JPH05339763 A JP H05339763A
Authority
JP
Japan
Prior art keywords
coil spring
surface roughness
shot peening
residual stress
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1357491A
Other languages
Japanese (ja)
Other versions
JP2810799B2 (en
Inventor
Mitsuaki Nakanishi
光明 中西
Satoru Kondo
覚 近藤
Shigeru Yasuda
茂 安田
Osamu Nakano
修 中野
Hisashi Uchida
尚志 内田
Mitsuyoshi Onoda
光芳 小野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOUGOU SEISAKUSHO KK
Togo Seisakusho Corp
Nippon Steel Corp
Suzuki Metal Industry Co Ltd
Toyota Motor Corp
Original Assignee
TOUGOU SEISAKUSHO KK
Togo Seisakusho Corp
Nippon Steel Corp
Suzuki Metal Industry Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOUGOU SEISAKUSHO KK, Togo Seisakusho Corp, Nippon Steel Corp, Suzuki Metal Industry Co Ltd, Toyota Motor Corp filed Critical TOUGOU SEISAKUSHO KK
Priority to JP1357491A priority Critical patent/JP2810799B2/en
Publication of JPH05339763A publication Critical patent/JPH05339763A/en
Application granted granted Critical
Publication of JP2810799B2 publication Critical patent/JP2810799B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Springs (AREA)
  • Wire Processing (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

(57)【要約】 【目的】研磨工程を必要としない、工程が簡略化された
製造コストの安価なしかも高い疲労強度を持つコイルば
ねの製造方法を提供する。 【構成】本発明のコイルばねの製造方法は、酸化皮膜を
有する鉄鋼線材をコイリング成形し、熱処理し、表面最
大荒さRmax 5μm以下となるようにデスケール処理
し、窒化処理し、ショットピーニングによる残留応力付
与処理をするもの。デスケール処理工程時の表面荒さを
低く抑えその後に窒化処理をしている。このため残留応
力付与工程におけるショツトピーニングでの表面荒さの
増大が効果的に抑制され、表面荒さは低く抑えられる。
このため残留応力付与処理工程後に表面研磨工程を必要
としない。
(57) [Summary] [Object] To provide a method for manufacturing a coil spring which does not require a polishing step, has a simplified manufacturing process, is inexpensive, and has high fatigue strength. A coil spring manufacturing method of the present invention comprises coiling an iron and steel wire rod having an oxide film, heat-treating it, descaling it to a maximum surface roughness Rmax of 5 μm or less, nitriding it, and residual stress by shot peening. The one that does the granting process. Surface roughness is kept low during the descaling process, and then nitriding is performed. Therefore, the increase in surface roughness due to shot peening in the residual stress application step is effectively suppressed, and the surface roughness is suppressed to a low level.
Therefore, the surface polishing step is not necessary after the residual stress imparting step.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車用エンジンに使
用される弁ばね等の高強度高耐疲労ばねの製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a high strength and high fatigue resistance spring such as a valve spring used in an automobile engine.

【0002】[0002]

【従来の技術】高強度高耐疲労ばねを製造する方法とし
て、引張強度の高い線材を使用し、コイリング成形し、
熱処理し、ショットピーニングによる残留応力付与処理
し、その後研磨処理して表面最大荒さを低減させる各工
程を実施する方法が知られている。また、特開平2−1
29422号公報には、シリコンクロム清浄鋼線を使用
し、コイリング成形し、熱処理し、ショットピーニング
による残留応力付与処理し、その後研磨処理して表面最
大荒さRmax を5μm以下にして高強度ばねを製造する
方法が記載されている。
2. Description of the Related Art As a method for producing a high-strength and fatigue-resistant spring, a wire having high tensile strength is used, coiled,
A method is known in which heat treatment is performed, residual stress is applied by shot peening, and then polishing is performed to perform each step of reducing the maximum surface roughness. In addition, Japanese Patent Laid-Open No. 2-1
In Japanese Patent No. 29422, a high-strength spring is manufactured by using a silicon chrome clean steel wire, coiling it, heat-treating it, applying residual stress by shot peening, and then polishing it so that the maximum surface roughness Rmax is 5 μm or less. How to do is described.

【0003】[0003]

【発明が解決しようとする課題】従来のショットピーニ
ングによる残留応力付与処理を行いその後研磨処理して
表面最大荒さをRmax 5μmとする方法は、ショットピ
ーニングにより表面の凹凸が大きくなるため比較的表面
を厚く研磨しなければならずそのために工数がかさむと
いった問題がある。
The conventional method of applying residual stress by shot peening and then polishing it to obtain a maximum surface roughness of Rmax of 5 μm results in relatively large surface irregularities due to shot peening. Since it has to be thickly polished, there is a problem that the number of steps is increased.

【0004】本発明は製造コストを低減でき、かつより
耐疲労性の高いコイルばねの製造方法を提供するもので
ある。
The present invention provides a method for manufacturing a coil spring which can reduce the manufacturing cost and has higher fatigue resistance.

【0005】[0005]

【課題を解決するための手段】本発明は、耐疲労性を高
める手段および残留応力付与処理時のショットピーニン
グによる表面荒さの増大を抑制する手段として所定の処
理を施したコイリング成形品に窒化処理が有効であるこ
とを見つけ、本発明を完成したものである。すなわち、
本発明のコイルばねの製造方法は、酸化皮膜を有する鉄
鋼線材をコイリング成形し、熱処理し、表面最大荒さR
max 5μm以下となるようにデスケール処理し、窒化処
理し、ショットピーニングによる残留応力付与処理する
ことを特徴とする。
DISCLOSURE OF THE INVENTION According to the present invention, a coiling molded article which has been subjected to a predetermined treatment as a means for increasing fatigue resistance and a means for suppressing an increase in surface roughness due to shot peening during residual stress imparting treatment is subjected to a nitriding treatment. Has been found to be effective, thus completing the present invention. That is,
The coil spring manufacturing method according to the present invention is carried out by coiling a steel wire rod having an oxide film, heat-treating the steel wire rod, and then the maximum surface roughness R
It is characterized in that descaling is performed so that the maximum is 5 μm or less, nitriding is performed, and residual stress imparting is performed by shot peening.

【0006】コイリング成形品を表面最大荒さRmax 5
μm以下となるようにデスケール処理した後窒化処理す
ることにより、残留応力付与処理時のショットピーニン
グによるばね表面の荒さの増大が抑制され、研磨処理を
実施しなくても済み、研磨処理に要するコストが掛から
ないため、製造コストが大幅に低減できる。また、窒化
処理によりばね表面は窒化されて硬くなるため表面に傷
が生じにくくそれだけ耐久性が向上する。
The coiling molded product is subjected to surface maximum roughness Rmax 5
By descaling to μm or less and then nitriding, the increase in roughness of the spring surface due to shot peening during residual stress application is suppressed, and polishing is not required. Since the cost is not applied, the manufacturing cost can be significantly reduced. Further, the surface of the spring is nitrided and hardened by the nitriding treatment, so that the surface is less likely to be scratched and the durability is improved accordingly.

【0007】本発明のコイルばねの製造方法に使用され
る線材は、窒化処理により表面部が窒化されて表面部の
硬度が高くなる鉄鋼材である。特に、高強度ばね用とし
て従来より使用されている合金鋼オイルテンパー線とか
合金鋼硬引線が適している。係る線材は酸化皮膜をもつ
ものである必要がある。酸化皮膜はその後の工程のコイ
リング成形を容易にする作用を成す。
The wire used in the method for manufacturing the coil spring of the present invention is a steel material in which the surface portion is nitrided by the nitriding treatment to increase the hardness of the surface portion. In particular, alloy steel oil tempered wire or alloy steel hard drawn wire which has been conventionally used for high strength springs is suitable. Such a wire needs to have an oxide film. The oxide film has a function of facilitating coiling molding in the subsequent steps.

【0008】熱処理は残留応力や残留歪みを除去した
り、硬度を高くするために行うもので、具体的には、合
金鋼オイルテンパー線には例えば420℃30分間の低
温焼鈍処理を実施して、残留応力や歪みの除去を行って
いる。また合金硬引線には焼き入れ焼き戻し処理を実施
してその硬度を高くしている。デスケール処理は、コイ
リング成形され、熱処理されたバネ素材の表面の酸化皮
膜を除去する工程である。酸化皮膜を取り除くことによ
りより均一な窒化処理が可能となる。
The heat treatment is performed to remove residual stress and residual strain and to increase hardness. Specifically, the alloy steel oil tempered wire is subjected to low temperature annealing treatment at 420 ° C. for 30 minutes, for example. The residual stress and strain are removed. Further, the hardened alloy wire is subjected to quenching and tempering treatment to increase its hardness. The descaling process is a process of removing the oxide film on the surface of the spring material which has been coiled and heat treated. By removing the oxide film, more uniform nitriding treatment becomes possible.

【0009】なお、デスケール処理において、ばね素材
の表面最大荒さをRmax 5μm以下にする必要がある。
表面最大荒さをRmax 5μmを越えると、窒化の均一性
が不十分となり、また、表面研磨が必要となる。デスケ
ール処理としては電解研磨、酸洗い(例えば5%程度の
希塩酸に数分浸漬する。)、ショットブラスト、ショッ
トピーニング等で実施できる。ショットブラスト、ショ
ットピーニングでは特にばね素材の表面荒さを増大させ
ないように、比較的弱くブラストされるような条件を選
択する必要がある。例えば、ショットピーニングでは、
比較的柔らかいガラスビーズや砥粒を使用するとか、直
径0.3mm以下の細かいカットワイヤを使用すると
か、直径0.3mm以下のスチールショットを使用する
ことによりばね素材の表面最大荒さをRmax 5μm以下
にすることができる。
In the descaling process, the maximum surface roughness of the spring material needs to be Rmax 5 μm or less.
If the maximum surface roughness exceeds Rmax of 5 μm, the uniformity of nitriding will be insufficient and surface polishing will be necessary. The descaling treatment can be performed by electrolytic polishing, pickling (eg, dipping in dilute hydrochloric acid of about 5% for several minutes), shot blasting, shot peening, or the like. In shot blasting and shot peening, it is necessary to select conditions for relatively weakly blasting so as not to increase the surface roughness of the spring material. For example, in shot peening,
By using relatively soft glass beads or abrasive grains, using a fine cut wire with a diameter of 0.3 mm or less, or using steel shot with a diameter of 0.3 mm or less, the maximum surface roughness of the spring material is Rmax 5 μm or less Can be

【0010】デスケールをショットブラスト、ショット
ピーニングで実施することにより、酸化皮膜を除去でき
る以外に次の工程の窒化が容易となる。窒化処理は表面
より約0.2mm程度の深さまで窒化し、表面より0.
05から0.1mmまでの表面部の硬度をHv 800か
ら900程度とするものである。窒化処理そのものは従
来と同様に実施することができる。例えば、アンモニア
雰囲気中に420から550℃で2から6時間処理する
ことにより所定の窒化層を形成できる。
By performing descaling by shot blasting and shot peening, the oxide film can be removed and nitriding in the next step is facilitated. The nitriding treatment is performed by nitriding to a depth of about 0.2 mm from the surface, and nitriding to a depth of about 0.2 mm.
The hardness of the surface portion from 05 to 0.1 mm is about Hv 800 to 900. The nitriding process itself can be performed in the same manner as the conventional one. For example, a predetermined nitride layer can be formed by performing a treatment at 420 to 550 ° C. for 2 to 6 hours in an ammonia atmosphere.

【0011】ショットピーニングによる残留応力付与処
理についても、基本的には従来と同じである。残留応力
は可能な限り表面より深く付与するのが好ましい。本発
明の方法では、表面部が最も高く、従来に比べ表面より
深いところまで分布する圧縮応力が付与される。
The residual stress imparting process by shot peening is basically the same as the conventional one. It is preferable to apply the residual stress as deep as possible to the surface. According to the method of the present invention, a compressive stress that is highest at the surface portion and distributed deeper than the surface is applied as compared with the conventional method.

【0012】[0012]

【実施例】【Example】

実施例1 コイルばねの線材として、炭素0.64重量%(以下、
%は特に明記されていない限り重量%を意味する)、珪
素1.43%、マンガン0.67%、燐0.015%、
硫黄0.006%、クロム1.57%、モリブデン0.
57%、バナジウム0.26%、残部鉄とからなる合金
鋼をオイルテンパーして、引張強度σB=209kgf/mm
2 の合金鋼オイルテンパー線としたものを使用した。
Example 1 As a wire material for a coil spring, 0.64% by weight of carbon (hereinafter,
% Means% by weight unless otherwise specified), silicon 1.43%, manganese 0.67%, phosphorus 0.015%,
Sulfur 0.006%, chromium 1.57%, molybdenum 0.
Oil tempered alloy steel consisting of 57%, vanadium 0.26% and balance iron, tensile strength σ B = 209 kgf / mm
The alloy steel oil tempered wire of 2 was used.

【0013】この線材をコイリングし、線径3.2mm、
コイル中心径21.2mm、総巻数6.5巻、有効巻数
4.5巻、自由高さ50mm、ばね定数2.445kgf/mm
2 のコイルばねに成形した。次にこのコイルばねを50
0℃で30分間熱処理し低温焼鈍をおこなった。その
後、直径0.2mmのスチールボールを使用し、10分間
のマイクロショットピーニングを実施して表面の酸化皮
膜を除去した。この状態でのコイルの表面荒さはRmax
2.5μmであった。
By coiling this wire rod, the wire diameter is 3.2 mm,
Coil center diameter 21.2 mm, total number of turns 6.5, effective number of turns 4.5, free height 50 mm, spring constant 2.445 kgf / mm
Molded into 2 coil springs. Next, replace this coil spring with 50
It heat-processed at 0 degreeC for 30 minutes, and performed low temperature annealing. Then, using a steel ball having a diameter of 0.2 mm, micro shot peening was carried out for 10 minutes to remove the oxide film on the surface. The surface roughness of the coil in this state is Rmax
It was 2.5 μm.

【0014】次にアンモニアガス雰囲気下で500℃、
6時間のガス窒化を行いコイル表面に窒化層を形成し
た。その後、コイルの端面を切削して仕上げ処理し、続
いて直径0.8mmのカットワイヤを使用し、60分間の
ショットピーニングを実施してコイル表面に圧縮残留応
力を付与した。そして最後に250℃30分間の低温焼
鈍を実施し、異常に大きな内部歪みを除去し、弾性限界
の低下を抑制した。これにより本実施例のコイルばねを
得た。
Next, in an atmosphere of ammonia gas at 500 ° C.,
Gas nitriding was performed for 6 hours to form a nitride layer on the coil surface. After that, the end surface of the coil was cut and finished, and then a shot wire having a diameter of 0.8 mm was used for shot peening for 60 minutes to give a compressive residual stress to the coil surface. Finally, low-temperature annealing was performed at 250 ° C. for 30 minutes to remove an abnormally large internal strain and suppress a decrease in elastic limit. As a result, the coil spring of this example was obtained.

【0015】このコイルばねの表面荒さはRmax 2.6
μmであった。また、このコイルばねの5x107 回の
疲れ強さは60±57kgf/mm2 であった。なお、比較の
ために、同じ合金鋼オイルテンパー線を使用し、次に示
す比較例1、比較例2および比較例3の3種類のコイル
ばねを作った。比較例1のコイルばねは、実施例1の酸
化皮膜除去のためのマイクロショットピーニング処理お
よび窒化処理を省略したものである。これら酸化皮膜除
去および窒化処理以外は実施例1と同じにして比較例1
のコイルばねを得た。この比較例1のコイルばねの表面
荒さはRmax 10μm、このコイルばねの5x107
の疲れ強さは60±48kgf/mm2 であった。比較例1の
コイルばねは酸化皮膜除去処理と窒化処理を実施せずか
つ残留応力付与のためのショットピーニングの後に表面
平滑化のための処理を施していない。このためこの比較
例1のコイルばねは製造工程が簡単で製造コストが低い
というメリットがあるが、その反面、比較例1のコイル
ばねの表面荒さは実施例1のコイルばねの表面荒さより
大きく、かつ比較例1のコイルばねの疲れ強さは実施例
1のコイルばねの疲れ強さよりはるかに低い。
The surface roughness of this coil spring is Rmax 2.6.
was μm. The fatigue strength of this coil spring 5 × 10 7 times was 60 ± 57 kgf / mm 2 . For comparison, the same alloy steel oil tempered wire was used to make three types of coil springs of Comparative Example 1, Comparative Example 2 and Comparative Example 3 shown below. The coil spring of Comparative Example 1 omits the micro shot peening treatment and the nitriding treatment for removing the oxide film of Example 1. Comparative Example 1 is the same as Example 1 except for these oxide film removal and nitriding treatments.
Got a coil spring. The surface roughness of the coil spring of Comparative Example 1 was Rmax of 10 μm, and the fatigue strength of this coil spring at 5 × 10 7 times was 60 ± 48 kgf / mm 2 . The coil spring of Comparative Example 1 was not subjected to the oxide film removing treatment and the nitriding treatment, and was not subjected to the surface smoothing treatment after the shot peening for giving the residual stress. Therefore, the coil spring of Comparative Example 1 has the advantages that the manufacturing process is simple and the manufacturing cost is low, but on the other hand, the surface roughness of the coil spring of Comparative Example 1 is larger than that of the coil spring of Example 1. Moreover, the fatigue strength of the coil spring of Comparative Example 1 is far lower than that of the coil spring of Example 1.

【0016】比較例2のコイルばねは、比較例1のコイ
ルばねを最後に電解研磨してその表面荒さをRmax 3.
5μmとしたものである。すなわち比較例2のコイルば
ねは、酸化皮膜除去処理および窒化処理を実施せずかつ
電解研磨で最後にコイルばねの表面を平滑にした以外は
実施例1と同じにして作ったものである。このコイルば
ねの5x107 回の疲れ強さは60±51kgf/mm2 であ
った。この比較例2のコイルばねは、表面平滑化処理を
実施しているため疲れ強さが向上しているが5x107
回の疲れ強さはまだ60±51kgf/mm2 と低い。これは
窒化処理を実施していないことおよび表面平滑化処理に
より残留圧縮応力層の一部が研磨除去されたために起因
すると考えられる。
In the coil spring of Comparative Example 2, the coil spring of Comparative Example 1 was finally electropolished to have a surface roughness of Rmax 3.
It is 5 μm. That is, the coil spring of Comparative Example 2 was manufactured in the same manner as in Example 1 except that the oxide film removal treatment and the nitriding treatment were not performed and the surface of the coil spring was finally smoothed by electrolytic polishing. The fatigue strength of this coil spring after 5 × 10 7 cycles was 60 ± 51 kgf / mm 2 . The coil spring of Comparative Example 2 has improved fatigue strength because the surface smoothing treatment is performed, but it is 5 × 10 7.
Tire fatigue strength is still low at 60 ± 51 kgf / mm 2 . It is considered that this is because the nitriding treatment was not performed and a part of the residual compressive stress layer was polished and removed by the surface smoothing treatment.

【0017】比較例3のコイルばねは、実施例1の酸化
皮膜除去のためのマイクロショットピーニングに代え
て、直径0.8mmのカットワイヤを使用した30分間の
ショットピーニングを実施し、その他の工程は実施例1
とまったく同じにしてコイルばねを得たものである。こ
のコイルばねの表面荒さはRmax 8μmであり、5x1
7 回の疲れ強さは60±52kgf/mm2 であった。ま
た、このコイルばねの酸化皮膜除去工程後の表面荒さは
Rmax 9.0μmであった。この比較例3のコイルばね
は、酸化皮膜除去工程における表面荒さが荒いため最終
製品のコイルばねの表面荒さも荒い。このため疲れ強さ
も低い。
In the coil spring of Comparative Example 3, instead of the micro-shot peening for removing the oxide film of Example 1, 30-minute shot peening was performed using a cut wire having a diameter of 0.8 mm, and other steps were performed. Is Example 1
The coil spring is obtained in exactly the same manner as. The surface roughness of this coil spring is Rmax 8 μm and is 5 × 1.
The fatigue strength at 0 7 times was 60 ± 52 kgf / mm 2 . The surface roughness of the coil spring after the oxide film removing step was Rmax of 9.0 μm. The coil spring of Comparative Example 3 has a rough surface in the oxide film removing step, and thus the surface roughness of the coil spring of the final product is also rough. Therefore, fatigue strength is low.

【0018】実施例1のコイルばねと比較例3のコイル
ばねとの比較から理解できるように、酸化皮膜除去工程
における表面荒さが最終製品の表面荒さと密接に関連
し、酸化皮膜除去工程における表面荒さを低く抑えかつ
窒化処理を実施することにより、最終製品のコイルバネ
の表面荒さを低くできかつ疲れ強さを高くすることがで
きる。
As can be understood from the comparison between the coil spring of Example 1 and the coil spring of Comparative Example 3, the surface roughness in the oxide film removing step is closely related to the surface roughness of the final product, and the surface in the oxide film removing step is By suppressing the roughness to be low and performing the nitriding treatment, the surface roughness of the coil spring of the final product can be reduced and the fatigue strength can be increased.

【0019】実施例2 実施例1の線材と同じ材質の合金鋼を硬引し、引張強度
σB =135kgf/mm2の合金鋼硬引線としたものを線材
として使用した。この線材を用いたことおよびコイリン
グ後の低温焼鈍に代えて930℃×7分加熱した後空冷
で焼入れし、さらに450℃×20分の焼戻しを行った
以外は実施例1の工程と全く同じ工程を実施し、本実施
例のコイルばねを得た。
Example 2 An alloy steel having the same material as that of the wire of Example 1 was hard-drawn, and an alloy steel hard-drawn wire having a tensile strength σ B = 135 kgf / mm 2 was used as the wire. The same process as in Example 1 except that this wire was used, and instead of low-temperature annealing after coiling, heating was performed at 930 ° C. for 7 minutes, followed by quenching by air cooling and further tempering at 450 ° C. for 20 minutes. Was carried out to obtain a coil spring of this example.

【0020】本実施例のコイルばねの表面荒さはRmax
3.2μmであり、5x107 回の疲れ強さは60±5
6kgf/mm2 であった。また、このコイルばねの酸化皮膜
除去工程後の表面荒さはRmax 3.0μmであった。本
実施例の場合も、酸化皮膜除去工程での表面荒さを低く
しているため、最終製品のコイルばねの表面荒さをRma
x 3.2μmと低くでき、かつ、疲れ強さを高くするこ
とができた。
The surface roughness of the coil spring of this embodiment is Rmax.
3.2 μm, the fatigue strength of 5 × 10 7 times is 60 ± 5
It was 6 kgf / mm 2 . The surface roughness of the coil spring after the oxide film removing step was Rmax 3.0 μm. Also in the case of this embodiment, since the surface roughness in the oxide film removing step is low, the surface roughness of the coil spring of the final product is Rma.
x could be as low as 3.2 μm, and fatigue strength could be increased.

【0021】[0021]

【発明の効果】本発明のコイルばねの製造方法では、酸
化皮膜除去工程後の表面荒さRmax 5μm以下と低く
し、かつその後に窒化処理を実施している。このため表
面残留応力付与工程のショットピーニング工程でもコイ
ルばね表面の表面荒さを比較的低くでき、コイルばね表
面を平滑にする表面研磨工程を必要としないで高い疲労
強度をもつコイルばねを製造することもできる。このた
め製造工程を短く、かつ、製造コストを大幅に低下させ
ることができる。
According to the method of manufacturing a coil spring of the present invention, the surface roughness Rmax after the oxide film removing step is reduced to 5 μm or less, and then the nitriding treatment is performed. Therefore, the surface roughness of the coil spring surface can be made relatively low even in the shot peening step of the surface residual stress application step, and a coil spring having high fatigue strength can be manufactured without requiring a surface polishing step for smoothing the coil spring surface. You can also Therefore, the manufacturing process can be shortened and the manufacturing cost can be significantly reduced.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F16F 1/06 B 8917−3J // C21D 7/06 A 7412−4K 9/02 A (72)発明者 中西 光明 愛知県愛知郡東郷町大字春木字蛭池1番地 株式会社東郷製作所内 (72)発明者 近藤 覚 愛知県愛知郡東郷町大字春木字蛭池1番地 株式会社東郷製作所内 (72)発明者 安田 茂 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 中野 修 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 内田 尚志 東京都千代田区大手町二丁目6番3号 新 日本製鐵株式会社内 (72)発明者 小野田 光芳 千葉県習志野市東習志野7丁目5番1号 鈴木金属工業株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location F16F 1/06 B 8917-3J // C21D 7/06 A 7412-4K 9/02 A (72) Inventor Mitsuaki Nakanishi Togo Manufacturing Co., Ltd. 1 Haruki, Toki-machi, Aichi-gun, Aichi Prefecture, Togo Manufacturing Co., Ltd. (72) Inventor Satoshi Kondo 1 Toku-cho, Tochi-machi, Aichi-gun, Aichi Prefecture, Tochi Manufacturing Co., Ltd. (72) Inventor Shigeru Yasuda 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Automobile Co., Ltd. (72) Inventor Osamu Nakano 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Automobile Co., Ltd. (72) Inventor Naoshi Uchida Otemachi, Chiyoda-ku, Tokyo 2-6-3 Shin Nippon Steel Co., Ltd. (72) Inventor Mitsuyoshi Onoda 7-5-1 Higashi Narashino, Narashino City, Chiba Suzuki Metal Industry Co., Ltd. The inner

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 酸化皮膜を有する鉄鋼線材をコイリング
成形し、熱処理し、表面最大荒さRmax 5μm以下とな
るようにデスケール処理し、窒化処理し、ショットピー
ニングによる残留応力付与処理することを特徴とするコ
イルばねの製造方法。
1. A steel wire rod having an oxide film is coiled, heat-treated, descaled so that the maximum surface roughness Rmax is 5 μm or less, nitrided, and subjected to residual stress imparting by shot peening. Coil spring manufacturing method.
【請求項2】 鉄鋼線材は合金鋼オイルテンパー線であ
り、熱処理は低温焼鈍処理である請求項1のコイルばね
の製造方法。
2. The method for producing a coil spring according to claim 1, wherein the steel wire rod is an alloy steel oil temper wire, and the heat treatment is a low temperature annealing treatment.
【請求項3】 鉄鋼線材は合金鋼硬引線であり、熱処理
は焼き入れ焼き戻し処理である請求項1のコイルばねの
製造方法。
3. The method for producing a coil spring according to claim 1, wherein the steel wire rod is an alloy steel hard drawn wire, and the heat treatment is quenching and tempering treatment.
【請求項4】 デスケール処理はショットピーニングに
よってなされる請求項1のコイルばねの製造方法。
4. The method for manufacturing a coil spring according to claim 1, wherein the descaling process is performed by shot peening.
JP1357491A 1991-02-04 1991-02-04 Manufacturing method of coil spring Expired - Fee Related JP2810799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1357491A JP2810799B2 (en) 1991-02-04 1991-02-04 Manufacturing method of coil spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1357491A JP2810799B2 (en) 1991-02-04 1991-02-04 Manufacturing method of coil spring

Publications (2)

Publication Number Publication Date
JPH05339763A true JPH05339763A (en) 1993-12-21
JP2810799B2 JP2810799B2 (en) 1998-10-15

Family

ID=11836941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1357491A Expired - Fee Related JP2810799B2 (en) 1991-02-04 1991-02-04 Manufacturing method of coil spring

Country Status (1)

Country Link
JP (1) JP2810799B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5665179A (en) * 1994-07-28 1997-09-09 Togo Seisakusho Corp. Process for producing a coil spring
DE19983148B3 (en) * 1999-02-19 2012-03-15 Suncall Corporation Spring surface treatment processes
JP2012117092A (en) * 2010-11-29 2012-06-21 Sumitomo Denko Steel Wire Kk Spring having excellent settling resistance and durability, and method for manufacturing the same
DE19908407B4 (en) * 1998-02-27 2013-02-28 Chuo Hatsujo K.K. High-strength valve spring and method for its production

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5665179A (en) * 1994-07-28 1997-09-09 Togo Seisakusho Corp. Process for producing a coil spring
DE19908407B4 (en) * 1998-02-27 2013-02-28 Chuo Hatsujo K.K. High-strength valve spring and method for its production
DE19983148B3 (en) * 1999-02-19 2012-03-15 Suncall Corporation Spring surface treatment processes
JP2012117092A (en) * 2010-11-29 2012-06-21 Sumitomo Denko Steel Wire Kk Spring having excellent settling resistance and durability, and method for manufacturing the same

Also Published As

Publication number Publication date
JP2810799B2 (en) 1998-10-15

Similar Documents

Publication Publication Date Title
JP2994508B2 (en) Manufacturing method of coil spring
CN100582254C (en) Method for preparing high-strength spring
JP3173756B2 (en) Manufacturing method of coil spring
US6346157B1 (en) Manufacturing method of suspension spring for car
CN102481681A (en) Vehicle suspension coil spring and method for manufacturing same
JPH05148537A (en) Coil spring manufacturing method
US6017641A (en) Coil spring resistive to delayed fracture and manufacturing method of the same
JP2810799B2 (en) Manufacturing method of coil spring
JPH06240408A (en) Steel wire for spring and its production
JP2682645B2 (en) Oil tempered hard drawn steel wire spring and method for manufacturing the same
JPH07214216A (en) Manufacture of high-strength spring
US6027577A (en) Manufacturing method of valve spring superior in durability
JPH05156351A (en) Manufacture of coil spring with oil tempered wire
JP3634418B2 (en) Coil spring manufacturing method and high toughness / high tensile strength coil spring
JP3780381B2 (en) High strength coil spring and manufacturing method thereof
JPH05179348A (en) Method for manufacturing coil spring by hot coiling
US5683521A (en) Method for manufacturing spring having high nitrided properties
JP2511663B2 (en) Coil spring manufacturing method
JPH03162550A (en) High strength and high ductility oil tempered steel wire and its manufacture
JP2009270150A (en) Method for manufacturing coil spring
JP3301088B2 (en) Spring with excellent fatigue resistance
JPH0641631A (en) Method for reinforcing spring
JPH06158158A (en) Production of coil spring
JPH05331597A (en) High fatigue strength coil spring
JP3555814B2 (en) Coil spring manufacturing method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980707

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070731

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080731

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100731

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees