[go: up one dir, main page]

JPH05332961A - Method for immediate analysis of zinc alloy from furnace - Google Patents

Method for immediate analysis of zinc alloy from furnace

Info

Publication number
JPH05332961A
JPH05332961A JP4163386A JP16338692A JPH05332961A JP H05332961 A JPH05332961 A JP H05332961A JP 4163386 A JP4163386 A JP 4163386A JP 16338692 A JP16338692 A JP 16338692A JP H05332961 A JPH05332961 A JP H05332961A
Authority
JP
Japan
Prior art keywords
alloy
zinc alloy
copper
aluminum
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4163386A
Other languages
Japanese (ja)
Other versions
JP3088045B2 (en
Inventor
Jiro Yamashita
次郎 山下
Masumi Kunii
真澄 国井
Tsutomu Sato
勉 佐藤
Mitsuharu Hoshitani
光治 星谷
Kohei Kubota
耕平 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP04163386A priority Critical patent/JP3088045B2/en
Publication of JPH05332961A publication Critical patent/JPH05332961A/en
Application granted granted Critical
Publication of JP3088045B2 publication Critical patent/JP3088045B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To make it possible to know easily and quickly the degree of consump tion of aluminum, copper and magnesium in a zinc alloy on a casting site and thereby to enable quick regulation of alloy constituents by a method wherein changes in the contents of aluminum, copper and magnesium occurring in re- melting for reclamation of the zinc alloy is enabled by utilizing the shape of a cooling curve at the time of solidification. CONSTITUTION:According to a method of immediate analysis of a zinc alloy from a furnace, a sample is taken out of a molten zinc alloy and a cooling curve at the time of solidification of the sample is measured. A crystallization temperature of each phase appearing on the cooling curve and a working curve being used, the contents of aluminum, copper and magnesium in the sample are determined.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は亜鉛合金の炉前分析法に
関し、より詳しくは亜鉛合金溶湯の凝固時の冷却曲線の
形状(各相の晶出温度)を利用して亜鉛合金中のアルミ
ニウム、銅及びマグネシウム成分の含有率を推定する亜
鉛合金の炉前分析法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pre-furnace analysis method for zinc alloys, and more specifically, it utilizes aluminum in a zinc alloy by utilizing the shape of a cooling curve (crystallization temperature of each phase) during solidification of a molten zinc alloy. , Pre-furnace analysis method for zinc alloys for estimating the contents of copper and magnesium components.

【0002】[0002]

【従来の技術】亜鉛合金として、ダイカスト用合金であ
るZDC#1(Zn−4.1%Al−1.0%Cu−
0.05%Mg)、ZDC#2(Zn−4.1%Al−
0.05%Mg)、金型用合金であるZAS(Zn−
4.1%Al−3.0%Cu−0.05%Mg)等が知
られている。これらの合金においては亜鉛と比較的少量
のアルミニウム、銅、マグネシウムとが合金化してお
り、これらの合金元素の含有率により合金の鋳造性、強
度が大きく左右される。亜鉛合金はダイカスト及び鋳造
用合金として自動車部品、電機部品、プレス加工用金
型、プラスチック射出成形用金型等に広く利用されてい
る。このような亜鉛合金製品の品質管理法として現場で
簡易に且つ迅速に実施できる炉前分析法が求められてい
る。
2. Description of the Related Art As a zinc alloy, ZDC # 1 (Zn-4.1% Al-1.0% Cu-), which is an alloy for die casting, is used.
0.05% Mg), ZDC # 2 (Zn-4.1% Al-
0.05% Mg), ZAS (Zn-) which is a die alloy.
4.1% Al-3.0% Cu-0.05% Mg) and the like are known. In these alloys, zinc is alloyed with a relatively small amount of aluminum, copper and magnesium, and the castability and strength of the alloy are greatly influenced by the content ratio of these alloy elements. Zinc alloys are widely used as die casting and casting alloys for automobile parts, electrical parts, press working dies, plastic injection dies, and the like. As a quality control method for such zinc alloy products, there is a demand for a furnace pre-analysis method that can be carried out easily and quickly on site.

【0003】凝固時の冷却曲線の形状を利用した炉前分
析技術は鋳鉄やアルミニウム合金鋳物では確立され、広
く利用されている。しかし、亜鉛合金についてはこのよ
うな技術は知られていない。
The pre-furnace analysis technique utilizing the shape of the cooling curve during solidification has been established and widely used in cast iron and aluminum alloy castings. However, such a technique is not known for zinc alloys.

【0004】[0004]

【発明が解決しようとする課題】亜鉛合金はダイカスト
用として精密部品に利用されており、この場合に合金成
分のわずかの変動により歩留りが大きく変動することが
知られている。また、亜鉛合金は金型用に用いられてお
り、この場合に合金成分の変動が鋳物強度を大きく変化
させることが知られている。更に、亜鉛合金は再溶解し
て再生利用されており、この再溶解の際に、様々な原因
で混入した鉄がAl−Fe系の介在物を形成するために
アルミニウムを大きく消耗し、また銅、マグネシウムに
ついても消耗することが知られている。即ち、合金成分
の変動が生じ、その結果、鋳造性が劣化して鋳造不良が
生じたり、鋳物の強度不足が生じたりするというトラブ
ルが発生している。このような種々の理由で、亜鉛合金
についても炉前分析技術の確立が望まれている。
Zinc alloy is used for precision parts for die casting, and it is known that the yield greatly changes in this case due to a slight change in alloy composition. Further, a zinc alloy is used for a die, and it is known that in this case, variations in alloy components greatly change the casting strength. Further, the zinc alloy is remelted and reused, and at the time of this remelting, iron mixed for various reasons forms Al—Fe-based inclusions, so that aluminum is largely consumed, and copper is also consumed. It is known that magnesium is also consumed. That is, the alloy components fluctuate, and as a result, castability deteriorates, casting defects occur, and the strength of the casting becomes insufficient. For these various reasons, it is desired to establish a pre-furnace analysis technique for zinc alloys.

【0005】本発明の目的は、亜鉛合金の凝固時の冷却
曲線の形状(各相の晶出温度)を利用して亜鉛合金中の
アルミニウム、銅及びマグネシウム成分の含有率を推定
する亜鉛合金の炉前分析法を提供することにある。
An object of the present invention is to estimate the contents of aluminum, copper and magnesium components in a zinc alloy by utilizing the shape of the cooling curve (crystallization temperature of each phase) during solidification of the zinc alloy. To provide a pre-reactor analysis method.

【0006】[0006]

【課題を解決するための手段】本発明者等は、上記の目
的を達成するために鋭意検討を重ね、亜鉛合金溶湯の凝
固時の冷却曲線を詳細に観察した結果、冷却曲線の変曲
点の各々がアルミニウム、銅及びマグネシウム含有率に
対応していることを見出し、凝固時の冷却曲線の形状を
利用して亜鉛合金中のアルミニウム、銅及びマグネシウ
ム成分の含有率を推定できることを見出して本発明を完
成した。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies in order to achieve the above-mentioned object, and as a result of observing in detail the cooling curve during solidification of a molten zinc alloy, the inflection point of the cooling curve has been found. Found that each of them corresponds to the aluminum, copper and magnesium contents, and that the contents of the aluminum, copper and magnesium components in the zinc alloy can be estimated using the shape of the cooling curve during solidification. Completed the invention.

【0007】即ち、本発明の亜鉛合金の炉前分析法は、
亜鉛合金の溶湯からサンプルを取り出し、該サンプルの
凝固時の冷却曲線を測定し、該冷却曲線に現れる各相の
晶出温度と検量線とを用いて該サンプル中のアルミニウ
ム、銅及びマグネシウム成分の含有率を求めることを特
徴とする。
That is, the pre-furnace analysis method for zinc alloy of the present invention is as follows:
A sample is taken out from the molten zinc alloy, the cooling curve at the time of solidification of the sample is measured, and the crystallization temperature and the calibration curve of each phase appearing in the cooling curve are used to determine the aluminum, copper and magnesium components in the sample. It is characterized in that the content rate is obtained.

【0008】以下に、本発明を図面を参照して詳細に説
明する:図1は多量の銅を含有するZn−6重量%Cu
−4重量%Al系合金の凝固時の模式的冷却曲線であ
る。図1においてA点は銅に起因する初晶εの晶出温度
であり、B点はアルミニウムに起因する温度であり、C
点はマグネシウムに起因する共晶凝固温度である。この
A点の温度とC点の温度との差が銅に関連する凝固温度
範囲(温度差)であり、B点の温度とC点の温度との差
がアルミニウムに関連する凝固温度範囲(温度差)であ
る。。図2はZn−X重量%Al−3重量%Cu系合金
についてのアルミニウム含有率と凝固温度範囲(図1の
B点とC点との温度差に相当する)との関係を示す検量
線である。図3はZn−X重量%Cu−4重量%Al系
合金についての銅含有率と凝固温度範囲(図1のA点と
C点との温度差に相当する)との関係を示す検量線であ
る。図4はZn−4重量%Al−X重量%Mg系合金に
ついてのマグネシウム含有率と共晶凝固温度(図1のC
点に相当する)との関係を示す検量線である。
The present invention will be described in detail below with reference to the drawings: FIG. 1 shows Zn-6 wt% Cu containing a large amount of copper.
4 is a schematic cooling curve during solidification of a -4 wt% Al-based alloy. In FIG. 1, point A is the crystallization temperature of primary crystal ε caused by copper, point B is the temperature caused by aluminum, and C
The point is the eutectic solidification temperature due to magnesium. The difference between the temperature at point A and the temperature at point C is the solidification temperature range (temperature difference) related to copper, and the difference between the temperature at point B and the temperature at point C is the solidification temperature range related to aluminum (temperature Difference). .. FIG. 2 is a calibration curve showing the relationship between the aluminum content and the solidification temperature range (corresponding to the temperature difference between points B and C in FIG. 1) for the Zn-X wt% Al-3 wt% Cu alloy. is there. FIG. 3 is a calibration curve showing the relationship between the copper content and the solidification temperature range (corresponding to the temperature difference between points A and C in FIG. 1) for the Zn-X wt% Cu-4 wt% Al alloy. is there. FIG. 4 shows the magnesium content and eutectic solidification temperature (C in FIG. 1) for the Zn-4 wt% Al-X wt% Mg alloy.
(Corresponding to points) is a calibration curve showing the relationship with.

【0009】本発明においては、亜鉛合金再生材を溶解
して得た亜鉛合金溶湯からサンプルを取り出し、熱電対
及びレコーダーを用いて該サンプルの凝固時の冷却曲線
を測定する。また、別個に各種亜鉛合金について検量線
を求めておく。この冷却曲線に現れる各相の晶出温度と
検量線とを用いて該サンプル中のアルミニウム、銅及び
マグネシウム成分の含有率を求める。
In the present invention, a sample is taken out from a molten zinc alloy obtained by melting a recycled zinc alloy material, and a cooling curve during solidification of the sample is measured using a thermocouple and a recorder. In addition, a calibration curve is separately obtained for various zinc alloys. Using the crystallization temperature of each phase appearing in this cooling curve and the calibration curve, the contents of aluminum, copper and magnesium components in the sample are determined.

【0010】実施例1〜3 ZAS合金を再生利用するために再溶解して3種類のZ
AS合金溶湯を製造した。これらの溶湯からそれぞれ約
1000gをサンプリングし、500℃に昇温させた
後、冷却曲線測定用カップに移し、熱電対及びレコーダ
ーを用いて冷却曲線を測定した。これらの冷却曲線と図
2〜4に示したような検量線とを用いてサンプル中のア
ルミニウム、銅及びマグネシウム成分の含有率を求め
た。その結果は後記の表1に示す通りであった。尚、表
1にはそれらの亜鉛合金のアルミニウム、銅及びマグネ
シウム含有率を化学分析で求めた値(重量%)も示す。
Examples 1 to 3 Three types of Z were prepared by remelting ZAS alloy for recycling.
A molten AS alloy was produced. About 1000 g of each of these melts was sampled, heated to 500 ° C., transferred to a cooling curve measuring cup, and the cooling curve was measured using a thermocouple and a recorder. Using these cooling curves and the calibration curves shown in FIGS. 2 to 4, the contents of aluminum, copper and magnesium components in the sample were determined. The results are shown in Table 1 below. Table 1 also shows the values (% by weight) obtained by chemical analysis for the aluminum, copper and magnesium contents of these zinc alloys.

【0011】実施例4〜5 ZAS合金の代わりにZDC1合金を再生利用した以外
は実施例1〜3と同様にして亜鉛合金中のアルミニウ
ム、銅及びマグネシウム含有率(重量%)を求めた。そ
の結果は後記の表1に示す通りであった。尚、表1には
それらの亜鉛合金のアルミニウム、銅及びマグネシウム
含有率を化学分析で求めた値(重量%)も示す。
Examples 4 to 5 The contents of aluminum, copper and magnesium (% by weight) in the zinc alloy were determined in the same manner as in Examples 1 to 3 except that the ZDC1 alloy was recycled instead of the ZAS alloy. The results are shown in Table 1 below. Table 1 also shows the values (% by weight) obtained by chemical analysis for the aluminum, copper and magnesium contents of these zinc alloys.

【0012】[0012]

【表1】 [Table 1]

【0013】上記の表1に示したデータからも明らかな
ように、本発明の炉前分析法においてはアルミニウム含
有率は±0.1重量%の範囲内の精度で推定可能であ
り、マグネシウム含有率は±0.01重量%の範囲内の
精度で推定可能である。しかしながら、銅含有率につい
ては図3から明らかなように、銅含有率4重量%までは
凝固温度範囲の変化が少ないので上限値を示すにとどま
り、銅含有率が4重量%を越える場合に推定可能とな
る。
As is clear from the data shown in Table 1 above, in the pre-furnace analysis method of the present invention, the aluminum content can be estimated with an accuracy within the range of ± 0.1% by weight, and the magnesium content can be estimated. The rate can be estimated with an accuracy within the range of ± 0.01% by weight. However, as is clear from FIG. 3, regarding the copper content, since the change in the solidification temperature range is small up to a copper content of 4% by weight, only the upper limit value is shown, and it is estimated when the copper content exceeds 4% by weight. It will be possible.

【0014】[0014]

【発明の効果】本発明の亜鉛合金の炉前分析法は、亜鉛
合金の再生利用の再溶解で生じるアルミニウム、銅及び
マグネシウム含有率の変動を凝固時の冷却曲線の形状を
利用して推定することを可能とし、これにより鋳造現場
で簡易に且つ迅速に亜鉛合金中のアルミニウム、銅及び
マグネシウムの消耗の程度を知ることができ、合金成分
の迅速な調整が可能となった。
EFFECTS OF THE INVENTION In the pre-furnace analysis method for zinc alloy of the present invention, the variation of aluminum, copper and magnesium contents caused by remelting of zinc alloy for recycling is estimated by utilizing the shape of the cooling curve during solidification. As a result, the degree of consumption of aluminum, copper and magnesium in the zinc alloy can be known easily and quickly at the casting site, and the alloy components can be adjusted quickly.

【図面の簡単な説明】[Brief description of drawings]

【図1】Zn−6重量%Cu−4重量%Al合金の凝固
時の模式的冷却曲線である。
FIG. 1 is a schematic cooling curve during solidification of a Zn-6 wt% Cu-4 wt% Al alloy.

【図2】Zn−X重量%Al−3重量%Cu系合金につ
いてのアルミニウム含有率と凝固温度範囲との関係を示
す検量線である。
FIG. 2 is a calibration curve showing the relationship between the aluminum content and the solidification temperature range for a Zn-X wt% Al-3 wt% Cu alloy.

【図3】Zn−X重量%Cu−4重量%Al系合金につ
いての銅含有率と凝固温度範囲との関係を示す検量線で
ある。
FIG. 3 is a calibration curve showing the relationship between the copper content and the solidification temperature range for a Zn-X wt% Cu-4 wt% Al-based alloy.

【図4】Zn−4重量%Al−X重量%Mg系合金につ
いてのマグネシウム含有率と共晶凝固温度との関係を示
す検量線である。
FIG. 4 is a calibration curve showing a relationship between a magnesium content rate and a eutectic solidification temperature for a Zn-4 wt% Al-X wt% Mg alloy.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 星谷 光治 埼玉県上尾市原市1333−2 三井金属鉱業 株式会社総合研究所内 (72)発明者 久保田 耕平 埼玉県上尾市原市1333−2 三井金属鉱業 株式会社総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koji Hoshitani 1333-2 Hara-shi, Ageo-shi, Saitama Mitsui Mining & Smelting Co., Ltd. (72) Kohei Kubota 1333-2 Hara-shi, Ageo-shi, Saitama Mitsui Mining & Smelting Co., Ltd. Inside the research institute

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 亜鉛合金の溶湯からサンプルを取り出
し、該サンプルの凝固時の冷却曲線を測定し、該冷却曲
線に現れる各相の晶出温度と検量線とを用いて該サンプ
ル中のアルミニウム、銅及びマグネシウム成分の含有率
を求めることを特徴とする亜鉛合金の炉前分析法。
1. A sample is taken out of a molten zinc alloy, a cooling curve of the sample during solidification is measured, and aluminum in the sample is measured by using a crystallization temperature of each phase appearing in the cooling curve and a calibration curve. A pre-furnace analysis method for zinc alloys, characterized by determining the contents of copper and magnesium components.
JP04163386A 1992-06-01 1992-06-01 Pre-furnace analysis of zinc alloys Expired - Fee Related JP3088045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04163386A JP3088045B2 (en) 1992-06-01 1992-06-01 Pre-furnace analysis of zinc alloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04163386A JP3088045B2 (en) 1992-06-01 1992-06-01 Pre-furnace analysis of zinc alloys

Publications (2)

Publication Number Publication Date
JPH05332961A true JPH05332961A (en) 1993-12-17
JP3088045B2 JP3088045B2 (en) 2000-09-18

Family

ID=15772907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04163386A Expired - Fee Related JP3088045B2 (en) 1992-06-01 1992-06-01 Pre-furnace analysis of zinc alloys

Country Status (1)

Country Link
JP (1) JP3088045B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004081248A1 (en) * 1996-11-25 2004-09-23 Kohei Kubota Magnesium alloy and process for the preparation thereof
CN103698331A (en) * 2013-09-06 2014-04-02 内蒙古科技大学 Experimental method and device for determining high temperature solidification phase transition rule

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004081248A1 (en) * 1996-11-25 2004-09-23 Kohei Kubota Magnesium alloy and process for the preparation thereof
CN103698331A (en) * 2013-09-06 2014-04-02 内蒙古科技大学 Experimental method and device for determining high temperature solidification phase transition rule

Also Published As

Publication number Publication date
JP3088045B2 (en) 2000-09-18

Similar Documents

Publication Publication Date Title
Emadi et al. Applications of thermal analysis in quality control of solidification processes
Ludwig et al. Influence of some trace elements on solidification path and microstructure of Al-Si foundry alloys
CN108103363A (en) It is a kind of for refinement-alterant of hypoeutectic silumin alloy and its preparation method and application
US6200396B1 (en) Hypereutectic aluminium-silicon alloy product for semi-solid forming
CN108203780A (en) A kind of liquid forging high-strength abrasion-proof aluminum alloy and preparation method thereof
Zoqui et al. Thermodynamic evaluation of the thixoformability of Al–Si alloys
Bolibruchová et al. Possibilities of iron elimination in aluminium alloys by vanadium
none Influence of variations in alloy composition on castability and process stability. Part 2: Semi-solid casting processes
CN113774246A (en) Grain refining method
Górny et al. Effect of Titanium and Boron on the Stability of Grain Refinement of Al-Cu Alloy
JPH05332961A (en) Method for immediate analysis of zinc alloy from furnace
Rathinasuriyan et al. Reducing iron content from aluminium molten bath through filter bag, centrifugal separation and flux refining method
Fred Major Aluminum and aluminum alloy castings
US7156931B2 (en) Magnesium-base alloy and method for the production thereof
Shabestari et al. Effect of Al-5Ti-1B and Zr grain refiners on the solidification characteristics and microstructure of Al-6Mg alloy studied through thermal analysis
Birol Internal cooling to produce aluminium alloy slurries for rheocasting
SU990856A1 (en) Aluminium master alloy
Aguilar et al. Non-equilibrium globular microstructure suitable for semisolid casting of light metal alloys by rapid slug cooling technology (RSCT)
Mackay et al. Quantification of magnesium in 356 alloy via thermal analysis
Bamberger et al. Some observations on dendritic arm spacing in Al-Si-Mg and Al-Cu alloy chill castings
JPH05332960A (en) Method for immediate analysis of zinc alloy from furnace
JP2000146879A (en) Rapid analytical method for zinc alloy
CN110527872A (en) A kind of hypoeutectic al-si alloy and preparation method thereof
Górny et al. Effect of Modification and Cooling Rate on Primary Grain in Al-Cu Alloy
CN109825730A (en) A kind of preparation method casting secondary aluminium alloy melt

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees