JP3505747B2 - Charging device - Google Patents
Charging deviceInfo
- Publication number
- JP3505747B2 JP3505747B2 JP21632193A JP21632193A JP3505747B2 JP 3505747 B2 JP3505747 B2 JP 3505747B2 JP 21632193 A JP21632193 A JP 21632193A JP 21632193 A JP21632193 A JP 21632193A JP 3505747 B2 JP3505747 B2 JP 3505747B2
- Authority
- JP
- Japan
- Prior art keywords
- charging
- voltage
- circuit
- control circuit
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000007600 charging Methods 0.000 title claims description 88
- 238000010280 constant potential charging Methods 0.000 claims description 17
- 238000010277 constant-current charging Methods 0.000 claims description 17
- 238000004804 winding Methods 0.000 claims description 14
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 238000010281 constant-current constant-voltage charging Methods 0.000 claims 1
- 238000001514 detection method Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 8
- 239000003990 capacitor Substances 0.000 description 7
- 230000008901 benefit Effects 0.000 description 5
- 239000013256 coordination polymer Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は複数の二次電池を充電で
きるようにした定電流充電制御回路及び定電圧充電制御
回路を有する充電装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charging device having a constant current charging control circuit and a constant voltage charging control circuit capable of charging a plurality of secondary batteries.
【0002】[0002]
【従来の技術】複数の二次電池を充電する充電装置とし
ては、充電を行う二次電池の充電容量に容量の相違が生
じる(二次電池の電圧の違い)為に、一般的には図8に
示す如き、複数の二次電池を順次充電するシリーズ充電
方式の充電装置が提案されている。2. Description of the Related Art As a charging device for charging a plurality of secondary batteries, there is a difference in the charging capacities of the secondary batteries to be charged (differences in the voltage of the secondary batteries). As shown in FIG. 8, a series charging type charging device has been proposed which sequentially charges a plurality of secondary batteries.
【0003】この図8につき説明するに、図8におい
て、1は電源回路を示しこの電源回路1はプラグ2より
の商用電源をノイズを除去する入力フィルタ3を介し
て、整流回路4に供給し、この整流回路4の出力側に得
られる直流信号を変換トランス5の1次巻線5aの一端
に供給する。Referring to FIG. 8, reference numeral 1 in FIG. 8 denotes a power supply circuit which supplies commercial power from a plug 2 to a rectifying circuit 4 via an input filter 3 for removing noise. The DC signal obtained at the output side of the rectifier circuit 4 is supplied to one end of the primary winding 5a of the conversion transformer 5.
【0004】この変換トランス5の1次巻線5aの他端
をスイッチング用のnpn形トランジスタ6のコレクタ
に接続し、このトランジスタ6のエミッタを接地し、こ
のトランジスタ6のベースにパルス幅変調制御回路7よ
りのパルス幅変調信号を供給し、このトランジスタ6の
オン期間を制御し、この電源回路1の出力信号の電圧及
び電流を制御する。The other end of the primary winding 5a of the conversion transformer 5 is connected to the collector of an npn transistor 6 for switching, the emitter of the transistor 6 is grounded, and the pulse width modulation control circuit is provided at the base of the transistor 6. A pulse width modulation signal from the power supply circuit 7 is supplied to control the ON period of the transistor 6 and the voltage and current of the output signal of the power supply circuit 1.
【0005】この変換トランス5の2次巻線5bの一端
を整流用のダイオード8及び平滑用コンデンサ9の直列
回路を介して、この2次巻線5bの他端に接続し、この
2次巻線5bの他端を接地する。One end of the secondary winding 5b of the conversion transformer 5 is connected to the other end of the secondary winding 5b through a series circuit of a rectifying diode 8 and a smoothing capacitor 9, and this secondary winding 5b is connected. The other end of the wire 5b is grounded.
【0006】この整流回路を構成するダイオード8及び
コンデンサ9の接続点を切替スイッチ10の可動接点1
0aに接続し、この切替スイッチ10の一方の固定接点
101 を第1の被充電用の二次電池11a、電流検出用
の抵抗器12a及び13の直列回路を介して接地し、ま
たこの切替スイッチ10の他方の固定接点102 を第2
の被充電用の二次電池11b、電流検出用の抵抗器12
b及び13の直列回路を介して接地する。The connecting point of the diode 8 and the capacitor 9 forming the rectifying circuit is connected to the movable contact 1 of the changeover switch 10.
0a, and one fixed contact 10 1 of this changeover switch 10 is grounded via a series circuit of a first secondary battery 11a to be charged and resistors 12a and 13 for current detection, and this changeover is also made. The other fixed contact 10 2 of the switch 10
Rechargeable secondary battery 11b, current detecting resistor 12
It is grounded through the series circuit of b and 13.
【0007】またこの整流回路を構成するダイオード8
及びコンデンサ9の接続点を出力電圧検出用の抵抗器1
4及び15の直列回路を介して接地し、この抵抗器14
及び15の接続中点を定電圧充電制御回路を構成する演
算増幅回路16の反転端子(−端子)に接続し、この演
算増幅回路16の非反転端子(+端子)をこの電源回路
1の出力側に定電圧Vo例えば8Vを得るための基準電
圧を得る電池17を介して接地する。The diode 8 which constitutes this rectifying circuit
And the connection point of the capacitor 9 to the resistor 1 for detecting the output voltage
This resistor 14 is grounded through a series circuit of 4 and 15.
And the middle point of connection of 15 are connected to the inverting terminal (− terminal) of the operational amplifier circuit 16 which constitutes the constant voltage charging control circuit, and the non-inverting terminal (+ terminal) of this operational amplifier circuit 16 is the output of this power supply circuit 1. The side is grounded via a battery 17 which obtains a reference voltage for obtaining a constant voltage Vo, for example, 8V.
【0008】また抵抗器12a,12b及び13の接続
点を定電流充電制御回路を構成する演算増幅回路18の
反転端子(−端子)に接続し、この演算増幅回路18の
非反転端子(+端子)をこの電源回路1の出力側に定電
流I例えば1Aの定電流を得るための基準電圧を得る電
池19を介して接地する。The connection point of the resistors 12a, 12b and 13 is connected to the inverting terminal (-terminal) of the operational amplifier circuit 18 constituting the constant current charge control circuit, and the non-inverting terminal (+ terminal) of the operational amplifier circuit 18 is connected. ) Is grounded to the output side of the power supply circuit 1 via a battery 19 which obtains a constant current I, for example, a reference voltage for obtaining a constant current of 1A.
【0009】また整流回路の出力側即ちダイオード8及
びコンデンサ9の接地点をフォトカプラ20を構成する
発光ダイオード20aのアノードに接続し、この発光ダ
イオード20aのカソードを逆流防止用のダイオード2
1及び22を夫々介して演算増幅回路16及び18の出
力端子に夫々接続する。The output side of the rectifying circuit, that is, the ground point of the diode 8 and the capacitor 9 is connected to the anode of the light emitting diode 20a constituting the photocoupler 20, and the cathode of the light emitting diode 20a is connected to the backflow preventing diode 2.
1 and 22 are connected to the output terminals of the operational amplifier circuits 16 and 18, respectively.
【0010】このフォトカプラ20を構成するフォトト
ランジスタ20bのインピーダンス変化に応じた信号を
パルス幅変調制御回路7に供給し、このパルス幅変調制
御回路7においてはこのフォトトランジスタ20bのイ
ンピーダンスに応じたパルス幅のパルス幅変調信号を得
る如くする。A signal corresponding to the impedance change of the phototransistor 20b constituting the photocoupler 20 is supplied to the pulse width modulation control circuit 7, and the pulse width modulation control circuit 7 produces a pulse corresponding to the impedance of the phototransistor 20b. A pulse width modulated signal of the width is obtained.
【0011】また二次電池11a及び抵抗器12aの接
続中点を二次電池の充電が終了したときの電流を検出す
る為の電流検出回路を構成する演算増幅回路23の反転
端子(−端子)に接続し、この演算増幅回路23の非反
転端子(+端子)を二次電池の充電終了電流に対応する
基準電圧が得られる電池24を介して接地する。この演
算増幅回路23においては、二次電池11aの充電が終
了したときに充電制御回路25にハイレベル信号“1”
を供給する。Further, the inverting terminal (-terminal) of the operational amplifier circuit 23 constituting a current detection circuit for detecting the current at the time when the charging of the secondary battery is completed at the connection midpoint of the secondary battery 11a and the resistor 12a. And the non-inverting terminal (+ terminal) of the operational amplifier circuit 23 is grounded via the battery 24 that can obtain the reference voltage corresponding to the charge termination current of the secondary battery. In the operational amplifier circuit 23, the high level signal "1" is sent to the charge control circuit 25 when the charging of the secondary battery 11a is completed.
To supply.
【0012】また二次電池11b及び抵抗器12bの接
続中点を二次電池の充電が終了したときの電流を検出す
る為の電流検出回路を構成する演算増幅回路26の反転
端子(−端子)に接続し、この演算増幅回路26の非反
転端子(+端子)を二次電池の充電終了電流に対応する
基準電圧が得られる電池27を介して接地する。この演
算増幅回路26においても、この二次電池11bの充電
が終了したときに充電制御回路25にハイレベル信号
“1”を供給する。Further, the inverting terminal (-terminal) of the operational amplifier circuit 26 constituting a current detection circuit for detecting the current when the charging of the secondary battery is completed at the midpoint of connection between the secondary battery 11b and the resistor 12b. And the non-inverting terminal (+ terminal) of the operational amplifier circuit 26 is grounded via the battery 27 that can obtain the reference voltage corresponding to the charging end current of the secondary battery. Also in the operational amplifier circuit 26, the high level signal "1" is supplied to the charge control circuit 25 when the charging of the secondary battery 11b is completed.
【0013】また、この充電制御回路25は二次電池1
1aを充電中は表示部28に設けた発光ダイオード28
aを点灯すると共に二次電池11bを充電中は表示部2
8に設けた発光ダイオード28bを点灯し、之等二次電
池11a及び11bの充電終了後は、之等発光ダイオー
ド28a及び28bを消灯する如くする。またこの充電
制御回路25は切替スイッチ10の可動接点10aの切
替を制御するようにしたもので、充電開始時はこの可動
接点10aを一方の固定接点101 に接続して、二次電
池11aを充電し、この二次電池11aを充電終了後、
この可動接点10aを他方の固定接点102 に接続し、
二次電池11bを充電する如くする。The charge control circuit 25 is used for the secondary battery 1
The light emitting diode 28 provided in the display unit 28 while charging 1a
The display unit 2 is turned on while a is turned on and the secondary battery 11b is being charged.
The light emitting diode 28b provided in FIG. 8 is turned on, and after the secondary batteries 11a and 11b are charged, the light emitting diodes 28a and 28b are turned off. The charge control circuit 25 controls switching of the movable contact 10a of the changeover switch 10. At the start of charging, the movable contact 10a is connected to one fixed contact 10 1 to connect the secondary battery 11a. After charging and charging the secondary battery 11a,
This movable contact 10a is connected to the other fixed contact 10 2 ,
The secondary battery 11b is charged.
【0014】斯る図8に示す如き、充電装置において、
二次電池11a又は11bを充電するときは図9A,
B,Cに示す如く、充電初めは二次電池11a又は11
bには比較的大電流が流れるので定電流充電制御回路を
構成する演算増幅回路18の出力側はローレベル信号
“0”となり、定電流充電制御が行なわれる。このとき
は二次電池11a又は11bの両端電圧は図9Aに示す
如く、この二次電池11a又は11bの定格電圧より低
く定電圧充電制御回路を構成する演算増幅回路16の出
力側はハイレベル信号“1”であり、定電圧充電制御回
路は不動作である。In the charging device as shown in FIG.
When charging the secondary battery 11a or 11b, as shown in FIG.
As shown in B and C, the secondary battery 11a or 11 is initially charged.
Since a relatively large current flows through b, the output side of the operational amplifier circuit 18 which constitutes the constant current charge control circuit becomes the low level signal "0", and the constant current charge control is performed. At this time, the voltage across the secondary battery 11a or 11b is lower than the rated voltage of the secondary battery 11a or 11b, as shown in FIG. 9A, and the output side of the operational amplifier circuit 16 that constitutes the constant voltage charging control circuit is at a high level signal. It is "1", and the constant voltage charging control circuit is inoperative.
【0015】次にこの二次電池11a又は11bの両端
電圧が定格電圧となったときは、定電圧充電制御回路を
構成する演算増幅回路16の出力側がローレベル信号
“0”となり、定電圧充電制御され、このときは二次電
池11a又は11bを流れる電流は垂下し、電池19で
決まる値より小さくなるので、この定電流充電制御回路
を構成する演算増幅回路18の出力側がハイレベル信号
“1”となり、この定電流充電制御回路は不動作とな
る。Next, when the voltage across the secondary battery 11a or 11b reaches the rated voltage, the output side of the operational amplifier circuit 16 constituting the constant voltage charging control circuit becomes the low level signal "0", and the constant voltage charging is performed. Under control, the current flowing through the secondary battery 11a or 11b droops and becomes smaller than the value determined by the battery 19, so that the output side of the operational amplifier circuit 18 constituting this constant current charging control circuit outputs a high level signal "1". ", And this constant current charge control circuit becomes inoperative.
【0016】次にこの二次電池11a又は11bに流れ
る電流が電池24又は27で決まる値より低くなったと
きは充電を終了する。Next, when the current flowing through the secondary battery 11a or 11b becomes lower than the value determined by the battery 24 or 27, the charging is terminated.
【0017】[0017]
【発明が解決しようとする課題】然しながら斯る図8に
示す如き充電装置は1個の二次電池11aが充電終了す
ると別の二次電池11bの充電に切り替わり充電するも
ので、斯る従来の充電装置においては充電時間は充電す
る二次電池の数で決まり、例えば1個の二次電池の充電
時間が2時間であれば、2個では4時間という具合に時
間が長くなってしまう不都合があった。However, such a charging device as shown in FIG. 8 is such that when one secondary battery 11a is charged, another secondary battery 11b is switched to charging and the conventional charging device is used. In the charging device, the charging time is determined by the number of secondary batteries to be charged. For example, if the charging time of one secondary battery is 2 hours, the charging time of 2 batteries will be 4 hours. there were.
【0018】本発明は斯る点に鑑み、複数の二次電池を
良好に並列に充電できるようにし、充電時間の短縮を図
ることを目的とする。In view of the above point, the present invention has an object of enabling a plurality of secondary batteries to be favorably charged in parallel and shortening the charging time.
【0019】[0019]
【課題を解決するための手段】本発明充電装置は例え
ば、図1に示す如く、交流電源を整流回路4に供給し、
この整流回路4の出力側に得られる直流信号をパルス幅
変調制御回路7よりのパルス幅変調信号によりスイッチ
ング素子6をオン・オフ制御して変換トランス5の1次
巻線5aに供給し、この変換トランス5の2次巻線5b
の電圧を整流して複数の被充電二次電池11a,11b
に対してそれぞれ充電電力を供給する電源回路1と、こ
の複数の二次電池11a,11bの夫々の電流路に直列
に挿入された抵抗器12a,12bとこの抵抗器12
a,12bの端子間電圧を加算した値と基準値とを比較
してこのパルス幅変調制御回路7を制御する定電流充電
制御回路18と、この複数の二次電池11a,11bの
端子電圧と基準値とを電圧比較器により比較してこのパ
ルス幅変調制御回路7を制御する定電圧充電制御回路1
6と、この定電流充電制御回路18の動作と定電圧充電
制御回路16の動作を検出する定電流定電圧充電判別回
路30とを有し、この定電流定電圧充電判別回路30の
出力によってこの複数の二次電池11a,11bの充電
終了を判定するようにしたものである。The charging device of the present invention, for example, as shown in FIG.
The direct current signal obtained at the output side of the rectifier circuit 4 is turned on / off by the pulse width modulation signal from the pulse width modulation control circuit 7, and the switching element 6 is supplied to the primary winding 5a of the conversion transformer 5. Secondary winding 5b of conversion transformer 5
Of the secondary batteries 11a, 11b to be charged by rectifying the voltage of
To each of the plurality of secondary batteries 11a and 11b, and resistors 12a and 12b inserted in series in the respective current paths of the plurality of secondary batteries 11a and 11b.
The constant current charging control circuit 18 for controlling the pulse width modulation control circuit 7 by comparing the value obtained by adding the voltage between terminals of a and 12b with the reference value, and the terminal voltage of the plurality of secondary batteries 11a, 11b. A constant voltage charge control circuit 1 for controlling the pulse width modulation control circuit 7 by comparing the reference value with a voltage comparator.
6 and a constant current / constant voltage charge determination circuit 30 for detecting the operation of the constant current / charge control circuit 18 and the operation of the constant voltage / charge control circuit 16. The end of charging of the plurality of secondary batteries 11a and 11b is determined.
【0020】[0020]
【作用】本発明によれば定電流定電圧充電判別回路30
によって、この複数の二次電池に対する充電状態が定電
流充電であると判定された時には、この定電流定電圧充
電判別回路30の出力によって、この電流検出回路によ
る充電終了の判定を禁止するようにしたもので、複数の
二次電池を並列充電したときの充電終了の誤検出を回避
できる。According to the present invention, the constant current / constant voltage charging determination circuit 30 is provided.
Therefore, when it is determined that the state of charge of the plurality of secondary batteries is constant current charging, the output of the constant current / constant voltage charging determination circuit 30 prohibits the determination of the end of charging by the current detection circuit. Therefore, it is possible to avoid erroneous detection of the end of charging when a plurality of secondary batteries are charged in parallel.
【0021】[0021]
【実施例】以下、図1を参照して本発明充電装置の一実
施例につき説明しよう。この図1において、図8に対応
する部分には同一符号を付し、その詳細説明は省略す
る。本例においては、プラグ2よりの商用電源を充電用
の電源回路1を構成するノイズを除去する入力フィルタ
3を介して整流回路4に供給し、この整流回路4の出力
側に得られる直流信号を変換トランス3の1次巻線5a
の一端に供給する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the charging device of the present invention will be described below with reference to FIG. In FIG. 1, parts corresponding to those in FIG. 8 are designated by the same reference numerals, and detailed description thereof will be omitted. In this example, a commercial power source from the plug 2 is supplied to the rectifier circuit 4 via an input filter 3 that removes noise that constitutes the power source circuit 1 for charging, and a DC signal obtained at the output side of the rectifier circuit 4 is supplied. Primary winding 5a of conversion transformer 3
Supply at one end of.
【0022】この変換トランス5の1次巻線5aの他端
をスイッチング用のnpn形トランジスタ6のコレクタ
に接続し、このトランジスタ6のエミッタを接地し、こ
のトランジスタ6のベースにパルス幅変調制御回路7よ
りのパルス幅変調信号を供給し、このトランジスタ6の
オン期間(オンデューティ)を制御しこの電源回路1の
出力信号の電圧及び電流を制御する如くする。The other end of the primary winding 5a of the conversion transformer 5 is connected to the collector of an npn transistor 6 for switching, the emitter of the transistor 6 is grounded, and the base of the transistor 6 has a pulse width modulation control circuit. The pulse width modulation signal from the power supply circuit 7 is supplied to control the ON period (ON duty) of the transistor 6 to control the voltage and current of the output signal of the power supply circuit 1.
【0023】この変換トランス5の2次巻線5bの一端
を整流用のダイオード8及び平滑用コンデンサ9の直列
回路を介して、この2次巻線5bの他端に接続し、この
2次巻線5bの他端を接地する。One end of the secondary winding 5b of the conversion transformer 5 is connected to the other end of the secondary winding 5b through a series circuit of a rectifying diode 8 and a smoothing capacitor 9, and this secondary winding 5b is connected. The other end of the wire 5b is grounded.
【0024】この電源回路1の出力端子である整流回路
を構成するダイオード8及びコンデンサ9の接続点を夫
々逆流防止用のダイオード31a及び31bを介して第
1及び第2の被充電用の二次電池11a及び11bの正
極に夫々接続し、この二次電池11a及び11bの夫々
の負極を夫々電流検出用の抵抗器12a及び12bを介
して夫々接地する如くする。The connection points of the diode 8 and the capacitor 9 which form the rectifying circuit, which is the output terminal of the power supply circuit 1, are connected to the first and second secondary to be charged via the backflow preventing diodes 31a and 31b, respectively. The positive electrodes of the batteries 11a and 11b are respectively connected, and the negative electrodes of the secondary batteries 11a and 11b are grounded via the current detecting resistors 12a and 12b, respectively.
【0025】またこの整流回路を構成するダイオード8
及びコンデンサ9の接続点を出力電圧検出用の抵抗器1
4及び15の直列回路を介して接地し、この抵抗器14
及び15の接続中点を定電圧充電制御回路を構成する演
算増幅回路16の反転端子(−端子)に接続し、この演
算増幅回路16の非反転端子(+端子)を、この電源回
路1の出力側に定電圧Vo例えば8Vを得るための基準
電圧を得る電池17を介して接地する。Further, the diode 8 constituting this rectifying circuit
And the connection point of the capacitor 9 to the resistor 1 for detecting the output voltage
This resistor 14 is grounded through a series circuit of 4 and 15.
And 15 are connected to the inverting terminal (− terminal) of the operational amplifier circuit 16 that constitutes the constant voltage charging control circuit, and the non-inverting terminal (+ terminal) of this operational amplifier circuit 16 is connected to the power supply circuit 1. The output side is grounded via a battery 17 that obtains a reference voltage for obtaining a constant voltage Vo, for example, 8V.
【0026】また二次電池11a及び抵抗器12aの接
続点を抵抗器32aを介して定電流充電制御回路を構成
する演算増幅回路18の反転端子(−端子)に接続する
共に、二次電池11b及び抵抗器12bの接続点を抵抗
器32bを介してこの演算増幅回路18の反転端子(−
端子)に接続する。The connection point between the secondary battery 11a and the resistor 12a is connected via the resistor 32a to the inverting terminal (-terminal) of the operational amplifier circuit 18 constituting the constant current charge control circuit, and the secondary battery 11b is connected. The connection point of the resistor 12b and the resistor 12b is connected via the resistor 32b to the inverting terminal (-
Terminal).
【0027】この場合この演算増幅回路18の反転端子
(−端子)には二次電池11a及び11bに夫々流れる
充電電流の合成電流に対応する電圧が供給される。また
この場合、この抵抗器32a,32bの抵抗値を抵抗器
12a,12bの抵抗値に比較して大きくすれば、この
抵抗器32a,32bに流れる電流を無視することがて
きる。またこのときは演算増幅回路18の反転端子(−
端子)のインピーダンスは大きいので、この抵抗器32
a,32bには電流はほとんど流れず、耐電力の小さな
小型の抵抗器が使用できる。In this case, the voltage corresponding to the combined current of the charging currents flowing in the secondary batteries 11a and 11b is supplied to the inverting terminal (-terminal) of the operational amplifier circuit 18. Further, in this case, if the resistance values of the resistors 32a and 32b are made larger than the resistance values of the resistors 12a and 12b, the current flowing through the resistors 32a and 32b can be ignored. At this time, the inverting terminal (-
Since the impedance of (terminal) is large, this resistor 32
Little current flows in a and 32b, and a small resistor having a small withstand power can be used.
【0028】またこの演算増幅回路18の非反転端子
(+端子)をこの電源回路1の出力側に定電流I例えば
1Aの定電流を得るための基準電圧を得る電池19を介
して接地する。The non-inverting terminal (+ terminal) of the operational amplifier circuit 18 is grounded to the output side of the power supply circuit 1 through a battery 19 which obtains a constant current I, for example, a reference voltage for obtaining a constant current of 1A.
【0029】また二次電池11a及び抵抗器12aの接
続中点を抵抗器34aを介して二次電池の充電が終了し
たときの電流を検出する為の電流検出回路を構成する演
算増幅回路23の反転端子(−端子)に接続し、この演
算増幅回路23の非反転端子(+端子)を二次電池の充
電終了電流に対応する基準電圧が得られる電池24を介
して接地する。The operational amplifier circuit 23, which constitutes a current detection circuit for detecting the current when the secondary battery 11a and the resistor 12a are connected to each other via the resistor 34a, when the charging of the secondary battery is completed. The operational amplifier circuit 23 is connected to the inverting terminal (− terminal), and the non-inverting terminal (+ terminal) of the operational amplifier circuit 23 is grounded via the battery 24 that can obtain the reference voltage corresponding to the charge termination current of the secondary battery.
【0030】また二次電池11b及び抵抗器12bの接
続中点を抵抗器34bを介して二次電池の充電が終了し
たときの電流を検出する為の電流検出回路を構成する演
算増幅回路26の反転端子(−端子)に接続し、この演
算増幅回路26の非反転端子(+端子)を二次電池の充
電終了電流に対応する基準電圧が得られる電池27を介
して接地する。Further, the operational amplifier circuit 26 constituting a current detection circuit for detecting the current when the secondary battery 11b and the resistor 12b are connected to each other via the resistor 34b at the midpoint of the connection between the secondary battery 11b and the resistor 12b. The operational amplifier circuit 26 is connected to the inverting terminal (− terminal), and the non-inverting terminal (+ terminal) of the operational amplifier circuit 26 is grounded via the battery 27 that obtains the reference voltage corresponding to the charge termination current of the secondary battery.
【0031】本例においては定電圧充電制御回路を構成
する演算増幅回路16の出力端子を定電流定電圧充電判
別回路を構成する演算増幅回路30の反転端子(−端
子)に接続すると共に定電流充電制御回路を構成する演
算増幅回路18の出力端子をこの定電流定電圧充電判別
回路を構成する演算増幅回路30の非反転端子(+端
子)に接続する。In this example, the output terminal of the operational amplifier circuit 16 which constitutes the constant voltage charge control circuit is connected to the inverting terminal (-terminal) of the operational amplifier circuit 30 which constitutes the constant current constant voltage charge discriminating circuit, and the constant current. The output terminal of the operational amplifier circuit 18 forming the charge control circuit is connected to the non-inverting terminal (+ terminal) of the operational amplifier circuit 30 forming the constant current / constant voltage charge determination circuit.
【0032】この場合この定電流定電圧充電判別回路を
構成する演算増幅回路30の出力端子は定電流充電制御
回路が動作している演算増幅回路18の出力端子がロー
レベル信号“0”のときはローレベル信号“0”であ
り、定電圧充電制御回路が動作している演算増幅回路1
6の出力端子がローレベル信号“0”のときはハイレベ
ル信号“1”となる。In this case, the output terminal of the operational amplifier circuit 30 which constitutes the constant current / constant voltage charge discrimination circuit is when the output terminal of the operational amplifier circuit 18 in which the constant current charge control circuit is operating is the low level signal "0". Is a low level signal “0”, and the operational amplifier circuit 1 in which the constant voltage charge control circuit is operating
When the output terminal of 6 is a low level signal "0", it becomes a high level signal "1".
【0033】また本例においては、この演算増幅回路3
0の出力端子をアンド回路33a及び33bの夫々の他
方の入力端子に接続すると共に充電終了電流検出用の演
算増幅回路23及び26の夫々の出力端子を夫々このア
ンド回路33a及び33bの夫々の一方の入力端子に接
続し、このアンド回路33a及び33bの夫々の出力信
号を充電制御回路25に供給する。Further, in this example, the operational amplifier circuit 3
The output terminal of 0 is connected to the other input terminal of each of the AND circuits 33a and 33b, and the output terminals of the operational amplifier circuits 23 and 26 for detecting the charging end current are connected to one of the AND circuits 33a and 33b, respectively. And the output signals of the AND circuits 33a and 33b are supplied to the charge control circuit 25.
【0034】本例によればこのアンド回路33a及び3
3bにより定電流充電制御回路が動作をしているときに
は充電終了の判断をしない如くしている。According to this example, the AND circuits 33a and 33a
When the constant current charge control circuit is in operation by 3b, the judgment of the end of charging is not made.
【0035】またこの充電制御回路25においては二次
電池11a及び11bにおいて充電をスタートしたとき
に夫々表示部28の発光ダイオード28a及び28bを
点灯し、このアンド回路33a及び33bの出力信号が
ハイレベル信号“1”となったときに、この発光ダイオ
ード28a及び28bを消灯すると共にこの充電を終了
する如くする。In the charge control circuit 25, when the secondary batteries 11a and 11b start charging, the light emitting diodes 28a and 28b of the display unit 28 are turned on, and the output signals of the AND circuits 33a and 33b are at a high level. When the signal becomes "1", the light emitting diodes 28a and 28b are turned off and the charging is terminated.
【0036】この図1例の動作につき説明する。先ず、
二次電池11a及び11bを同時に充電スタートする場
合につき、図2を参照して説明する。この場合、図1に
おいては逆流防止用のダイオード31a及び31bが設
けられているので、二次電池11aと11bと間に電池
電圧に相違があっても、逆流の電流が流れる不都合はな
く、充電電流は二次電池11a及び11bに分流され並
列に充電することができる。The operation of the example of FIG. 1 will be described. First,
A case where charging of the secondary batteries 11a and 11b is started at the same time will be described with reference to FIG. In this case, since the backflow prevention diodes 31a and 31b are provided in FIG. 1, even if there is a difference in the battery voltage between the secondary batteries 11a and 11b, there is no inconvenience that the backflow current flows, and charging is performed. The current is shunted to the secondary batteries 11a and 11b and can be charged in parallel.
【0037】この二次電池11a及び11bを同時に並
列に充電するときは図2A,B及びCに示す如く、充電
初めは二次電池11a及び11bに比較的大電流が流れ
ると共に定電流充電制御回路を構成する演算増幅回路1
8の反転端子(−端子)には二次電池11a及び11b
に夫々流れる充電電流の合成電流に対応する電圧が供給
され、この演算増幅回路18の出力側はローレベル信号
“0”となり、定電流充電制御が行なわれる。When the secondary batteries 11a and 11b are simultaneously charged in parallel, as shown in FIGS. 2A, 2B and 2C, a relatively large current flows through the secondary batteries 11a and 11b at the beginning of charging and a constant current charge control circuit is provided. Operational amplifier circuit 1
The secondary batteries 11a and 11b are connected to the inverting terminal (-terminal) of No. 8
A voltage corresponding to the combined current of the charging currents flowing to each of them is supplied, the output side of the operational amplifier circuit 18 becomes a low level signal "0", and constant current charging control is performed.
【0038】このときは二次電池11a及び11bの両
端電圧は図2Aに示す如く、この二次電池11a及び1
1bの定格電圧で決定される所定の電圧Voより低く、
定電圧充電制御回路を構成する演算増幅回路16の出力
側はハイレベル信号“1”であり、定電圧充電制御回路
は不動作である。At this time, the voltage across the secondary batteries 11a and 11b is as shown in FIG. 2A.
Lower than a predetermined voltage Vo determined by the rated voltage of 1b,
The output side of the operational amplifier circuit 16 constituting the constant voltage charge control circuit is the high level signal "1", and the constant voltage charge control circuit is inoperative.
【0039】次に、この二次電池11a及び11bの両
端電圧が所定の電圧Voとなったときは、この定電圧充
電制御回路を構成する演算増幅回路16の出力側がロー
レベル信号“0”となり、定電圧充電制御される。Next, when the voltage across the secondary batteries 11a and 11b reaches a predetermined voltage Vo, the output side of the operational amplifier circuit 16 constituting the constant voltage charging control circuit becomes a low level signal "0". , Controlled by constant voltage charging.
【0040】このときは二次電池11a及び11bを流
れる電流は図2B及びCに示す如く垂下し、この合成電
流で決まる電圧が電池19の基準電圧より小さくなるの
で、この定電流充電制御回路を構成する演算増幅回路1
8の出力側がハイレベル信号“1”となり、この定電流
充電制御回路は不動作となる。At this time, the currents flowing through the secondary batteries 11a and 11b droop as shown in FIGS. 2B and 2C, and the voltage determined by this combined current becomes smaller than the reference voltage of the battery 19. Operational amplifier circuit 1
The output side of 8 becomes a high level signal "1", and this constant current charging control circuit becomes inoperative.
【0041】次にこの二次電池11a及び11bに流れ
電流が夫々電池24及び27で決まる値よりも低くなっ
たときはすでに定電圧充電制御回路は動作しており、演
算増幅回路30の出力側はハイレベル信号“1”である
ので夫々充電を終了する。Next, when the currents flowing through the secondary batteries 11a and 11b become lower than the values determined by the batteries 24 and 27, respectively, the constant voltage charging control circuit is already in operation and the output side of the operational amplifier circuit 30. Is a high level signal "1", the charging is terminated respectively.
【0042】斯る本例によればこの2個の二次電池11
a,11bを充電するのに定電流充電制御の時間が1個
の二次電池を充電する場合の時間例えば20分の略2倍
の40分程度であったが、定電圧充電制御の時間は1個
の二次電池を充電する場合と略等しい例えば1時間10
分であり、本例によれば2個の二次電池を順次充電する
場合に比し充電時間が大幅に短縮できる利益がある。According to the present example, the two secondary batteries 11
The time for constant current charging control to charge a and 11b was about 40 minutes, which is about twice as long as 20 minutes for charging one secondary battery, but the time for constant voltage charging control is Almost equal to the case of charging one secondary battery, for example, 1 hour 10
According to this example, there is an advantage that the charging time can be significantly shortened as compared with the case where two secondary batteries are sequentially charged.
【0043】次に図1例により、二次電池11aを充電
中に、二次電池11bの充電スタートする場合(2個の
二次電池11a,11bの電池電圧が違う場合も同様で
ある。)につき、図3A,B,C及びDを参照して説明
する。Next, referring to the example of FIG. 1, when the charging of the secondary battery 11b is started while the secondary battery 11a is being charged (the same applies when the battery voltages of the two secondary batteries 11a and 11b are different). Will be described with reference to FIGS. 3A, 3B, 3C and 3D.
【0044】最初に二次電池11aが図1の充電装置に
装着され、図3A及びBに示す如く従来例と同様に、初
め定電流充電制御され、その後定電圧充電制御され充電
電流が垂下状態に入っているが、充電は終了に至ってい
ないとき(I期間経過後)に、二次電池11bの充電を
スタートしたとする。First, the secondary battery 11a is mounted on the charging device of FIG. 1, and as shown in FIGS. 3A and 3B, similarly to the conventional example, the constant current charge control is first performed, and then the constant voltage charge control is performed and the charging current droops. It is assumed that the charging of the secondary battery 11b is started when the charging is completed but the charging is not completed (after the lapse of the period I).
【0045】このときは、この二次電池11bの電圧が
所定電圧Voよりも低いため、この充電装置は図3Cに
示す如く再び定電流充電制御状態となり、電源回路1の
出力側の電圧は、この二次電池11bの電圧に降下す
る。At this time, since the voltage of the secondary battery 11b is lower than the predetermined voltage Vo, the charging device is again in the constant current charging control state as shown in FIG. 3C, and the voltage on the output side of the power supply circuit 1 becomes The voltage drops to the voltage of the secondary battery 11b.
【0046】このときはこの電源回路1の出力電圧が二
次電池11aの電圧よりも下がっている(II期間)た
め、このII期間においては図3Bに示す如く充電電流
が、極めて低下するが、このときは定電流定電圧充電判
別回路を構成する演算増幅回路30の出力側は図3Dに
示す如くローレベル信号“0”であり充電終了の誤判定
を行うことがない。At this time, since the output voltage of the power supply circuit 1 is lower than the voltage of the secondary battery 11a (II period), the charging current is extremely reduced in the II period as shown in FIG. 3B. At this time, the output side of the operational amplifier circuit 30 which constitutes the constant current / constant voltage charge determination circuit has the low level signal "0" as shown in FIG.
【0047】次に二次電池11bの充電が進行し、電流
垂下(III 期間)となるが、二次電池11aにも、充電
電流がながれ始める。これは二次電池11b側の電池電
圧が二次電池11aの電池電圧に非常に接近した状態で
ある。Next, the charging of the secondary battery 11b proceeds and the current drops (III period), but the charging current also starts flowing to the secondary battery 11a. This is a state in which the battery voltage on the secondary battery 11b side is very close to the battery voltage on the secondary battery 11a.
【0048】このときの演算増幅回路30の出力側は二
次電池11a及び11bの合成電流が図3Bに一点鎖線
で示す如く所定の定電流I例えば1Aであるときには依
然、定電流充電制御である。At this time, the output side of the operational amplifier circuit 30 is still under constant current charge control when the combined current of the secondary batteries 11a and 11b is a predetermined constant current I, for example 1A, as shown by the chain line in FIG. 3B. .
【0049】そして二次電池11aの充電電流が上昇
後、再度垂下してきたとき(IV期間)、この演算増幅回
路30の出力側はローレベル信号“0”からハイレベル
信号“1”に切り替わる。このときは図3B,Cに示す
如く二次電池11a及び11bの合成充電電流が垂下に
なったこととなり、これ以降、充電終了電流検出用の演
算増幅回路23及び26の充電終了判定信号が有効とな
る。When the charging current of the secondary battery 11a rises and then drops again (IV period), the output side of the operational amplifier circuit 30 switches from the low level signal "0" to the high level signal "1". At this time, as shown in FIGS. 3B and 3C, the combined charging current of the secondary batteries 11a and 11b is drooping, and thereafter, the charging end determination signals of the operational amplifier circuits 23 and 26 for detecting the charging end current are valid. Becomes
【0050】本例は上述の如く定電流定電圧判別回路を
構成する演算増幅回路30により定電流充電制御か又は
定電圧充電制御かを識別することで、複数の二次電池を
並列に充電することで生じる充電終了誤検出を回避する
ことができる利益がある。In this example, a plurality of secondary batteries are charged in parallel by distinguishing between constant current charging control and constant voltage charging control by the operational amplifier circuit 30 which constitutes the constant current / constant voltage determining circuit as described above. There is an advantage that it is possible to avoid the false detection of the end of charging that occurs.
【0051】また本例によれば充電装置の定電流充電制
御するための電流検出は複数の二次電池11a,11b
の夫々接続している充電電流検出用の抵抗器12a,1
2bを利用し、この複数の二次電池11a,11bの充
電電流の合成電流として取り出しているので、従来必要
であった定電流制御用電流検出用の耐電力の大きな形状
の大型の抵抗器13を必要としない利益がある。Further, according to this example, the current detection for controlling the constant current charging of the charging device is performed by the plurality of secondary batteries 11a and 11b.
Of the charging current detection resistors 12a and 1 connected to the respective
2b is used to take out as a combined current of the charging currents of the plurality of secondary batteries 11a and 11b, so a large-sized resistor 13 having a large withstand power for current detection for constant current control, which has been conventionally required. There are benefits that do not require.
【0052】また、図4は本発明の他の実施例を示す。
この図4につき説明するに、この図4において、図1に
対応する部分には同一符号を付し、その詳細説明は省略
する。この図4においては、図1のアンド回路33a及
び33bを設けずに演算増幅回路30の出力側を夫々逆
流防止用のダイオード35a及び35bを介して、充電
終了電流検出用の演算増幅回路23及び26の夫々の反
転端子(−端子)に接続するようにしたものである。そ
の他は図1と同様に構成したものである。FIG. 4 shows another embodiment of the present invention.
4 will be described. In FIG. 4, parts corresponding to those in FIG. 1 are designated by the same reference numerals, and detailed description thereof will be omitted. In FIG. 4, the output side of the operational amplifier circuit 30 is provided without the AND circuits 33a and 33b of FIG. 1 via the diodes 35a and 35b for preventing backflow, respectively, and the operational amplifier circuit 23 for detecting the charging end current and 26 is connected to each inverting terminal (-terminal). Others are the same as those in FIG.
【0053】斯る、図4においても、定電流充電制御の
ときは演算増幅回路30の出力側はハイレベル信号
“1”となり、これが演算増幅回路23及び26の反転
端子(−端子)に供給されるので、このときは、この演
算増幅回路23及び26は充電終了を判定することがな
い。従ってこの図4例においても、図1例と同様の作用
効果が得られることは容易に理解できよう。Also in FIG. 4, in the constant current charging control, the output side of the operational amplifier circuit 30 becomes a high level signal "1", which is supplied to the inverting terminals (-terminals) of the operational amplifier circuits 23 and 26. Therefore, at this time, the operational amplifier circuits 23 and 26 do not determine the end of charging. Therefore, it can be easily understood that the same effects as those in the example of FIG. 1 can be obtained in the example of FIG.
【0054】図5は本発明の他の実施例を示す。この図
5につき説明するに、この図5において図1,図8に対
応する部分には同一符号を付し、その詳細説明は省略す
る。図5例においては、電源回路1の正極端子を接続ス
イッチ36及び37の夫々の可動接点36a及び37a
に接続し、この接続スイッチ36の固定接点36bを二
次電池11a及び抵抗器12aの直列回路を介して電源
回路1の負極端子に接続し、また接続スイッチ37の固
定接点37bを二次電池11b及び抵抗器12bの直列
回路を介して電源回路1の負極端子に接続する。FIG. 5 shows another embodiment of the present invention. 5 will be described. In FIG. 5, parts corresponding to those in FIGS. 1 and 8 are designated by the same reference numerals, and detailed description thereof will be omitted. In the example of FIG. 5, the positive terminal of the power supply circuit 1 is connected to the movable contacts 36a and 37a of the connection switches 36 and 37, respectively.
The fixed contact 36b of the connection switch 36 is connected to the negative terminal of the power supply circuit 1 through the series circuit of the secondary battery 11a and the resistor 12a, and the fixed contact 37b of the connection switch 37 is connected to the secondary battery 11b. And a resistor 12b connected in series to the negative terminal of the power supply circuit 1.
【0055】また二次電池11a及び抵抗器12aの接
続点を充電終了電流検出用の演算増幅回路23の反転端
子(−端子)に接続すると共に二次電池11b及び抵抗
器12bの接続点を充電終了電流検出用の演算増幅回路
26の反転端子(−端子)に接続し、之等演算増幅回路
23及び26の夫々の非反転端子(+端子)を充電終了
電流に対応する基準電圧が得られる電池24を介して接
地する。Further, the connection point of the secondary battery 11a and the resistor 12a is connected to the inverting terminal (-terminal) of the operational amplifier circuit 23 for detecting the charging end current, and the connection point of the secondary battery 11b and the resistor 12b is charged. The reference voltage corresponding to the charging end current is obtained by connecting to the inverting terminal (− terminal) of the operational amplifier circuit 26 for detecting the termination current, and each non-inverting terminal (+ terminal) of the operational amplifier circuits 23 and 26. Grounded via battery 24.
【0056】之等演算増幅回路23及び26において
は、夫々二次電池11a及び11bが充電終了したとき
には充電制御回路25にハイレベル信号“1”を供給す
る。In the operational amplifier circuits 23 and 26, the high level signal "1" is supplied to the charge control circuit 25 when the secondary batteries 11a and 11b have been charged, respectively.
【0057】本例においては、この充電制御回路25を
マイコンで構成し、図7のフローチャートに示す如く制
御動作する如くする。その他は図1と同様に構成する。In this example, the charge control circuit 25 is composed of a microcomputer, and the control operation is performed as shown in the flow chart of FIG. Others are the same as those in FIG.
【0058】この図5例の動作につき、図6及び図7を
参照して説明する。この図5において、二次電池11a
及び11bを充電する場合につき説明するに、まず充電
スタートする。このときは充電制御回路25は表示部2
8の発光ダイオード28a及び28bを点灯する(ステ
ップS1)。The operation of the example of FIG. 5 will be described with reference to FIGS. 6 and 7. In FIG. 5, the secondary battery 11a
In order to describe the case of charging 11 and 11b, charging is started first. At this time, the charge control circuit 25 displays
The light emitting diodes 28a and 28b of No. 8 are turned on (step S1).
【0059】次に接続スイッチ36を図6Dに示す如く
オンとし(ステップS2)、二次電池11aを図6A,
Bに示す如く定電流充電制御し、演算増幅回路(CP
(M))30の出力側が図6Fに示す如く、ハイレベル
信号“1”になるまで、この状態を続け(ステップS
3)、この演算増幅回路30の出力側がハイレベル信号
“1”となったときに、この接続スイッチ36を図6D
に示す如くオフとする(ステップS4)。Next, the connection switch 36 is turned on as shown in FIG. 6D (step S2), and the secondary battery 11a is turned on as shown in FIG. 6A.
Constant current charging control as shown in B, and operational amplifier circuit (CP
This state is continued until the output side of the (M)) 30 becomes the high level signal "1" as shown in FIG. 6F (step S
3), when the output side of the operational amplifier circuit 30 becomes the high level signal “1”, the connection switch 36 is turned on as shown in FIG. 6D.
It is turned off as shown in (step S4).
【0060】次に接続スイッチ37を図6Eに示す如く
オンとした(ステップS5)、二次電池11bを図6
A,Cに示す如く定電流充電制御し、演算増幅回路(C
P(M))30の出力側が図6Fに示す如くハイレベル
信号“1”になるまで、この状態を続け(ステップS
6)、この演算増幅回路30の出力側がハイレベル信号
“1”となったときに、この2個の接続スイッチ36及
び37を図6D,Eに示す如く夫々オンとし(ステップ
S7)、二次電池11a及び11bを並列充電する。こ
の場合は図6A,B,Cに示す如く定電圧充電制御がな
される。Next, the connection switch 37 is turned on as shown in FIG. 6E (step S5), and the secondary battery 11b is turned on as shown in FIG.
Constant current charge control is performed as shown in A and C, and the operational amplifier circuit (C
This state is continued until the output side of the P (M)) 30 becomes the high level signal "1" as shown in FIG. 6F (step S
6) When the output side of the operational amplifier circuit 30 becomes the high level signal "1", the two connection switches 36 and 37 are turned on as shown in FIGS. 6D and 6E (step S7), and the secondary switch The batteries 11a and 11b are charged in parallel. In this case, constant voltage charging control is performed as shown in FIGS. 6A, 6B and 6C.
【0061】次に二次電池11aの充電終了電流検出用
の演算増幅回路(CP(A))23の出力側がローレベ
ル信号“0”であるかどうかを判断(ステップS8)す
ると共に二次電池11bの充電終了電流検出用の演算増
幅回路(CP(B))26の出力側がローレベル信号
“0”であるかどうかを判断し(ステップS9)、共に
之等がローレベル信号“0”のときは、この定電流充電
制御を続ける。Next, it is judged whether the output side of the operational amplifier circuit (CP (A)) 23 for detecting the charging end current of the secondary battery 11a is the low level signal "0" (step S8) and the secondary battery It is determined whether or not the output side of the operational amplifier circuit (CP (B)) 26 for detecting the charging end current of 11b is the low level signal "0" (step S9). At this time, the constant current charging control is continued.
【0062】次に、二次電池11a及び11bが充電が
終了し、演算増幅回路23及び26の夫々の出力側がハ
イレベル信号“1”となったときには発光ダイオード2
8a及び28bを夫々消灯する(ステップS10,S1
1)。この発光ダイオード28a及び28bが共に消灯
したと判断した(ステップS12)ときには接続スイッ
チ36及び37をオフとし充電を終了する。Next, when charging of the secondary batteries 11a and 11b is completed and the output sides of the operational amplifier circuits 23 and 26 become high level signals "1", the light emitting diode 2
8a and 28b are turned off respectively (steps S10 and S1).
1). When it is determined that both of the light emitting diodes 28a and 28b are turned off (step S12), the connection switches 36 and 37 are turned off and the charging is completed.
【0063】本例においても定電圧充電制御のときは複
数の二次電池11a,11bを並列充電するようにして
いるので、この図5例においても、図1例同様の作用効
果が得られることは勿論である。In this example as well, a plurality of secondary batteries 11a and 11b are charged in parallel during constant voltage charge control, so that the same effect as in FIG. 1 can be obtained in this FIG. 5 example as well. Of course.
【0064】尚、本発明は上述実施例に限ることなく本
発明の要旨を逸脱することなく、その他種々の構成が採
り得ることは勿論である。The present invention is not limited to the above-described embodiments, and it goes without saying that various other configurations can be adopted without departing from the gist of the present invention.
【0065】[0065]
【発明の効果】本発明によれば複数の二次電池を良好に
並列に充電でき、充電時間の短縮を図ることができる利
益がある。また本発明によれば定電流定電圧充電判別回
路を設け、この複数の二次電池に対する充電状態が定電
流充電のときは充電終了の判定を禁止するようにしたの
で、複数の二次電池を並列充電したときの充電終了の誤
検出を回避できる利益がある。According to the present invention, there is an advantage that a plurality of secondary batteries can be favorably charged in parallel and the charging time can be shortened. Further, according to the present invention, a constant current / constant voltage charge determination circuit is provided, and when the state of charge for the plurality of secondary batteries is constant current charge, the determination of the end of charging is prohibited. There is a benefit of avoiding false detection of the end of charging when parallel charging is performed.
【図1】本発明充電装置の一実施例を示す構成図であ
る。FIG. 1 is a configuration diagram showing an embodiment of a charging device of the present invention.
【図2】図1の説明に供する線図である。FIG. 2 is a diagram used to explain FIG.
【図3】図1の説明に供する線図である。FIG. 3 is a diagram used for explaining FIG.
【図4】本発明の他の実施例を示す構成図である。FIG. 4 is a configuration diagram showing another embodiment of the present invention.
【図5】本発明の他の実施例を示す構成図である。FIG. 5 is a configuration diagram showing another embodiment of the present invention.
【図6】図5の説明に供する線図である。FIG. 6 is a diagram used to explain FIG.
【図7】図5の説明に供するフローチャートである。FIG. 7 is a flowchart used to explain FIG.
【図8】従来の充電装置の例を示す構成図である。FIG. 8 is a configuration diagram showing an example of a conventional charging device.
【図9】図8の説明に供する線図である。9 is a diagram used to explain FIG. 8. FIG.
1 電源回路
6 スイッチング用トランジスタ
7 パルス幅変調制御回路
11a,11b 二次電池
12a,12b 抵抗器
16 定電圧充電制御回路を構成する演算増幅回路
18 定電流充電制御回路を構成する演算増幅回路
20 フォトカプラ
23,26 充電終了電流検出用演算増幅回路
25 充電制御回路
28 表示部
30 定電流定電圧充電判別回路を構成する演算増幅回
路
33a,33b アンド回路
35a,35b ダイオード1 Power Supply Circuit 6 Switching Transistor 7 Pulse Width Modulation Control Circuits 11a, 11b Secondary Batteries 12a, 12b Resistor 16 Operational Amplifier Circuit 18 Constituting Constant Voltage Charging Control Circuit Operational Amplifier Circuit 20 Constituting Constant Current Charging Control Circuit Coupler 23, 26 Charging end current detection operational amplifier circuit 25 Charge control circuit 28 Display unit 30 Constant current constant voltage charge operational amplifier circuit 33a, 33b AND circuit 35a, 35b Diode forming a discrimination circuit
フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H02J 7/02 H01M 10/44 Front page continuation (58) Fields surveyed (Int.Cl. 7 , DB name) H02J 7/02 H01M 10/44
Claims (3)
回路の出力側に得られる直流信号をパルス幅変調制御回
路よりのパルス幅変調信号によりスイッチング素子をオ
ン・オフ制御して変換トランスの1次巻線に供給し、 上記変換トランスの2次巻線の電圧を整流して複数の被
充電二次電池に対してそれぞれ充電電力を供給する電源
回路と、 上記複数の二次電池の夫々の電流路に直列に挿入された
抵抗器と該抵抗器の端子間電圧を加算した値と基準値と
を比較して上記パルス幅変調制御回路を制御する定電流
充電制御回路と、 上記複数の二次電池の端子電圧と基準値とを電圧比較器
により比較して上記パルス幅変調制御回路を制御する定
電圧充電制御回路と、 上記定電流充電制御回路の動作と定電圧充電制御回路の
動作を検出する定電流定電圧充電判別回路とを有し、 該定電流定電圧充電判別回路の出力によって上記複数の
二次電池の充電終了を判定するようにしたことを特徴と
する充電装置。1. An AC power supply is supplied to a rectification circuit, and a DC signal obtained at the output side of this rectification circuit is turned on / off by a pulse width modulation signal from a pulse width modulation control circuit to control the switching element to turn on / off. A power supply circuit that supplies the power to the primary winding and rectifies the voltage of the secondary winding of the conversion transformer to supply charging power to the plurality of secondary batteries to be charged, and each of the plurality of secondary batteries. A constant current charge control circuit for controlling the pulse width modulation control circuit by comparing a value obtained by adding a voltage between terminals of the resistor in series with the current path of the resistor and a reference value; A constant voltage charge control circuit for controlling the pulse width modulation control circuit by comparing the terminal voltage of the secondary battery with a reference value by a voltage comparator, and the operation of the constant current charge control circuit and the operation of the constant voltage charge control circuit. Constant current to detect And a 圧充 conductive discrimination circuit, the charging apparatus being characterized in that so as to determine the charge end of the plurality of secondary batteries by the output of the constant current constant voltage charging judgment circuit.
抵抗器の各端子間電圧を加算した値と基準値とを比較す
る第1の電圧比較器と、 上記複数の二次電池の合成端子電圧と基準電圧とを比較
する第2の電圧比較器と、 前記第1の電圧比較器の出力と第2の電圧比較器の出力
とを比較する第3の電圧比較器とからなることを特徴と
する請求項1記載の充電装置。2. The constant current / constant voltage charge determination circuit compares a value obtained by adding voltages between terminals of resistors inserted in series in respective current paths of the plurality of secondary batteries with a reference value. A first voltage comparator, a second voltage comparator for comparing a combined terminal voltage of the plurality of secondary batteries with a reference voltage, an output of the first voltage comparator and a second voltage comparator. The charging device according to claim 1, comprising a third voltage comparator for comparing the output with the third voltage comparator.
よって上記複数の二次電池の充電終了の表示を制御する
ようにしたことを特徴とする請求項2記載の充電装置。3. The charging device according to claim 2, wherein the display of the end of charging of the plurality of secondary batteries is controlled by the output of the constant current / constant voltage charging determination circuit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21632193A JP3505747B2 (en) | 1993-08-31 | 1993-08-31 | Charging device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21632193A JP3505747B2 (en) | 1993-08-31 | 1993-08-31 | Charging device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0775259A JPH0775259A (en) | 1995-03-17 |
JP3505747B2 true JP3505747B2 (en) | 2004-03-15 |
Family
ID=16686702
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21632193A Expired - Lifetime JP3505747B2 (en) | 1993-08-31 | 1993-08-31 | Charging device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3505747B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000060014A (en) * | 1998-08-18 | 2000-02-25 | I D Ekusu:Kk | Method and equipment for constant-current/constant voltage charging |
JP4817054B2 (en) * | 2006-03-02 | 2011-11-16 | 日立工機株式会社 | Charger |
KR100839740B1 (en) * | 2006-11-06 | 2008-06-19 | 삼성에스디아이 주식회사 | Hybrid battery and its charging method |
JP5663156B2 (en) * | 2009-10-13 | 2015-02-04 | レノボ・イノベーションズ・リミテッド(香港) | Secondary battery charge control circuit |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3111147U (en) | 2004-08-19 | 2005-07-07 | 泰司 乾 | Mobile phone with switchable speaker position |
-
1993
- 1993-08-31 JP JP21632193A patent/JP3505747B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3111147U (en) | 2004-08-19 | 2005-07-07 | 泰司 乾 | Mobile phone with switchable speaker position |
Also Published As
Publication number | Publication date |
---|---|
JPH0775259A (en) | 1995-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5402059A (en) | Switching power supply operating at little or no load | |
EP0448235B1 (en) | Battery charging apparatus | |
US5130634A (en) | Battery charger for a portable wireless telephone set having means for tricklingly charging the battery with an increased current during a stand-by period of the telephone set | |
US5185565A (en) | Charge control apparatus for use with electronic equipment | |
EP1950862B1 (en) | Charging device | |
JP2001511340A (en) | Switched mode power supply with voltage and current limiting means | |
KR940005457B1 (en) | Compact low noise/low power dual mode battery charging circuit | |
JP3505747B2 (en) | Charging device | |
US4969077A (en) | Power supply circuit | |
KR100275140B1 (en) | Battery charger | |
JPH08237947A (en) | Power supply | |
JP4407157B2 (en) | Power supply device and power supply method | |
JP3267708B2 (en) | Charging device | |
JP2507757Y2 (en) | Double voltage rectification automatic switching circuit | |
JP3665652B2 (en) | Charger | |
JPH07123606A (en) | Charging circuit | |
CN112152460A (en) | Power system and method for detecting overcharge thereof | |
JPH043555Y2 (en) | ||
JPH05336678A (en) | Charge control method and circuitry for charger | |
JPH066680Y2 (en) | Charge control circuit | |
JPS6018177B2 (en) | Storage battery charging device | |
JP2001286070A (en) | Charging apparatus and charge control method | |
JPH1066272A (en) | Method and apparatus for charging and charge control circuit | |
JPH0721067Y2 (en) | Lead acid battery charge control circuit | |
JP3104489B2 (en) | Battery insertion detection circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20031208 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071226 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081226 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091226 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091226 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101226 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101226 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111226 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121226 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131226 Year of fee payment: 10 |