[go: up one dir, main page]

JP3088045B2 - Pre-furnace analysis of zinc alloys - Google Patents

Pre-furnace analysis of zinc alloys

Info

Publication number
JP3088045B2
JP3088045B2 JP04163386A JP16338692A JP3088045B2 JP 3088045 B2 JP3088045 B2 JP 3088045B2 JP 04163386 A JP04163386 A JP 04163386A JP 16338692 A JP16338692 A JP 16338692A JP 3088045 B2 JP3088045 B2 JP 3088045B2
Authority
JP
Japan
Prior art keywords
copper
solidification temperature
magnesium
content
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04163386A
Other languages
Japanese (ja)
Other versions
JPH05332961A (en
Inventor
次郎 山下
真澄 国井
勉 佐藤
光治 星谷
耕平 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP04163386A priority Critical patent/JP3088045B2/en
Publication of JPH05332961A publication Critical patent/JPH05332961A/en
Application granted granted Critical
Publication of JP3088045B2 publication Critical patent/JP3088045B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は亜鉛合金の炉前分析法に
関し、より詳しくは亜鉛合金溶湯の凝固時の冷却曲線の
形状(各相の晶出温度)を利用して亜鉛合金中のアルミ
ニウム、銅及びマグネシウム成分の含有率を推定する亜
鉛合金の炉前分析法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pre-furnace analysis method of a zinc alloy, and more particularly to a method of analyzing the aluminum in a zinc alloy by utilizing the shape of a cooling curve (crystallization temperature of each phase) during solidification of a molten zinc alloy. The present invention relates to a pre-furnace analysis method for a zinc alloy for estimating the contents of copper, copper and magnesium components.

【0002】[0002]

【従来の技術】亜鉛合金として、ダイカスト用合金であ
るZDC#1(Zn−4.1%Al−1.0%Cu−
0.05%Mg)、ZDC#2(Zn−4.1%Al−
0.05%Mg)、金型用合金であるZAS(Zn−
4.1%Al−3.0%Cu−0.05%Mg)等が知
られている。これらの合金においては亜鉛と比較的少量
のアルミニウム、銅、マグネシウムとが合金化してお
り、これらの合金元素の含有率により合金の鋳造性、強
度が大きく左右される。亜鉛合金はダイカスト及び鋳造
用合金として自動車部品、電機部品、プレス加工用金
型、プラスチック射出成形用金型等に広く利用されてい
る。このような亜鉛合金製品の品質管理法として現場で
簡易に且つ迅速に実施できる炉前分析法が求められてい
る。
2. Description of the Related Art As a zinc alloy, ZDC # 1 (Zn-4.1% Al-1.0% Cu-
0.05% Mg), ZDC # 2 (Zn-4.1% Al-
0.05% Mg), ZAS (Zn-
4.1% Al-3.0% Cu-0.05% Mg) and the like are known. In these alloys, zinc and a relatively small amount of aluminum, copper, and magnesium are alloyed, and the castability and strength of the alloy largely depend on the content of these alloy elements. Zinc alloys are widely used as die casting and casting alloys for automobile parts, electric parts, press working dies, plastic injection molding dies, and the like. As a quality control method for such a zinc alloy product, a pre-furnace analysis method that can be easily and quickly performed on site is required.

【0003】凝固時の冷却曲線の形状を利用した炉前分
析技術は鋳鉄やアルミニウム合金鋳物では確立され、広
く利用されている。しかし、亜鉛合金についてはこのよ
うな技術は知られていない。
[0003] Pre-furnace analysis technology utilizing the shape of a cooling curve during solidification has been established for cast iron and aluminum alloy castings and is widely used. However, such a technique is not known for a zinc alloy.

【0004】[0004]

【発明が解決しようとする課題】亜鉛合金はダイカスト
用として精密部品に利用されており、この場合に合金成
分のわずかの変動により歩留りが大きく変動することが
知られている。また、亜鉛合金は金型用に用いられてお
り、この場合に合金成分の変動が鋳物強度を大きく変化
させることが知られている。更に、亜鉛合金は再溶解し
て再生利用されており、この再溶解の際に、様々な原因
で混入した鉄がAl−Fe系の介在物を形成するために
アルミニウムを大きく消耗し、また銅、マグネシウムに
ついても消耗することが知られている。即ち、合金成分
の変動が生じ、その結果、鋳造性が劣化して鋳造不良が
生じたり、鋳物の強度不足が生じたりするというトラブ
ルが発生している。このような種々の理由で、亜鉛合金
についても炉前分析技術の確立が望まれている。
[0006] Zinc alloys are used in precision parts for die casting, and it is known that in this case, the yield greatly varies due to a slight variation in the alloy components. In addition, zinc alloys are used for molds, and it is known that in this case, a change in alloy components greatly changes the strength of the casting. Furthermore, zinc alloys are re-melted and recycled, and during this re-melting, iron mixed in for various reasons forms Al-Fe-based inclusions, so that aluminum is greatly consumed, and copper It is also known that magnesium is consumed. That is, the alloy components fluctuate, and as a result, castability is deteriorated, resulting in poor casting and insufficient casting strength. For these various reasons, it is desired to establish a pre-furnace analysis technique for zinc alloys.

【0005】本発明の目的は、亜鉛合金の凝固時の冷却
曲線の形状(各相の晶出温度)を利用して亜鉛合金中の
アルミニウム、銅及びマグネシウム成分の含有率を推定
する亜鉛合金の炉前分析法を提供することにある。
An object of the present invention is to estimate the content of aluminum, copper and magnesium components in a zinc alloy by utilizing the shape of a cooling curve (crystallization temperature of each phase) during solidification of the zinc alloy. It is to provide a pre-furnace analysis method.

【0006】[0006]

【課題を解決するための手段】本発明者等は、上記の目
的を達成するために鋭意検討を重ね、亜鉛合金溶湯の凝
固時の冷却曲線を詳細に観察した結果、冷却曲線の変曲
点の各々がアルミニウム、銅及びマグネシウム含有率に
対応していることを見出し、凝固時の冷却曲線の形状を
利用して亜鉛合金中のアルミニウム、銅及びマグネシウ
ム成分の含有率を推定できることを見出して本発明を完
成した。
Means for Solving the Problems The present inventors have conducted intensive studies in order to achieve the above object, and have observed in detail a cooling curve during solidification of a molten zinc alloy. It was found that each of them corresponded to the aluminum, copper and magnesium contents, and that the contents of the aluminum, copper and magnesium components in the zinc alloy could be estimated using the shape of the cooling curve during solidification. Completed the invention.

【0007】即ち、本発明の亜鉛合金の炉前分析法は、
亜鉛合金の溶湯からサンプルを取り出し、該サンプルの
凝固時の冷却曲線を測定し、該冷却曲線に現れる銅に起
因する共晶凝固温度Ta、アルミニウムに起因する共晶
凝固温度Tb、およびマグネシウムに起因する共晶凝固
温度Tcを求め、銅の凝固温度範囲ΔT Cu をTa−Tc
とし、アルミニウムの凝固温度範囲ΔT Al をTb−Tc
とし、銅含有率と該銅の凝固温度範囲ΔT Cu から銅に関
する検量線を作成して該検量線と測定サンプルの銅の凝
固温度範囲から該測定サンプル中の銅成分の含有率を求
め、アルミニウム含有率と該アルミニウムの凝固温度範
囲ΔT Al からアルミニウムに関する検量線を作成して該
検量線と該測定サンプルの凝固温度範囲から該測定サン
プル中のアルミニウム成分の含有率を求め、マグネシウ
ム含有率と該マグネシウムに起因する共晶凝固温度Tc
からマグネシウムに関する検量線を作成して該検量線と
該測定サンプルのマグネシウムに起因する共晶凝固温度
から該測定サンプル中のマグネシウム成分の含有率を求
めることを特徴とする。
That is, the method for pre-furnace analysis of a zinc alloy according to the present invention comprises:
Samples are removed from the molten zinc alloy, the cooling curve during solidification of the sample is measured, it caused the copper appearing in the cooling curve
Eutectic solidification temperature Ta, eutectic due to aluminum
Eutectic solidification due to solidification temperature Tb and magnesium
The temperature Tc is determined, and the solidification temperature range ΔT Cu of copper is calculated as Ta−Tc.
And the solidification temperature range ΔT Al of aluminum is defined as Tb-Tc
And then, regarding the copper from the solidification temperature range [Delta] T Cu of copper content and copper
A calibration curve is created, and the calibration curve and the copper
From the solid temperature range, determine the content of the copper component in the measurement sample.
The aluminum content and the solidification temperature range of the aluminum
The create a calibration curve for aluminum from circumference [Delta] T Al
From the calibration curve and the solidification temperature range of the measurement sample,
Determine the content of aluminum component in the pull
Content and eutectic solidification temperature Tc due to the magnesium
A calibration curve for magnesium from
Eutectic solidification temperature due to magnesium in the measurement sample
The content of the magnesium component in the measurement sample is obtained from the following.

【0008】以下に、本発明を図面を参照して詳細に説
明する。図1は多量の銅を含有するZn−6重量%Cu
−4重量%Al系合金の凝固時の模式的冷却曲線であ
る。図1においてA点は銅に起因する初晶εの晶出温
、つまり共晶凝固温度Taであり、B点はアルミニウ
ムに起因する共晶凝固温度Tbであり、C点はマグネシ
ウムに起因する共晶凝固温度Tcである。このA点の温
度とC点の温度との差Ta−Tcが銅の凝固温度範囲Δ
Cu であり、B点の温度とC点の温度との差Tb−Tc
がアルミニウムの凝固温度範囲ΔT Al である。図2はZ
u−X重量%Al−3重量%Cu系合金についてのアル
ミニウム含有率と凝固温度範囲ΔT Al (図1のB点とC
点との温度差Tb−Tcに相当する)との関係を示す検
量線である。図3はZu−X重量%Cu−4重量%Al
系合金についての銅含有率と凝固温度範囲ΔT Cu (図1
のA点とC点との温度差Ta−Tcに相当する)との関
係を示す検量線である。図4はZn−4重量%Al−X
重量%Mg系合金についてのマグネシウム含有率と共晶
凝固温度Tc(図1のC点に相当する)との関係を示す
検量線である。
Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 shows Zn-6% by weight Cu containing a large amount of copper.
It is a typical cooling curve at the time of solidification of -4 weight% Al system alloy. In FIG. 1, point A is the crystallization temperature of primary ε due to copper , that is, the eutectic solidification temperature Ta , point B is the eutectic solidification temperature Tb due to aluminum, and point C is the eutectic solidification temperature Tb due to magnesium. The crystal solidification temperature Tc . The difference Ta-Tc between the temperature at the point A and the temperature at the point C is the solidification temperature range Δ of copper.
T Cu , the difference Tb-Tc between the temperature at point B and the temperature at point C
Is the solidification temperature range ΔT Al of aluminum . FIG. 2 shows Z
Aluminum content and solidification temperature range ΔT Al for u-X wt% Al-3 wt% Cu-based alloy (points B and C in FIG. 1)
(Corresponding to a temperature difference Tb-Tc from a point). FIG. 3 shows Zu-X wt% Cu-4 wt% Al
Copper content and solidification temperature range ΔT Cu for the base alloy (Fig. 1
(Corresponding to the temperature difference Ta-Tc between point A and point C). FIG. 4 shows Zn-4 wt% Al-X.
4 is a calibration curve showing the relationship between the magnesium content and the eutectic solidification temperature Tc ( corresponding to the point C in FIG. 1) for a weight-% Mg-based alloy.

【0009】本発明においては、亜鉛合金再生材を溶解
して得た亜鉛合金溶湯からサンプルを取り出し、熱電対
及びレコーダーを用いて該サンプルの凝固時の冷却曲線
を測定する。また、別個に各種亜鉛合金について検量線
を求めておく。この冷却曲線に現れる各相の共晶凝固温
度と検量線とを用いて該サンプル中のアルミニウム、銅
及びマグネシウム成分の含有率を求める。
In the present invention, a sample is taken out of a molten zinc alloy obtained by melting a recycled zinc alloy material, and a cooling curve during solidification of the sample is measured using a thermocouple and a recorder. In addition, calibration curves are separately obtained for various zinc alloys. Eutectic solidification temperature of each phase appearing in this cooling curve
The content of the aluminum, copper and magnesium components in the sample is determined using the degree and the calibration curve.

【0010】実施例1〜3 ZAS合金を再生利用するために再溶解して3種類のZ
AS合金溶湯を製造した。これらの溶湯からそれぞれ約
1000gをサンプリングし、500℃に昇温させた
後、冷却曲線測定用カップに移し、熱電対及びレコーダ
ーを用いて冷却曲線を測定した。これらの冷却曲線と図
2〜4に示したような検量線とを用いてサンプル中のア
ルミニウム、銅及びマグネシウム成分の含有率を求め
た。その結果は後記の表1に示す通りであった。尚、表
1にはそれらの亜鉛合金のアルミニウム、銅及びマグネ
シウム含有率を化学分析で求めた値(重量%)も示す。
Examples 1 to 3 Three kinds of ZAS alloys were re-melted for recycling.
An AS alloy melt was produced. About 1000 g of each of these melts was sampled, heated to 500 ° C., transferred to a cooling curve measuring cup, and the cooling curve was measured using a thermocouple and a recorder. Using these cooling curves and the calibration curves as shown in FIGS. 2 to 4, the contents of aluminum, copper and magnesium components in the samples were determined. The results were as shown in Table 1 below. Table 1 also shows the values (% by weight) of the contents of aluminum, copper and magnesium in the zinc alloys determined by chemical analysis.

【0011】実施例4〜5 ZAS合金の代わりにZDC1合金を再生利用した以外
は実施例1〜3と同様にして亜鉛合金中のアルミニウ
ム、銅及びマグネシウム含有率(重量%)を求めた。そ
の結果は後記の表1に示す通りであった。尚、表1には
それらの亜鉛合金のアルミニウム、銅及びマグネシウム
含有率を化学分析で求めた値(重量%)も示す。
Examples 4 to 5 The contents (% by weight) of aluminum, copper and magnesium in a zinc alloy were determined in the same manner as in Examples 1 to 3, except that the ZDC1 alloy was recycled instead of the ZAS alloy. The results were as shown in Table 1 below. Table 1 also shows the values (% by weight) of the contents of aluminum, copper and magnesium in the zinc alloys determined by chemical analysis.

【0012】[0012]

【表1】 [Table 1]

【0013】上記の表1に示したデータからも明らかな
ように、本発明の炉前分析法においてはアルミニウム含
有率は±0.1重量%の範囲内の精度で推定可能であ
り、マグネシウム含有率は±0.01重量%の範囲内の
精度で推定可能である。しかしながら、銅含有率につい
ては図3から明らかなように、銅含有率4重量%までは
凝固温度範囲の変化が少ないので上限値を示すにとどま
り、銅含有率が4重量%を越える場合に推定可能とな
る。
As is clear from the data shown in Table 1 above, in the pre-furnace analysis method of the present invention, the aluminum content can be estimated with an accuracy within the range of ± 0.1% by weight, and the magnesium content can be estimated. The percentage can be estimated with an accuracy in the range of ± 0.01% by weight. However, as apparent from FIG. 3, the copper content is limited to the upper limit because the change in the solidification temperature range is small up to a copper content of 4% by weight, and is estimated when the copper content exceeds 4% by weight. It becomes possible.

【0014】[0014]

【発明の効果】本発明の亜鉛合金の炉前分析法は、亜鉛
合金の再生利用の再溶解で生じるアルミニウム、銅及び
マグネシウム含有率の変動を凝固時の冷却曲線の形状を
利用して推定することを可能とし、これにより鋳造現場
で簡易に且つ迅速に亜鉛合金中のアルミニウム、銅及び
マグネシウムの消耗の程度を知ることができ、合金成分
の迅速な調整が可能となった。
According to the pre-furnace analysis method for a zinc alloy of the present invention, fluctuations in the contents of aluminum, copper and magnesium caused by re-melting of a recycled zinc alloy are estimated using the shape of a cooling curve during solidification. This makes it possible to easily and quickly know the extent of consumption of aluminum, copper and magnesium in the zinc alloy at the casting site, and to quickly adjust the alloy components.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Zn−6重量%Cu−4重量%Al合金の凝固
時の模式的冷却曲線である。
FIG. 1 is a schematic cooling curve during solidification of a Zn-6 wt% Cu-4 wt% Al alloy.

【図2】Zn−X重量%Al−3重量%Cu系合金につ
いてのアルミニウム含有率と凝固温度範囲との関係を示
す検量線である。
FIG. 2 is a calibration curve showing the relationship between the aluminum content and the solidification temperature range for a Zn-X wt% Al-3 wt% Cu-based alloy.

【図3】Zn−X重量%Cu−4重量%Al系合金につ
いての銅含有率と凝固温度範囲との関係を示す検量線で
ある。
FIG. 3 is a calibration curve showing the relationship between the copper content and the solidification temperature range for a Zn-X wt% Cu-4 wt% Al-based alloy.

【図4】Zn−4重量%Al−X重量%Mg系合金につ
いてのマグネシウム含有率と共晶凝固温度との関係を示
す検量線である。
FIG. 4 is a calibration curve showing the relationship between the magnesium content and the eutectic solidification temperature for a Zn-4 wt% Al-X wt% Mg-based alloy.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 久保田 耕平 埼玉県上尾市原市1333−2 三井金属鉱 業株式会社総合研究所内 (56)参考文献 山下次郎、外4名、”Zn−4AI− 3Cu合金(=ZAS)の熱分析による 炉前成分分析”、日本鋳物協会第119回 全国講演大会概要集、平成3年、p.20 国井真澄、外1名、”Zn−4AI− 3Cu合金溶湯成分の炉前測定”、日本 鋳物協会第120回講演大会講演概要集、 平成4年4月25日、p.76 (58)調査した分野(Int.Cl.7,DB名) G01N 25/04 G01N 25/06 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Kohei Kubota 1333-2 Hara-shi, Ageo-shi, Saitama Mitsui Kinzoku Mining Co., Ltd. (56) References Jiro Yamashita, 4 others, “Zn-4AI-3Cu alloy (= ZAS) Thermal Analysis of Furnace Components ", 119th Annual Meeting of the Japan Foundry Association, 1991, p. 20 Masumi Kunii, et al., "Pre-reactor Measurement of Zn-4AI-3Cu Alloy Melt Components," Proc. Of the 120th Annual Meeting of the Foundry Society of Japan, April 25, 1992, p. 76 (58) Field surveyed (Int.Cl. 7 , DB name) G01N 25/04 G01N 25/06 JICST file (JOIS)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 亜鉛合金の溶湯からサンプルを取り出
し、該サンプルの凝固時の冷却曲線を測定し、該冷却曲
線に現れる銅に起因する共晶凝固温度Ta、アルミニウ
ムに起因する共晶凝固温度Tb、およびマグネシウムに
起因する共晶凝固温度Tcを求め、銅の凝固温度範囲Δ
Cu をTa−Tcとし、アルミニウムの凝固温度範囲Δ
Al をTb−Tcとし、銅含有率と該銅の凝固温度範囲
ΔT Cu から銅に関する検量線を作成して該検量線と測定
サンプルの銅の凝固温度範囲から該測定サンプル中の銅
成分の含有率を求め、アルミニウム含有率と該アルミニ
ウムの凝固温度範囲ΔT Al からアルミニウムに関する検
量線を作成して該検量線と該測定サンプルの凝固温度範
囲から該測定サンプル中のアルミニウム成分の含有率を
求め、マグネシウム含有率と該マグネシウムに起因する
共晶凝固温度Tcからマグネシウムに関する検量線を作
成して該検量線と該測定サンプルのマグネシウムに起因
する共晶凝固温度から該測定サンプル中のマグネシウム
成分の含有率を求めることを特徴とする亜鉛合金の炉前
分析法。
1. A sample is taken out of a molten zinc alloy, a cooling curve during solidification of the sample is measured, and a eutectic solidification temperature Ta caused by copper appearing in the cooling curve is measured.
Eutectic solidification temperature Tb and magnesium
The resulting eutectic solidification temperature Tc is determined, and the solidification temperature range of copper Δ
T Cu is Ta-Tc, and the solidification temperature range of aluminum is Δ
T Al is Tb-Tc, the copper content and the solidification temperature range of the copper
Prepare a calibration curve for copper from ΔT Cu and measure the calibration curve
From the solidification temperature range of the copper in the sample,
Determine the content of the components and determine the aluminum content and the aluminum content.
From the solidification temperature range ΔT Al of aluminum
A calibration curve is prepared, and the calibration curve and the coagulation temperature range of the measurement sample are prepared.
From the box, the content of the aluminum component in the measurement sample
Calculate and attribute to magnesium content and magnesium
A calibration curve for magnesium is created from the eutectic solidification temperature Tc.
Due to the calibration curve and magnesium in the measurement sample
A pre-furnace analysis method for a zinc alloy, wherein the content of a magnesium component in the measurement sample is determined from the eutectic solidification temperature .
JP04163386A 1992-06-01 1992-06-01 Pre-furnace analysis of zinc alloys Expired - Fee Related JP3088045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04163386A JP3088045B2 (en) 1992-06-01 1992-06-01 Pre-furnace analysis of zinc alloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04163386A JP3088045B2 (en) 1992-06-01 1992-06-01 Pre-furnace analysis of zinc alloys

Publications (2)

Publication Number Publication Date
JPH05332961A JPH05332961A (en) 1993-12-17
JP3088045B2 true JP3088045B2 (en) 2000-09-18

Family

ID=15772907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04163386A Expired - Fee Related JP3088045B2 (en) 1992-06-01 1992-06-01 Pre-furnace analysis of zinc alloys

Country Status (1)

Country Link
JP (1) JP3088045B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6056834A (en) * 1996-11-25 2000-05-02 Mitsui Mining & Smelting Company, Ltd. Magnesium alloy and method for production thereof
CN103698331B (en) * 2013-09-06 2016-06-29 内蒙古科技大学 A kind of high temperature solidification phase transition rule determination experiment method and device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
国井真澄、外1名、"Zn−4AI−3Cu合金溶湯成分の炉前測定"、日本鋳物協会第120回講演大会講演概要集、平成4年4月25日、p.76
山下次郎、外4名、"Zn−4AI−3Cu合金(=ZAS)の熱分析による炉前成分分析"、日本鋳物協会第119回全国講演大会概要集、平成3年、p.20

Also Published As

Publication number Publication date
JPH05332961A (en) 1993-12-17

Similar Documents

Publication Publication Date Title
Emadi et al. Applications of thermal analysis in quality control of solidification processes
US5797443A (en) Method of casting articles of a bulk-solidifying amorphous alloy
Cho et al. The relationship between dendrite arm spacing and cooling rate of Al-Si casting alloys in high pressure die casting
Zhang et al. Effect of pressure on microstructures and mechanical properties of Al-Cu-based alloy prepared by squeeze casting
Kang et al. Effects of Cu and Si contents on the fluidity, hot tearing, and mechanical properties of Al-Cu-Si alloys
Ghoncheh et al. Effect of cooling rate on the dendrite coherency point during solidification of Al2024 alloy
CN102998324B (en) Thermal analysis and detection method for solidification grain size of magnesium alloy melt
Yavari et al. Effect of cooling rate and Al content on solidification characteristics of AZ magnesium alloys using cooling curve thermal analysis
FLUIDITY Theoretical and experimental evaluation of the effectiveness of aluminum melt treatment by physical methods
Farahany et al. Evaluation of the effect of grain refiners on the solidification characteristics of an Sr-modified ADC12 die-casting alloy by cooling curve thermal analysis
Han The role of solutes in grain refinement of hypoeutectic magnesium and aluminum alloys
Mao et al. The fluidity of A357 alloy with scandium (Sc) and zirconium (Zr) addition
JP3088045B2 (en) Pre-furnace analysis of zinc alloys
Djurdjevic et al. Synergy between thermal analysis and simulation
Petrova et al. Prediction of misruns in ML5 (AZ91) alloy casting and alloy fluidity using numerical simulation
Górny et al. Effect of Titanium and Boron on the Stability of Grain Refinement of Al-Cu Alloy
JP2003136223A (en) Method for molding semi-solidified metal molding and metal mold
Piątkowski et al. The Influence of Selected High–Pressure Die Casting Parameters on the Porosity of EN AB-46000 Alloy Castings
US5043905A (en) Automatic method for controlling a process melt of two-phase cast brass
Djurdjevic et al. Determination of latent heats for hypoeutectic AlSi7Cu (1–4) and AlSi9Cu (1–4) alloys applying thermal analysis technique
JP3001131B2 (en) Pre-furnace analysis of zinc alloys
Li et al. Cooling curve thermal analysis, phase constitution, and solidification characteristics of cast Mg–5Gd–2Y–x Nd–Zr alloys
JP2000146879A (en) Rapid analytical method for zinc alloy
Szymczak et al. Effect of Cr and W on the crystallization process, the microstructure and properties of hypoeutectic silumin to pressure die casting
Górny et al. Effect of Modification and Cooling Rate on Primary Grain in Al-Cu Alloy

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees