[go: up one dir, main page]

JPH05336678A - Charge control method and circuitry for charger - Google Patents

Charge control method and circuitry for charger

Info

Publication number
JPH05336678A
JPH05336678A JP16403492A JP16403492A JPH05336678A JP H05336678 A JPH05336678 A JP H05336678A JP 16403492 A JP16403492 A JP 16403492A JP 16403492 A JP16403492 A JP 16403492A JP H05336678 A JPH05336678 A JP H05336678A
Authority
JP
Japan
Prior art keywords
voltage
capacitance
secondary battery
value
charger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16403492A
Other languages
Japanese (ja)
Inventor
Teruyoshi Mitsuoka
輝義 光岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP16403492A priority Critical patent/JPH05336678A/en
Publication of JPH05336678A publication Critical patent/JPH05336678A/en
Pending legal-status Critical Current

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PURPOSE:To charge a battery accurately with no erroneous operation through a simple constitution by setting the capacitance of a variable capacitive element, representative of voltage information, at a predetermined level when the voltage of secondary battery is within a range lower than the predetermined level. CONSTITUTION:When the voltage of a secondary battery is low, base bias voltage of a transistor Q1 is low and the transistor Q1 is turned OFF. Since an identical potential is applied across a variable capacity diode D1, potential difference goes zero to maximize the capacitance of the diode D1 If the capacitance of the capacitor C1 and the capacitance CD1 of the diode D1 are set such that CD1>>C1, the voltage information capacitance C01 is substantially equal to C1. When the voltage of secondary battery increases to a level sufficient for turning the transistor Q1 ON, the voltage information capacitance C01 becomes equal to the capacitance CD1 of the diode D1. Since the voltage of secondary battery is applied, as it is, onto the diode D1 at that time, the capacitance CD1 decreases as the voltage of secondary battery increases.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は二次側の回路構成が極め
て簡単な可変容量ダイオードを使用する電圧容量変換型
の二次電池電圧検出法を適用したスイッチング型充電器
に関し、詳しくは該充電器の安全な動作を得るために二
次電池電圧が通常の充放電サイクル時の電圧より低い電
圧の場合の制御を二次電池電圧が所定の電圧より高い場
合と等価に行なう為の回路方式及びそのための回路構成
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a switching type charger to which a voltage / capacity conversion type secondary battery voltage detection method using a variable capacitance diode whose secondary side circuit configuration is extremely simple is applied. In order to obtain safe operation of the battery, a circuit system for performing control when the secondary battery voltage is lower than the voltage during the normal charge / discharge cycle and equivalently to the case where the secondary battery voltage is higher than the specified voltage, and The present invention relates to a circuit configuration therefor.

【0002】[0002]

【従来技術】近年機器の小形化、低価格化の為に充電器
に於いてもプライマリ制御方式が一般的となっている。
プライマリ制御方式のスイッチング型充電器の二次側の
構成は図4に示すものが一般的である。即ち、二次電気
1の充電の為の電力は高周波出力トランス2を介して一
次側より供給され、二次側に於いてはこれを整流・平滑
回路3により直流化した後、定電流として二次電池1に
供給する。またこの電流は充電電流の制御の為に充電電
流は電流検出部4にて検出され、その結果を一次側の制
御部(図示省略)に電流情報として伝達する。伝達の手
段として一番簡単なものは発光ダイオードと受光素子と
から成る光結合器(フォトカプラ)である。又、二次電
池の充電の程度を知る為には該電池の電圧を電圧検出回
路5により検出し、これを一次側に伝達し、一次側の制
御部はこれをもとに電池の有無、充電の程度、充電の終
了等を検出し、これにより充電の制御を行なう。
2. Description of the Related Art In recent years, a primary control system has become common also in chargers in order to reduce the size and cost of devices.
The configuration of the secondary side of the switching charger of the primary control system is generally that shown in FIG. That is, the electric power for charging the secondary electricity 1 is supplied from the primary side through the high frequency output transformer 2, and in the secondary side, this is converted into a direct current by the rectifying / smoothing circuit 3 and then converted into a constant current. Supply to the next battery 1. Further, this current is detected by the current detection unit 4 for controlling the charging current, and the result is transmitted as current information to the control unit (not shown) on the primary side. The simplest means of transmission is an optical coupler (photocoupler) including a light emitting diode and a light receiving element. Further, in order to know the degree of charging of the secondary battery, the voltage of the battery is detected by the voltage detection circuit 5, and this is transmitted to the primary side, and the control unit on the primary side determines whether the battery is present or not, The degree of charging, the end of charging, etc. are detected, and the charging is controlled accordingly.

【0003】尚、トランスTの一次側回路にはトランス
に供給する交流信号の通過角或はパルスの幅等を制御す
ることによって、又はスイッチングのON−OFF時間
比を可変することによって上記直流出力電圧を所望値に
調整する、一般にPWM(Puls Width Mo
dulation−パルス幅変調)と呼ばれる制御を行
なうようになっている。
In the primary side circuit of the transformer T, the DC output is obtained by controlling the passage angle or pulse width of the AC signal supplied to the transformer or by changing the ON-OFF time ratio of switching. Generally, PWM (Puls Width Mo
A control called "duration-pulse width modulation" is performed.

【0004】二次電池の電圧を検出する手段は種々考え
られるが、充電の終了を検出するには比較的高い電圧分
解能が必要である。かかる分解能を得るための手段とし
てはアナログ・デジタル変換によるものが一般的であ
る。しかしながらこの手段は二次側の回路構成が複雑と
なるとともに、二次側にはアナログ・デジタル変換回路
に供給する補助的な電源が必要になり、しかも補助的な
電源電力を供給する手段及びこれを安定化する手段等が
必要となるため小形化、低価格化を阻害する要因となっ
ていた。
There are various possible means for detecting the voltage of the secondary battery, but a relatively high voltage resolution is required to detect the end of charging. As a means for obtaining such resolution, analog-to-digital conversion is generally used. However, with this means, the circuit configuration on the secondary side becomes complicated, and an auxiliary power supply for supplying the analog-digital conversion circuit is required on the secondary side. Since it requires a means for stabilizing the above, it has been a factor that hinders downsizing and price reduction.

【0005】一方、二次側の電圧検出部が一番簡単な構
成としては電圧容量変換型とするのが有効であり、その
基本的な構成は図5に示すものが一般的である。この図
の電圧検出部は抵抗器Rと可変容量ダイオードDの2個
の素子で構成し、高い抵抗値を有するRを介して二次電
池1の電圧をDに印加すると共に印加される電圧に依存
するダイオードDの容量を一次側で知ることにより二次
電波電圧を計測するものである。一次側で前記ダイオー
ドDの容量を知る手段としては発振法で、周波数または
発振の周期を計測することが分解能を高くする上で有効
である。一次側と二次側の結合は一般にD1の容量値に
比し充分大きな容量値を有し、かつ必要なアイソレーシ
ョンを得るために充分な耐圧を有する容量器を使用する
ことで達成される。
On the other hand, it is effective to use a voltage-capacitance conversion type as the simplest structure for the secondary side voltage detecting section, and the basic structure is generally that shown in FIG. The voltage detection unit in this figure is composed of two elements, a resistor R and a variable capacitance diode D, and applies the voltage of the secondary battery 1 to D via R having a high resistance value and at the same time applies the applied voltage. The secondary radio wave voltage is measured by knowing the capacitance of the dependent diode D on the primary side. The oscillation method is a means for knowing the capacitance of the diode D on the primary side, and measuring the frequency or the cycle of oscillation is effective in increasing the resolution. The coupling between the primary side and the secondary side is generally achieved by using a capacitor having a capacitance value sufficiently larger than the capacitance value of D1 and having a withstand voltage sufficient to obtain the required isolation.

【0006】図5の構成に於ける二次電池電圧と電圧情
報としてのダイオードDの容量値との関係、即ち電圧容
量変換特性は図6に示す如く、可変容量ダイオードの電
圧容量特性と等しく入力と出力の関係は単調なものとな
る。
As shown in FIG. 6, the relationship between the secondary battery voltage and the capacitance value of the diode D as the voltage information, that is, the voltage-capacitance conversion characteristic in the configuration of FIG. The relationship between the and output becomes monotonous.

【0007】しかしながら、二次電圧の電圧とそれに基
づく充電制御の面から考えた時図6に示す特性は必ずし
も好ましくない。このことを説明すれば、二次電池電圧
が通常の充放電サイクル時の電圧よりも低い時、即ち、
二次電池を完全放電させた時のゼロに近い二次電池電圧
状態を考えると、この状態で通常の急速充電電流で二次
電池を充電することは二次電池の寿命を縮めるので好ま
しくない場合が多い。また、この状態では二次電池電圧
が大きく変動するので、電圧降下をもって充電完了とす
る方法では十分な充電が得られない。つまり、ニッケ
ル、カドミウム等の二次電池は充電が進みほぼ飽和状態
になると、電池電圧が一旦上昇し、その後若干低下した
値で定常終止電圧となる性質があるので、この特性を利
用し上記電圧低下を検出することにより急速充電を終了
するように制御するのが一般的であり、通常この方法は
−△VB 法と呼ばれている。従って、この手法を採用す
る充電器において上述した如く残余電力が極めて少ない
二次電池電圧値が乱上下する領域が存すると、飽和電圧
域の電圧低下検出機構が動作し、未充電であるにもかか
わらず、充電を終了してしまうという不具合が存する。
However, the characteristics shown in FIG. 6 are not always desirable in consideration of the secondary voltage and the charge control based on it. Explaining this, when the secondary battery voltage is lower than the voltage during a normal charge / discharge cycle, that is,
Considering the secondary battery voltage state close to zero when the secondary battery is completely discharged, it is not preferable to charge the secondary battery with a normal rapid charging current in this state because it shortens the life of the secondary battery. There are many. Further, in this state, the secondary battery voltage fluctuates greatly, and thus sufficient charging cannot be obtained by the method of completing charging with a voltage drop. In other words, when a secondary battery such as nickel or cadmium has a property that the battery voltage rises once when the charge progresses to a substantially saturated state and then becomes a steady cutoff voltage at a value that decreases slightly, this characteristic is used. It is common to control so that the rapid charging is terminated by detecting the decrease, and this method is usually called the -ΔV B method. Therefore, in the charger adopting this method, if there is a region where the secondary battery voltage value with extremely small remaining power fluctuates as described above, the voltage drop detection mechanism in the saturation voltage region operates and even if the battery is not charged yet. Regardless, there is a problem that charging is terminated.

【0008】また、特に出力電圧値が零に近い状態で定
電流化回路が働くと、供給電圧との差が大きくなり、そ
の分充電器の発熱が大となってしまう。これはしばしば
見受けられるもので、定電流を発生するために定電流部
の入力電圧をある程度大きく設定しなければならない場
合に著しい。
Further, when the constant current circuit operates especially when the output voltage value is close to zero, the difference from the supply voltage becomes large, and the heat generation of the charger becomes large accordingly. This is often seen, and it is remarkable when the input voltage of the constant current section has to be set to a relatively large value in order to generate the constant current.

【0009】[0009]

【発明の目的】本発明は上述したような従来の充電方法
における問題点を解決し、簡単な構成でありながら誤動
作が無く、しかも正確な充電を行うことができる充電器
の充電制御方法及び回路を提供することを目的としてい
る。
SUMMARY OF THE INVENTION The present invention solves the problems in the conventional charging method as described above, and has a simple structure, which is free from malfunctions and can perform accurate charging, and a charging control method and circuit for a charger. Is intended to provide.

【0010】[0010]

【発明の概要】上記目的を達成するため、本願第1の発
明は、充電すべき二次電池電圧を可変容量素子を用いて
電圧情報として容量値に変換し、この容量に基づいて充
電動作を制御する方法に於いて、二次電池電圧が所定値
以下の範囲に於いては前記電圧情報としての容量値が所
定値に一定になるようにしたことを特徴とする。
SUMMARY OF THE INVENTION In order to achieve the above object, the first invention of the present application converts a secondary battery voltage to be charged into a capacitance value as voltage information using a variable capacitance element, and performs a charging operation based on this capacitance. In the control method, when the secondary battery voltage is within a predetermined value or less, the capacity value as the voltage information is kept constant at a predetermined value.

【0011】本願第2の発明は、充電すべき二次電池の
電圧を可変容量素子を用いて容量値に変換し、この容量
値に基づいて充電動作を制御する方法に於いて、該可変
容量ダイオードに直列に固定容量器を配し、二次電池の
電圧が所定の電圧を超えたとき該固定容量器を短絡する
ようにしたことを特徴とする。
A second aspect of the present invention is a method for converting a voltage of a secondary battery to be charged into a capacitance value by using a variable capacitance element and controlling a charging operation based on the capacitance value. A fixed capacitor is arranged in series with the diode, and the fixed capacitor is short-circuited when the voltage of the secondary battery exceeds a predetermined voltage.

【0012】本願第3の発明は、充電すべき二次電池の
電圧を可変容量素子を用いて容量値に変換し、この容量
値に基づいて充電動作を制御する充電器に於いて、前記
可変容量素子に直列に固定容量素子を接続すると共に、
電池電圧がスレシホールド値以下に於いては前記可変容
量素子の両端電位差が変化せず、スレシホールド値以上
に於いて電池電圧に伴って変化するように構成したこと
を特徴とする。
A third aspect of the present invention is a charger for converting a voltage of a secondary battery to be charged into a capacitance value using a variable capacitance element and controlling a charging operation based on the capacitance value. While connecting a fixed capacitive element in series with the capacitive element,
When the battery voltage is below the threshold value, the potential difference across the variable capacitance element does not change, and above the threshold value, it changes with the battery voltage.

【0013】本願第4の発明は、充電すべき二次電池の
電圧を可変容量素子を用いて電圧情報として容量値に変
換し、この容量値に基づいて充電動作を制御する充電器
に於いて、前記二次電池の電池電圧が所定値以上に於い
て導通するスイッチ手段と、可変容量素子と固定容量素
子とを直列接続すると共にその両端に二次電池電圧を印
加しその合成容量を前記電圧情報として導出する手段
と、二次電池の正極又は負極の電位を2つの抵抗素子を
介して前記可変容量素子の両端夫々に印加する手段とを
具え、前記スイッチ手段によって前記容量素子を短絡す
る如く接続したことを特徴とする。
A fourth invention of the present application is a charger for converting a voltage of a secondary battery to be charged into a capacitance value as voltage information using a variable capacitance element and controlling a charging operation based on the capacitance value. , A switch means that conducts when the battery voltage of the secondary battery is a predetermined value or more, a variable capacitance element and a fixed capacitance element are connected in series, and a secondary battery voltage is applied to both ends thereof And a means for deriving as information and a means for applying the positive or negative potential of the secondary battery to both ends of the variable capacitance element via two resistance elements, so that the capacitance element is short-circuited by the switch means. It is characterized by being connected.

【0014】本願第5の発明は、充電すべき二次電池の
電圧を可変容量素子を用いて容量値に変換し、該容量値
に基づいて充電動作を制御する充電器に於いて前記可変
容量素子の容量値の監視にあたって2個の閾値を設け、
第1の閾値が第2の閾値より高いとしたとき、該可変容
量素子の容量値が第1の閾値より大なるときは急速充電
とし、該容量値が第1の閾値と第2の閾値の間にあると
きはトリクル充電電流とし、該容量値が第2の閾値以下
の場合は充電を停止したことを特徴とする。
A fifth aspect of the present invention is a charger for converting a voltage of a secondary battery to be charged into a capacitance value using a variable capacitance element and controlling a charging operation based on the capacitance value. Two thresholds are set to monitor the capacitance value of the element,
When the first threshold value is higher than the second threshold value, when the capacitance value of the variable capacitance element is larger than the first threshold value, rapid charging is performed, and the capacitance value is the first threshold value and the second threshold value. It is characterized in that the trickle charging current is set when the current value is in between, and the charging is stopped when the capacitance value is equal to or less than the second threshold value.

【0015】[0015]

【実施例】以下、図示した実施例に基づいて本発明を詳
細に説明する。図1は上記目的と達成するために、本発
明において採用する電圧容量変換特性図である。この図
では二次電池電圧を零ボルトより次第に上昇させたと
き、ある電圧に達するまでは出力容量を小さい状態に保
持し、所定電圧以上の電圧では従来と同じように単調な
電圧容量特性を呈する如く回路を構成する。この特性を
利用すれば、一次側の制御部においては1個の閾値を使
用するだけで完全放電電池を充電する際過大な熱が発生
することも、又はその結果電池電圧の乱上下による誤検
出、誤動作を発生することもない。
The present invention will be described in detail below with reference to the illustrated embodiments. FIG. 1 is a voltage-capacity conversion characteristic diagram adopted in the present invention to achieve the above object. In this figure, when the secondary battery voltage is gradually raised from zero volt, the output capacity is kept small until a certain voltage is reached, and at a voltage higher than a predetermined voltage, a monotonous voltage capacity characteristic is exhibited as in the conventional case. The circuit is configured as follows. If this characteristic is used, excessive heat may be generated when a fully discharged battery is charged by using only one threshold value in the primary side control unit, or as a result, false detection due to fluctuations in battery voltage may occur. Also, no malfunction occurs.

【0016】図2は前記図1に示す容量検出特性を利用
した制御例を示す図であって、図2に示す例では2個の
閾値S1 とS2 を設定しているが、簡単な充電器ではS
1 のみの方式も存在し得る。
FIG. 2 is a diagram showing an example of control using the capacitance detection characteristic shown in FIG. 1. In the example shown in FIG. 2, two threshold values S 1 and S 2 are set, but it is simple. S for charger
Method of only 1 may also be present.

【0017】以下、図2について説明する。V0 はこれ
以下の電圧にあっては急速充電電流流さない電圧である
とする。まず、閾値S1 は急速充電電流を流すか否かを
決定する閾値で、この容量に対する電圧値をV1 とし、
この電圧V1 は所定の温度範囲における二次電池の充電
特性に基づいて決定する。一次側の制御部は電圧容量変
換された容量値が閾値S1 を超えていれば、通常の急速
充電動作を行い、急速充電電流にて二次電池を充電しつ
つ該二次電池電圧を監視する。二次電池電圧が所定の時
間飽和するか、または上述したごとく所定の電圧降下が
認められたら、トリクル充電即ち二次電池に過充電によ
る悪影響を与えない程度の小電流による充電に移行する
か、または充電電流を停止する。
Hereinafter, FIG. 2 will be described. It is assumed that V 0 is a voltage below which no rapid charging current flows. First, the threshold value S 1 is a threshold value for determining whether or not to supply the rapid charging current, and the voltage value for this capacity is V 1 .
This voltage V 1 is determined based on the charging characteristics of the secondary battery in a predetermined temperature range. If the converted voltage-capacity value exceeds the threshold value S 1 , the control unit on the primary side performs a normal quick charging operation and monitors the secondary battery voltage while charging the secondary battery with a quick charging current. To do. If the secondary battery voltage is saturated for a predetermined time, or if a predetermined voltage drop is recognized as described above, trickle charging, that is, charging with a small current that does not adversely affect the secondary battery due to overcharge, is started, or Or stop the charging current.

【0018】一方、容量値がS1 以下、且つS2 以上で
あれば、一次側の制御部はトリクル充電電流を二次電池
に供給する。この方法によれば、電池が完全放電したも
のであっても、充電器の発熱を押え、且つ二次電池への
影響を低減することができる。
On the other hand, when the capacity value is S 1 or less and S 2 or more, the controller on the primary side supplies the trickle charging current to the secondary battery. According to this method, even if the battery is completely discharged, it is possible to suppress the heat generation of the charger and reduce the influence on the secondary battery.

【0019】また、閾値S2 は二次電池への電流の供給
を停止するスレシホールド値であって、充電終止電圧V
2 に対応して設定されるもので、これは二次電池への過
充電による電池性能劣化を防止する為に有効であり、更
には二次電池が接続されていない場合の保護としても機
能する。即ち、一次側の制御部は容量値がS2 以下であ
れば、充電電流を供給しないように制御する。
Further, the threshold value S 2 is a threshold value for stopping the supply of current to the secondary battery, and is the charge end voltage V
It is set according to 2 , and it is effective to prevent the deterioration of battery performance due to overcharge to the secondary battery, and also functions as protection when the secondary battery is not connected. .. That is, the control unit on the primary side controls so that the charging current is not supplied when the capacitance value is S 2 or less.

【0020】このように本発明によれば、簡単な一次側
の制御部の動作により、完全放電時からの必要な充電動
作を実現することが可能となる。
As described above, according to the present invention, it is possible to realize a necessary charging operation from the time of complete discharge by a simple operation of the control unit on the primary side.

【0021】図3は上述したごとく図5のダイオードが
電池電圧変化に対応し、前記図1に示した容量変化が得
られるようにした回路例を示す図である。
FIG. 3 is a diagram showing an example of a circuit in which the diode of FIG. 5 responds to the battery voltage change and the capacity change shown in FIG. 1 is obtained as described above.

【0022】この図に示す回路は、トランジスタQ1の
ベースに抵抗器R1 及びR2 で分圧して二次電池1の電
圧を印加すると共にコレクタとエミッタ間に並列にコン
デンサC1 を接続する。又、二次電池電圧検出用可変容
量ダイオードD1 を前記コンデンサC1 に直列に接続す
ると共に、その両端に抵抗R3 とR4 を介して二次電池
1の正極電位を印加し、前記コンデンサC1 と可変容量
ダイオードD1 から成る直列回路の直列合成容量値を二
次電池の電圧情報として充電器の一次側制御回路に伝達
する。この回路において、二次電池1の端子電圧によっ
てトランジスタQ1がON、OFFし、その結果前記図
1に示す如き容量変化を得ることができる。
The circuit shown in this figure, a capacitor C 1 in parallel between the collector and the emitter with by applying the base resistor R 1 and R 2 of the transistor Q1 min and a voltage of the secondary battery 1. Further, a variable capacitance diode D 1 for detecting a secondary battery voltage is connected in series to the capacitor C 1 , and a positive electrode potential of the secondary battery 1 is applied to both ends thereof via resistors R 3 and R 4 to obtain the capacitor. The series combined capacitance value of the series circuit including C 1 and the variable capacitance diode D 1 is transmitted to the primary side control circuit of the charger as voltage information of the secondary battery. In this circuit, the transistor Q1 is turned on and off depending on the terminal voltage of the secondary battery 1, and as a result, the capacitance change as shown in FIG. 1 can be obtained.

【0023】即ち、二次電池電圧が低い場合はトランジ
スタQ1のベースバイアス電圧が低く該トランジスタQ
1がOFF状態となる。この結果、ダイオードD1 の両
端には同一電位が印加されることになるので、電位差が
零となり可変容量ダイオードの容量値は最大値となる。
従って、電圧情報として検出される容量値はダイオード
1 の容量CD1とコンデンサC1 の容量C1 との直列合
成容量となる。
That is, when the secondary battery voltage is low, the base bias voltage of the transistor Q1 is low and the transistor Q1 is low.
1 is turned off. As a result, since the same potential is applied to both ends of the diode D 1 , the potential difference becomes zero and the capacitance value of the variable capacitance diode becomes the maximum value.
Therefore, the capacitance value is detected as voltage information becomes series combined capacitance of the capacitance C 1 of the capacitor C D1 and a capacitor C 1 of the diode D 1.

【0024】ここでコンデンサC1 の値と電位差零にお
けるダイオードD1 の容量CD1との関係を、CD1≫C1
とすれば、電圧情報容量CD1は概ねC1 となる。
Here, the relationship between the value of the capacitor C 1 and the capacitance C D1 of the diode D 1 when the potential difference is zero is expressed as C D1 >> C 1
Then, the voltage information capacity C D1 is approximately C 1 .

【0025】この値はトランジスタQ1がOFF状態で
ある限り不変となるから、コンデンサC1 を例えば前記
図2のS1 とS2 の間の値にしておけば、上述した図2
に示すごとく設定することができる。
Since this value remains unchanged as long as the transistor Q1 is in the OFF state, if the capacitor C 1 is set to a value between S 1 and S 2 in FIG.
It can be set as shown in.

【0026】一方、二次電池電圧が上昇し、トランジス
タQ1 をONするに十分な電圧値V0 となると、コンデ
ンサC1 がトランジスタQ1 のコレクタ・エミッタ間で
短縮された状態となるから、V0 以上の電圧における電
圧情報C01は可変容量ダイオードD1 の容量値CD1とな
る。
On the other hand, the secondary battery voltage rises and a sufficient voltage value V 0 to ON the transistor Q 1, from a state where the capacitor C 1 is shortened between the collector and the emitter of the transistor Q 1, The voltage information C 01 at a voltage equal to or higher than V 0 becomes the capacitance value C D1 of the variable capacitance diode D 1 .

【0027】また、トランジスタQ1がONすると、抵
抗R4 の一方端、即ち、ダイオードのカソード側がアー
スされる結果、可変容量ダイオードには二次電池電圧が
そのまま印加されることになり、電池電圧の上昇に伴っ
て容量値が減少する。従って、図2に示す電圧−容量特
性が得られることになる。
When the transistor Q1 is turned on, one end of the resistor R 4 , that is, the cathode side of the diode is grounded. As a result, the secondary battery voltage is directly applied to the variable capacitance diode, and the battery voltage The capacity value decreases as it rises. Therefore, the voltage-capacitance characteristic shown in FIG. 2 is obtained.

【0028】このように図3に示した回路によれば、本
発明の充電器の電圧検出方法を実現することができる
が、本発明の実現に当たってはこの回路に限らず種々変
形が可能である。例えば、二次電池電圧の異なる二値夫
々に於いてスイッチング動作を行う2つのスイッチ手段
を具え、上述したように夫々の電圧範囲でトリクル充
電、急速充電動作が選択的に実行されるように所要値の
固定容量又は可変容量が接続されるように構成すること
も可能である。
As described above, according to the circuit shown in FIG. 3, the voltage detecting method for the charger of the present invention can be realized. However, the realization of the present invention is not limited to this circuit, and various modifications can be made. .. For example, it is provided with two switch means for performing a switching operation in each of two different secondary battery voltages, and as described above, it is necessary to selectively perform trickle charging or quick charging operation in each voltage range. It is also possible to configure that a fixed or variable capacitance of value is connected.

【0029】また、適用する充電器の方式がスイッチン
グ型充電器の場合を示したが、本発明はこの例に限ら
ず、二次電池電圧を容量値に変換して監視する方式のも
のに広く適用可能である。
Further, although the case where the applied charger system is the switching type charger has been shown, the present invention is not limited to this example, and is widely applied to the system of converting the secondary battery voltage into a capacity value and monitoring. Applicable.

【0030】[0030]

【発明の効果】本発明は以上説明したように二次電池の
電圧を容量値に変換して監視し、トリクル充電又は急速
充電に切替え、又は充電を終了するごとく制御する充電
器において、電圧監視情報としての容量変化が任意に設
定したスレシホールドに基づき特殊な変化を呈するよう
にしたので、二次電池の残余容量に応じてトリクル充電
又は急速充電を適宜選択的に実施することが可能とな
り、充電器の著しい過負荷状態を回避し、さらには完全
放電状態の充電時の御動作を防止し、極めて信頼性の高
い充電器を構成する上で著しい効果がある。
INDUSTRIAL APPLICABILITY As described above, the present invention converts the voltage of the secondary battery into a capacity value and monitors it, and switches to trickle charging or quick charging, or controls the charging as soon as the charging is completed. Since the capacity change as information shows a special change based on the arbitrarily set threshold, it becomes possible to selectively perform trickle charge or quick charge depending on the remaining capacity of the secondary battery. In addition, it is possible to avoid a remarkably overloaded state of the charger and further prevent the charging operation in the completely discharged state, and to have a remarkable effect in constructing an extremely highly reliable charger.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る充電方法において用いる電圧容量
変換特性を示す図。
FIG. 1 is a diagram showing a voltage capacity conversion characteristic used in a charging method according to the present invention.

【図2】本発明の一実施例を示す電圧容量変換時特性と
スレシホールド設定との関係を示す図。
FIG. 2 is a diagram showing a relationship between voltage-capacity conversion characteristics and threshold setting according to an embodiment of the present invention.

【図3】本発明を実施するための電圧容量変換回路の一
例を示す図。
FIG. 3 is a diagram showing an example of a voltage-capacitance conversion circuit for implementing the present invention.

【図4】一般的なプライマリ制御方式のスイッチング型
充電器の二次側を示す構成図。
FIG. 4 is a configuration diagram showing a secondary side of a general primary control type switching charger.

【図5】従来の二次電池電圧容量変換回路を示す図。FIG. 5 is a diagram showing a conventional secondary battery voltage capacity conversion circuit.

【図6】従来の電圧容量変換特性図である。FIG. 6 is a conventional voltage-capacity conversion characteristic diagram.

【符号の説明】[Explanation of symbols]

1 二次電池、2 トランス、3 整流平滑回路、4
電流検出回路、5 電圧検出回路、R、R1 、R2 、R
3 、R4 抵抗、D、D1 可変容量ダイオード、
1 secondary battery, 2 transformer, 3 rectifying and smoothing circuit, 4
Current detection circuit, 5 voltage detection circuit, R, R 1 , R 2 , R
3 , R 4 resistance, D, D 1 variable capacitance diode,

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 充電すべき二次電池電圧を可変容量素子
を用いて電圧情報として容量値に変換し、この容量に基
づいて充電動作を制御する方法に於いて、二次電池電圧
が所定値以下の範囲に於いては前記電圧情報としての容
量値が所定値に一定になるようにしたことを特徴とする
充電器の電池電圧検出方法。
1. A method of converting a secondary battery voltage to be charged into a capacitance value as voltage information using a variable capacitance element and controlling a charging operation based on the capacitance, wherein the secondary battery voltage is a predetermined value. In the following range, the battery voltage detection method for a charger is characterized in that the capacity value as the voltage information is kept constant at a predetermined value.
【請求項2】 充電すべき二次電池の電圧を可変容量素
子を用いて容量値に変換し、この容量値に基づいて充電
動作を制御する方法に於いて、該可変容量ダイオードに
直列に固定容量器を配し、二次電池の電圧が所定の電圧
を超えたとき該固定容量器を短絡するようにしたことを
特徴とする充電器の充電制御回路電圧検出方法。
2. A method for converting a voltage of a secondary battery to be charged into a capacitance value using a variable capacitance element and controlling a charging operation based on the capacitance value, wherein the variable capacitance diode is fixed in series. A charging control circuit voltage detection method for a charger, wherein a capacitor is arranged and the fixed capacitor is short-circuited when the voltage of the secondary battery exceeds a predetermined voltage.
【請求項3】 充電すべき二次電池の電圧を可変容量素
子を用いて容量値に変換し、この容量値に基づいて充電
動作を制御する充電器に於いて、前記可変容量素子に直
列に固定容量素子を接続すると共に、電池電圧がスレシ
ホールド値以下に於いては前記可変容量素子の両端電位
差が変化せず、スレシホールド値以上に於いて電池電圧
に伴って変化するように構成したことを特徴とする充電
器の充電制御回路。
3. A charger that converts the voltage of a secondary battery to be charged into a capacitance value using a variable capacitance element and controls the charging operation based on this capacitance value, in series with the variable capacitance element. A fixed capacitance element is connected, and when the battery voltage is below the threshold value, the potential difference across the variable capacitance element does not change, and above the threshold value, it changes with the battery voltage. A charging control circuit for a charger characterized by the above.
【請求項4】 充電すべき二次電池の電圧を可変容量素
子を用いて電圧情報として容量値に変換し、この容量値
に基づいて充電動作を制御する充電器に於いて、前記二
次電池の電池電圧が所定値以上に於いて導通するスイッ
チ手段と、可変容量素子と固定容量素子とを直列接続す
ると共にその両端に二次電池電圧を印加しその合成容量
を前記電圧情報として導出する手段と、二次電池の正極
又は負極の電位を2つの抵抗素子を介して前記可変容量
素子の両端夫々に印加する手段とを具え、前記スイッチ
手段によって前記容量素子を短絡する如く接続したこと
を特徴とする充電器の充電制御回路。
4. A charger for converting the voltage of a secondary battery to be charged into a capacitance value as voltage information using a variable capacitance element and controlling the charging operation based on this capacitance value. Means for connecting the variable voltage element and the fixed capacitance element in series with the switch means that conducts when the battery voltage is equal to or higher than a predetermined value, and a secondary battery voltage is applied to both ends of the variable capacitance element and the fixed capacitance element to derive the combined capacity as the voltage information And a means for applying a positive or negative electric potential of the secondary battery to both ends of the variable capacitance element via two resistance elements, and the capacitance element is connected so as to be short-circuited by the switch means. The charging control circuit for the charger.
【請求項5】 充電すべき二次電池の電圧を可変容量素
子を用いて容量値に変換し、該容量値に基づいて充電動
作を制御する充電器に於いて前記可変容量素子の容量値
の監視にあたって2個の閾値を設け、第1の閾値が第2
の閾値より高いとすれば、該可変容量素子の容量値が第
1の閾値より大なるときは急速充電とし、該容量値が第
1の閾値と第2の閾値の間にあるときはトリクル充電電
流とし、該容量値が第2の閾値以下の場合は充電を停止
したことを特徴とする充電器の充電制御方法。
5. A charger for converting a voltage of a secondary battery to be charged into a capacitance value by using a variable capacitance element and controlling a charging operation based on the capacitance value. Two thresholds are set for monitoring, and the first threshold is the second
If the capacitance value of the variable capacitance element is larger than the first threshold value, the fast charging is performed, and if the capacitance value is between the first threshold value and the second threshold value, trickle charging is performed. A charging control method for a charger, characterized in that a current is used and charging is stopped when the capacitance value is equal to or less than a second threshold value.
JP16403492A 1992-05-30 1992-05-30 Charge control method and circuitry for charger Pending JPH05336678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16403492A JPH05336678A (en) 1992-05-30 1992-05-30 Charge control method and circuitry for charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16403492A JPH05336678A (en) 1992-05-30 1992-05-30 Charge control method and circuitry for charger

Publications (1)

Publication Number Publication Date
JPH05336678A true JPH05336678A (en) 1993-12-17

Family

ID=15785553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16403492A Pending JPH05336678A (en) 1992-05-30 1992-05-30 Charge control method and circuitry for charger

Country Status (1)

Country Link
JP (1) JPH05336678A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015064735A1 (en) * 2013-11-01 2015-05-07 日本電気株式会社 Charging device, electricity storage system, charging method, and program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015064735A1 (en) * 2013-11-01 2015-05-07 日本電気株式会社 Charging device, electricity storage system, charging method, and program
JPWO2015064735A1 (en) * 2013-11-01 2017-03-09 日本電気株式会社 Charging device, power storage system, charging method and program
US10230250B2 (en) 2013-11-01 2019-03-12 Nec Corporation Charging apparatus, electricity storage system, charging method and program

Similar Documents

Publication Publication Date Title
USRE42114E1 (en) Control system for charging batteries and electronic apparatus using same
US6646894B2 (en) Switching mode power supply
US5408170A (en) Device for charging a secondary battery having interrupt means to prevent overcharging
US6703793B2 (en) Switching power unit
US7656133B2 (en) Capacitor charger with a modulated current varying with an input voltage and method thereof
CN113746347B (en) Flyback switching power supply and sampling control circuit, sampling control method and chip thereof
US4706009A (en) Electronic switching power supply
KR0166361B1 (en) Power-supply circuit
JP3152512B2 (en) Charging method
JP3761336B2 (en) Capacitor power storage device
US6111763A (en) Switching power supply
EP0806076A1 (en) Power-supply circuit
JPH05336678A (en) Charge control method and circuitry for charger
US4969077A (en) Power supply circuit
JP4292851B2 (en) DC power supply
JPH05103430A (en) Battery charging circuit
JPH06245501A (en) Power device
JP3505747B2 (en) Charging device
JP2001078447A (en) Switching power circuit
JP3557665B2 (en) Lighting equipment
JP7680566B1 (en) Mechanical switch drive power supply, power supply device, and deterioration diagnosis method
JPH06284714A (en) Isolated DC-DC converter
JP4407157B2 (en) Power supply device and power supply method
US11495985B1 (en) Constant current constant voltage charger by means of a pulse skipping boost converter
JPS58148633A (en) Automatic charger