[go: up one dir, main page]

JPH05326719A - Manufacture of semiconductor element - Google Patents

Manufacture of semiconductor element

Info

Publication number
JPH05326719A
JPH05326719A JP13404892A JP13404892A JPH05326719A JP H05326719 A JPH05326719 A JP H05326719A JP 13404892 A JP13404892 A JP 13404892A JP 13404892 A JP13404892 A JP 13404892A JP H05326719 A JPH05326719 A JP H05326719A
Authority
JP
Japan
Prior art keywords
chamber
film
interlayer insulating
wiring
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP13404892A
Other languages
Japanese (ja)
Inventor
Keiichi Hashimoto
圭市 橋本
Yusuke Harada
裕介 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP13404892A priority Critical patent/JPH05326719A/en
Publication of JPH05326719A publication Critical patent/JPH05326719A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To provide a semiconductor element manufacturing method to form a multilayer wiring corresponding to the line using a process-integrated multichamber device for removal of the reaction product which is generated between the gas discharged from an interlayer insulating film and a resist component and etching gas or Al alloy wiring. CONSTITUTION:After an interlayer insulating film has been deposited in the first CVD chamber of the first multichannel device, an Si nitride film 15 is formed in the second CVD chamber of the device without exposing the wafer the outside air. Then, the above-mentioned material is moved to a sputtering chamber in a vacuum atmosphere, and a metal film 16, to be used for a mask, is formed by sputtering. Subsequently, a through hole is made in this metal film. Further, after a through hole has been formed in the Si nitride film 15 and the interlayer insulating film 14 in the etching chamber of the second multichamber device, they are moved to the sputtering chamber of the second chamber device, a sputter-cleaning operation is conducted. Then, they are moved to the sputtering chamber of the second multichamber device, and an upper layer wiring film 18 is formed by sputtering.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体素子の製造方法
に係り、特に超LSI製造における多層配線形成工程に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device manufacturing method, and more particularly to a multilayer wiring forming process in VLSI manufacturing.

【0002】[0002]

【従来の技術】従来、このような分野の技術としては、
例えば、以下に示すようなものがあった。図4はかかる
従来の半導体素子の2層配線形成工程断面図である。以
下、その工程を順を追って説明する。
2. Description of the Related Art Conventionally, as a technique in such a field,
For example, there were the following. FIG. 4 is a cross-sectional view of such a conventional semiconductor element two-layer wiring forming process. Hereinafter, the process will be described step by step.

【0003】(1)まず、図4(a)に示すように、シ
リコン基板1上に中間絶縁膜(BPSG)2が形成さ
れ、その中間絶縁膜2上に1層目配線(Al−1%Si
−0.5%Cu)3のパターニングを行なう。 (2)次に、図4(b)に示すように、O3 −TEOS
(オゾン−テトラ・エチル・オルソ・シリケート)・S
iO2 膜等の被覆性の良いCVD層間絶縁膜4を堆積す
る。
(1) First, as shown in FIG. 4A, an intermediate insulating film (BPSG) 2 is formed on a silicon substrate 1, and a first wiring layer (Al-1%) is formed on the intermediate insulating film 2. Si
-0.5% Cu) 3 is patterned. (2) Next, as shown in FIG. 4 (b), O 3 -TEOS
(Ozone-tetra-ethyl-ortho-silicate) -S
A CVD interlayer insulating film 4 having a good covering property such as an iO 2 film is deposited.

【0004】(3)次に、図4(c)に示すように、レ
ジスト5を塗布し、ホトリソ工程でスルーホール部の開
孔を行なう。 (4)次に、図4(d)に示すように、RIE(リアク
ティブ・イオン・エッチング)、またはECR(エレト
クロン・サイクロトロン・レゾナンス)によって、スル
ーホール6のエッチングを行なう。スルーホールの形状
は2層目Al合金のカバレージが良くなるようにテーパ
状とする。
(3) Next, as shown in FIG. 4C, a resist 5 is applied, and a through hole portion is opened in a photolithography process. (4) Next, as shown in FIG. 4D, the through holes 6 are etched by RIE (reactive ion etching) or ECR (electron cyclotron resonance). The shape of the through hole is tapered so as to improve the coverage of the second layer Al alloy.

【0005】(5)次に、図4(e)に示すように、パ
ターニングが終了した後、レジスト5を除去する。 (6)最後に、汚れた1層目Al合金配線の表面を、A
+ 逆スパッタでクリーニングし、図4(f)に示すよ
うに、2層目Al合金材(Al−1%Si−0.5%C
u)7を堆積する。
(5) Next, as shown in FIG. 4E, the resist 5 is removed after the patterning is completed. (6) Finally, clean the surface of the dirty first layer Al alloy wiring with A
After cleaning by r + reverse sputtering, as shown in FIG. 4 (f), the second layer Al alloy material (Al-1% Si-0.5% C
u) Deposit 7.

【0006】上記の工程は最も簡単な場合であるが、1
層目Al合金配線を、AlSiCu/TiN、又はTi
/TiN/AlSiCu/TiN等の積層構造にした
り、スルーホール形状をウェット・ドライエッチングを
駆使したワイングラス形状にしたりする場合も、大体に
おいて図4のプロセスフローで試作している。また、C
VD層間絶縁膜堆積、エッチング、スパッタAl合金蒸
着はそれぞれ別の独立した装置で処理され、ウエハは各
装置間の搬送で大気に晒される。
The above process is the simplest case,
Layer Al alloy wiring with AlSiCu / TiN or Ti
Even when a laminated structure such as / TiN / AlSiCu / TiN is formed or a through-hole shape is made into a wine glass shape by making full use of wet / dry etching, the prototype is generally produced by the process flow of FIG. Also, C
The VD interlayer insulating film deposition, etching, and sputtered Al alloy vapor deposition are processed by separate and independent devices, and the wafer is exposed to the atmosphere during transfer between the devices.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記し
た従来の製造方法では、層間絶縁膜のO3 −TEOS・
SiO2 膜が大気放置中に水分及びH2 を大量に吸収し
てしまい、2層目Al合金成膜中に、これらが放出して
Al合金膜の膜質を劣化させてしまう。また、エッチン
グ工程でレジストの成分とエッチングガス、又はAlと
の反応生成物が形成され、レジスト除去後、残渣として
残り、配線の歩留まりを低下させる。
However, in the above-mentioned conventional manufacturing method, the O 3 -TEOS.
The SiO 2 film absorbs a large amount of water and H 2 while being left in the air, and these are released during the film formation of the second layer Al alloy to deteriorate the film quality of the Al alloy film. In addition, a reaction product of the resist component and the etching gas or Al is formed in the etching process, and remains as a residue after removing the resist, which lowers the yield of wiring.

【0008】更に、スルーホールエッチング後、1層目
Al合金配線表面は酸素プラズマ、剥離剤及び大気に晒
され汚れてしまい、これを逆スパッタクリーニングで除
去するのが困難となり、スループットが低下してしま
う。本発明は、以上述べた層間絶縁膜からの放出ガス、
レジスト成分とエッチングガス、又はAlとの反応生成
物、及び下層Al合金配線の汚染を除去するため、プロ
セスを集積化したマルチチャンバー装置を用いたライン
に対応した、優れた多層配線の形成が可能な半導体素子
の製造方法を提供することを目的とする。
Furthermore, after through-hole etching, the surface of the first-layer Al alloy wiring is exposed to oxygen plasma, a stripping agent, and the atmosphere and becomes dirty, which makes it difficult to remove it by reverse sputter cleaning, and throughput decreases. I will end up. The present invention provides a gas released from the above-described interlayer insulating film,
It is possible to form excellent multi-layered wiring corresponding to the line using the multi-chamber device with integrated process to remove the reaction product of resist component and etching gas or Al and the contamination of the lower layer Al alloy wiring. It is an object of the present invention to provide a method of manufacturing a semiconductor element.

【0009】[0009]

【課題を解決するための手段】本発明は、上記目的を達
成するために、下層の配線形成後、上層の配線を形成す
る半導体素子の製造方法において、第1のマルチチャン
バー装置の第1のCVD室において層間絶縁膜を堆積す
る工程と、その後、外気に晒すことなく、前記第1のマ
ルチチャンバー装置の第2のCVD室においてシリコン
窒化膜を形成する工程と、その後、外気に晒すことな
く、スパッタ蒸着室に移し、該スパッタ蒸着室において
スパッタ蒸着によりマスク用金属膜を形成する工程と、
前記マスク用金属膜にスルーホールを形成する工程と、
第2のマルチチャンバー装置のエッチング室において前
記シリコン窒化膜及び層間絶縁膜にスルーホールを形成
する工程と、その後、外気に晒すことなく、前記第2の
マルチチャンバー装置のスパッタ室に移し、該スパッタ
室においてスパッタクリーニングを行う工程と、その
後、外気に晒すことなく、前記第2のマルチチャンバー
装置のスパッタ蒸着室に移し、該スパッタ蒸着室におい
てスパッタ蒸着により上層の配線膜を形成する工程とを
施すようにしたものである。
In order to achieve the above object, the present invention provides a method for manufacturing a semiconductor device, in which after forming a lower layer wiring, an upper layer wiring is formed. A step of depositing an interlayer insulating film in a CVD chamber, a step of forming a silicon nitride film in a second CVD chamber of the first multi-chamber apparatus without exposing it to the outside air, and a subsequent step of exposing it to the outside air. A step of moving to a sputter deposition chamber and forming a mask metal film by sputter deposition in the sputter deposition chamber,
Forming a through hole in the mask metal film,
A step of forming through holes in the silicon nitride film and the interlayer insulating film in the etching chamber of the second multi-chamber apparatus, and thereafter, without exposing to the outside air, transfer to the sputter chamber of the second multi-chamber apparatus to carry out the sputtering. A step of performing sputter cleaning in the chamber and a step of thereafter moving to a sputter deposition chamber of the second multi-chamber apparatus without exposing to the outside air and forming an upper wiring film by sputter deposition in the sputter deposition chamber It was done like this.

【0010】[0010]

【作用】本発明によれば、上記したように、CVDプロ
セスとスパッタ蒸着プロセスとを第1のマルチチャンバ
ー装置で実施し、エッチングプロセスとスパッタ蒸着プ
ロセスとを第2のマルチチャンバー装置で実施する。す
なわち、第1のマルチチャンバー装置の第1のCVD室
において層間絶縁膜を堆積し、その後、外気に晒すこと
なく、第2のCVD室においてシリコン窒化膜を形成
し、その後、外気に晒すことなく、第1のマルチチャン
バー装置のスパッタ蒸着室に移し、そのスパッタ蒸着室
においてスパッタ蒸着によりマスク用金属膜を形成す
る。
According to the present invention, as described above, the CVD process and the sputter deposition process are performed in the first multi-chamber apparatus, and the etching process and the sputter deposition process are performed in the second multi-chamber apparatus. That is, the interlayer insulating film is deposited in the first CVD chamber of the first multi-chamber apparatus, then the silicon nitride film is formed in the second CVD chamber without being exposed to the outside air, and thereafter, without being exposed to the outside air. , The first multi-chamber apparatus is moved to a sputter deposition chamber, and a metal film for a mask is formed by sputter deposition in the sputter deposition chamber.

【0011】更に、第2のマルチチャンバー装置のエッ
チング室において、前記絶縁膜にスルーホールを形成
し、その後、外気に晒すことなく、第2のマルチチャン
バー装置のスパッタ室に移し、そのスパッタ室おいてス
パッタクリーニングを行い、その後、外気に晒すことな
く、第2のマルチチャンバー装置のスパッタ蒸着室に移
し、そのスパッタ蒸着室においてスパッタ蒸着により上
層の配線膜を形成する。
Further, in the etching chamber of the second multi-chamber apparatus, through holes are formed in the insulating film, and thereafter, the through hole is transferred to the sputtering chamber of the second multi-chamber apparatus without exposing to the outside air, and the sputtering chamber and the sputtering chamber are removed. Then, sputter cleaning is performed, and thereafter, the substrate is transferred to a sputter deposition chamber of the second multi-chamber apparatus without being exposed to the outside air, and an upper wiring film is formed by sputter deposition in the sputter deposition chamber.

【0012】したがって、層間絶縁膜の吸湿性を抑える
ことができる。また、マルチチャンバー装置により連続
形成されるシリコン窒化膜により層間絶縁膜が覆われる
ため、層間絶縁膜のガス吸収・放出を防止することがで
きる。
Therefore, the hygroscopicity of the interlayer insulating film can be suppressed. Further, since the interlayer insulating film is covered with the silicon nitride film continuously formed by the multi-chamber device, it is possible to prevent the interlayer insulating film from absorbing and releasing gas.

【0013】[0013]

【実施例】以下、本発明の実施例について図を参照しな
がら詳細に説明する。図1及び図2は本発明の実施例を
示す半導体素子の2層配線形成工程断面図、図3は本発
明で用いられるマルチチャンバー装置を示す図である。 (1)まず、図1(a)に示すように、シリコン基板1
1上に中間絶縁(BPSG)膜12を形成し、その中間
絶縁膜12上に第1層のAl合金配線13を形成し、更
に、層間絶縁(O3 −TEOS・SiO2 )膜14を形
成する。
Embodiments of the present invention will be described in detail below with reference to the drawings. 1 and 2 are cross-sectional views of a process for forming a two-layer wiring of a semiconductor device showing an embodiment of the present invention, and FIG. 3 is a view showing a multi-chamber device used in the present invention. (1) First, as shown in FIG. 1A, a silicon substrate 1
1, an intermediate insulating (BPSG) film 12 is formed, an Al alloy wiring 13 of a first layer is formed on the intermediate insulating film 12, and an interlayer insulating (O 3 -TEOS • SiO 2 ) film 14 is further formed. To do.

【0014】(2)次に、図1(b)に示すように、層
間絶縁膜14上にSiNx膜15を形成する。 (3)次に、図1(c)に示すように、そのSiNx膜
15上にマスク用金属膜としてのAl合金又はTiN膜
16を形成する。 ここで、上記した図1(a)〜図1(c)の工程は、図
3(a)に示すマルチチャンバー装置で連続処理を行な
う。すなわち、CVD室21において、層間絶縁膜14
としてのO3 −TEOS・SiO2 膜を(約10000
Å)堆積し、その後、外気に晒すことなく、高真空室で
ある中間室24を経てCVD室22に移し、そのCVD
室22において、SiNx膜15を(約300Å)堆積
した後、再び外気に晒すことなく、高真空室である中間
室24を経てスパッタ蒸着室23に移し、そのスパッタ
蒸着室23において、Al合金又はTiN膜16を(約
500Å)成膜する。なお、図3(a)において、25
はロード・ロック室である。
(2) Next, as shown in FIG. 1B, a SiNx film 15 is formed on the interlayer insulating film 14. (3) Next, as shown in FIG. 1C, an Al alloy or TiN film 16 as a mask metal film is formed on the SiNx film 15. Here, in the steps of FIGS. 1A to 1C described above, continuous processing is performed by the multi-chamber apparatus shown in FIG. That is, in the CVD chamber 21, the interlayer insulating film 14
As an O 3 -TEOS / SiO 2 film (about 10,000
Å) After being deposited, it is transferred to the CVD chamber 22 through the intermediate chamber 24 which is a high vacuum chamber without exposing to the outside air, and the CVD is performed.
In the chamber 22, after depositing the SiNx film 15 (about 300 Å), the SiNx film 15 is transferred to the sputter deposition chamber 23 through the intermediate chamber 24 which is a high vacuum chamber without being exposed to the outside air again. A TiN film 16 (about 500Å) is formed. In addition, in FIG.
Is a load lock room.

【0015】(4)次に、図1(d)に示すように、レ
ジスト17を塗布する。 (5)次に、図1(e)に示すように、ホトリソ工程で
レジストパターンを形成する。 (6)次いで、図1(f)に示すように、Al合金又は
TiN膜16にスルーホール部を開孔する。
(4) Next, as shown in FIG. 1D, a resist 17 is applied. (5) Next, as shown in FIG. 1E, a resist pattern is formed by a photolithography process. (6) Next, as shown in FIG. 1F, a through hole portion is opened in the Al alloy or TiN film 16.

【0016】ここで、図1(f)の工程は、塩素系ガス
でAl合金、又はTiN膜16のみを異方性エッチング
により開孔する。 (7)次いで、図2(a)に示すように、レジスト17
〔図1(f)参照〕をO2 アッシャー及び剥離剤で除去
する。 (8)次に、図2(b)に示すように、SiNx膜15
及び層間絶縁(O3 −TEOS・SiO2 )膜14にス
ルーホールを形成する。
Here, in the step of FIG. 1F, only the Al alloy or the TiN film 16 is opened by anisotropic etching with a chlorine-based gas. (7) Then, as shown in FIG.
[See FIG. 1 (f)] is removed with an O 2 asher and a stripping agent. (8) Next, as shown in FIG. 2B, the SiNx film 15
And through holes are formed in the interlayer insulating (O 3 -TEOS.SiO 2 ) film 14.

【0017】(9)最後に、図2(c)に示すように、
第2層のAl合金配線18をスパッタ蒸着により形成す
る。ここで、上記した図2(b)〜図2(c)の工程
は、図3(b)に示すマルチチャンバー装置による連続
処理で行なう。すなわち、エッチング室31において、
SiNx膜15及び層間絶縁膜14をフッ素系ガスによ
り異方性エッチングする。この時、2層目のAl合金配
線18のカバレージが良くなるようにテーパのつく条件
が望ましい。その後、外気に晒すことなく、高真空室で
ある中間室34を経てAr+ 逆スパッタ室32に移し、
そのAr+ 逆スパッタ室32において、Ar+ 逆スパッ
タクリーニング(ソフトクリーニング)を行ない、その
後、外気に晒すことなく、高真空室である中間室34を
経てスパッタ蒸着室33に移し、そのスパッタ蒸着室3
3において、2層目Al合金をスパッタ蒸着する。な
お、図3(b)において、35はロード・ロック室であ
る。
(9) Finally, as shown in FIG. 2 (c),
A second layer of Al alloy wiring 18 is formed by sputter deposition. Here, the steps of FIGS. 2 (b) to 2 (c) described above are continuously performed by the multi-chamber apparatus shown in FIG. 3 (b). That is, in the etching chamber 31,
The SiNx film 15 and the interlayer insulating film 14 are anisotropically etched with a fluorine-based gas. At this time, a taper condition is desirable so that the coverage of the second-layer Al alloy wiring 18 is improved. After that, without exposing to the outside air, the intermediate chamber 34, which is a high vacuum chamber, is transferred to the Ar + reverse sputtering chamber 32,
In the Ar + reverse sputtering chamber 32, Ar + reverse sputtering cleaning (soft cleaning) is performed, and thereafter, without exposing to the outside air, the intermediate chamber 34, which is a high vacuum chamber, is moved to the sputtering deposition chamber 33, and the sputtering deposition chamber 33 is moved. Three
In 3, the second layer Al alloy is sputter-deposited. In FIG. 3B, reference numeral 35 is a load lock chamber.

【0018】ここで、マスク用メタルとしてAl合金を
使用した場合は、スルーホールエッチングで用いるフッ
素系ガスではほとんどエッチングされないので、エッチ
ング後も残り、2層目Al合金配線18の一部として使
用できる。一方、TiNを使用した場合は、フッ素系ガ
スでエッチングされるので、膜厚、及びエッチング条件
により、エッチングがTiN、SiNx、又は層間絶縁
膜のいずれかで終了する。
Here, when an Al alloy is used as the mask metal, it is hardly etched by the fluorine-based gas used in the through-hole etching, so that it remains after etching and can be used as a part of the second-layer Al alloy wiring 18. .. On the other hand, when TiN is used, since etching is performed with a fluorine-based gas, the etching ends with either TiN, SiNx, or the interlayer insulating film depending on the film thickness and etching conditions.

【0019】この場合、特にTiNを残し、2層目Al
合金配線の下に敷く構造にすれば、配線の強化に利用で
きる。また、当然のことながらTiN、及びAl合金の
どちらも残さないで2層目Al合金成膜も可能である。
更に、各マスク用メタルを、Al合金/TiN、又はT
iN/Al合金というように積層化しても構わない。
In this case, especially TiN is left and the second layer Al
The structure laid under the alloy wiring can be used to strengthen the wiring. Further, as a matter of course, it is possible to form the second-layer Al alloy film without leaving both TiN and Al alloy.
Further, the metal for each mask is made of Al alloy / TiN, or T
It may be laminated such as an iN / Al alloy.

【0020】上記実施例では、SiNxを層間絶縁膜の
キャップとして用いたが、マスク用メタルもその働きを
兼ねるので省略しても構わない。また、実施例では、1
層目配線構造はAl合金単層としたが、Al合金と高融
点金属との積層構造としても構わない。また、この時、
配線上に高融点メタルとしてTiNかWNがある場合
は、図2(b)の工程で層間絶縁膜のエッチングに続い
て、フッ素系ガスの異方性エッチングで取り除くように
すれば、スルーホール抵抗が低減できる。
In the above embodiment, SiNx is used as the cap of the interlayer insulating film, but the masking metal also has the function, so it may be omitted. Further, in the embodiment, 1
Although the layer wiring structure is an Al alloy single layer, it may be a laminated structure of an Al alloy and a refractory metal. Also at this time,
If TiN or WN is used as the refractory metal on the wiring, the through-hole resistance can be improved by removing it by anisotropic etching of fluorine-based gas after etching the interlayer insulating film in the step of FIG. 2B. Can be reduced.

【0021】なお、マスクに用いるAl合金材と配線に
用いるAl合金材は同種でも異種でも構わない。なお、
マスク用金属膜としてのTiN膜、Al合金膜又はこれ
らの積層構造膜を残すことによって、スルーホール側壁
は上層の配線膜単層で、層間絶縁膜上はこれらマスク用
金属膜と上層の配線膜との積層構造を有した配線構造に
することができる。
The Al alloy material used for the mask and the Al alloy material used for the wiring may be the same or different. In addition,
By leaving a TiN film, an Al alloy film, or a laminated structure film thereof as a mask metal film, the side wall of the through hole is an upper wiring film single layer, and on the interlayer insulating film, these mask metal film and upper wiring film. And a wiring structure having a laminated structure of

【0022】また、上層の配線膜の材料としては、純A
l,Al合金,Cu,W,Au,Ag,Ti,TiN,
TiW,あるいはこれらの積層構造膜を挙げることがで
きる。更に、本発明は、2層以上の多層配線形成プロセ
スにも適用できる。なお、本発明は上記実施例に限定さ
れるものではなく、本発明の趣旨に基づき種々の変形が
可能であり、それらを本発明の範囲から排除するもので
はない。
The material of the upper wiring film is pure A
1, Al alloy, Cu, W, Au, Ag, Ti, TiN,
TiW or a laminated structure film thereof can be used. Furthermore, the present invention can be applied to a multi-layer wiring formation process of two or more layers. It should be noted that the present invention is not limited to the above embodiments, and various modifications can be made based on the spirit of the present invention, and they are not excluded from the scope of the present invention.

【0023】[0023]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、 (1)層間絶縁膜の堆積後、連続してSiNx膜をキャ
ップとして堆積するようにしたので、層間絶縁膜へのガ
スの吸収及び層間膜からのガス放出がなくなり、膜質の
良好な上層の配線膜を形成することができる。
As described above in detail, according to the present invention, (1) after the interlayer insulating film is deposited, the SiNx film is continuously deposited as a cap. Gas absorption and gas release from the interlayer film are eliminated, and an upper-layer wiring film having good film quality can be formed.

【0024】(2)レジストはマスク用金属膜、例えば
Al合金膜、又はTiN膜をパターニングした後、除去
されるので、レジスト成分を含む化合物生成が少なくな
り、残渣の減少を図ることができる。 (3)マルチチャンバー装置を使用しているため、スル
ーホールエッチング後、下層の配線膜の表面は清浄に保
たれ、低抵抗なスルーホールコンタクトを容易に得るこ
とができる。
(2) Since the resist is removed after the masking metal film, for example, the Al alloy film or the TiN film is patterned, the amount of the compound containing the resist component is reduced, and the residue can be reduced. (3) Since the multi-chamber apparatus is used, the surface of the underlying wiring film is kept clean after the through hole etching, and a low resistance through hole contact can be easily obtained.

【0025】(4)マスク用金属膜は残すことによっ
て、上層の配線膜の下敷きとなり、配線の強化に役立
つ。また、SiNx膜、又は層間絶縁膜でエッチングを
ストップすることもできるので、これらの膜上で特性の
異なる配線膜を形成することができる。
(4) By leaving the metal film for the mask, it becomes an underlay of the upper wiring film, which is useful for strengthening the wiring. Further, since the etching can be stopped by the SiNx film or the interlayer insulating film, a wiring film having different characteristics can be formed on these films.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す本発明の実施例を示す半
導体素子の2層配線形成工程断面図(その1)である。
FIG. 1 is a sectional view (No. 1) of a step of forming a two-layer wiring of a semiconductor device showing an embodiment of the present invention.

【図2】本発明の実施例を示す本発明の実施例を示す半
導体素子の2層配線形成工程断面図(その2)である。
FIG. 2 is a sectional view (No. 2) of the step of forming the two-layer wiring of the semiconductor element showing the embodiment of the present invention.

【図3】本発明で用いられるマルチチャンバー装置を示
す図である。
FIG. 3 is a diagram showing a multi-chamber device used in the present invention.

【図4】従来の半導体素子の2層配線形成工程断面図で
ある。
FIG. 4 is a cross-sectional view of a conventional two-layer wiring forming process of a semiconductor element.

【符号の説明】[Explanation of symbols]

11 シリコン基板 12 中間絶縁膜(BPSG) 13 第1層のAl合金配線 14 層間絶縁(O3 −TEOS・SiO2 )膜 15 SiNx膜 16 Al合金又はTiN膜 17 レジスト 18 第2層のAl合金配線 21,22 CVD室 23,33 スパッタ蒸着室 24,34 中間室 25,35 ロード・ロック室 31 エッチング室 32 Ar+ 逆スパッタ室11 Silicon Substrate 12 Intermediate Insulating Film (BPSG) 13 First Layer Al Alloy Wiring 14 Interlayer Insulation (O 3 -TEOS / SiO 2 ) Film 15 SiNx Film 16 Al Alloy or TiN Film 17 Resist 18 Second Layer Al Alloy Wiring 21,22 CVD chamber 23,33 Sputter deposition chamber 24,34 Intermediate chamber 25,35 Load lock chamber 31 Etching chamber 32 Ar + reverse sputtering chamber

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 下層の配線形成後、上層の配線を形成す
る半導体素子の製造方法において、(a)第1のマルチ
チャンバー装置の第1のCVD室において層間絶縁膜を
堆積する工程と、(b)その後、外気に晒すことなく、
前記第1のマルチチャンバー装置の第2のCVD室にお
いてシリコン窒化膜を形成する工程と、(c)その後、
外気に晒すことなく、スパッタ蒸着室に移し、該スパッ
タ蒸着室においてスパッタ蒸着によりマスク用金属膜を
形成する工程と、(d)前記マスク用金属膜にスルーホ
ールを形成する工程と、(e)第2のマルチチャンバー
装置のエッチング室において前記シリコン窒化膜及び層
間絶縁膜にスルーホールを形成する工程と、(f)その
後、外気に晒すことなく、前記第2のマルチチャンバー
装置のスパッタ室に移し、該スパッタ室においてスパッ
タクリーニングを行う工程と、(g)その後、外気に晒
すことなく、前記第2のマルチチャンバー装置のスパッ
タ蒸着室に移し、該スパッタ蒸着室においてスパッタ蒸
着により上層の配線膜を形成する工程とを施すことを特
徴とする半導体素子の製造方法。
1. A method of manufacturing a semiconductor device, in which after forming a lower layer wiring, an upper layer wiring is formed, the method comprises: (a) depositing an interlayer insulating film in a first CVD chamber of a first multi-chamber apparatus; b) Then, without exposing to the open air,
Forming a silicon nitride film in the second CVD chamber of the first multi-chamber apparatus, and (c)
Transferring to a sputter deposition chamber without exposing to the outside air, forming a mask metal film by sputter deposition in the sputter deposition chamber, (d) forming a through hole in the mask metal film, and (e) A step of forming through holes in the silicon nitride film and the interlayer insulating film in the etching chamber of the second multi-chamber apparatus, and (f) after that, transfer to a sputtering chamber of the second multi-chamber apparatus without exposing to the outside air. A step of performing sputter cleaning in the sputter chamber, and (g) thereafter, moving to a sputter deposition chamber of the second multi-chamber apparatus without exposing to the outside air, and in the sputter deposition chamber, an upper wiring film is formed by sputter deposition. And a step of forming the semiconductor element.
【請求項2】 前記(a)工程における層間絶縁膜はO
3 −TEOS・SiO2 膜である請求項1記載の半導体
素子の製造方法。
2. The interlayer insulating film in the step (a) is O
The method for manufacturing a semiconductor device according to claim 1, wherein the film is a 3- TEOS.SiO 2 film.
【請求項3】 前記(c)工程におけるマスク用金属膜
はAl合金膜、TiN膜又はこれらの積層構造膜である
請求項1記載の半導体素子の製造方法。
3. The method of manufacturing a semiconductor device according to claim 1, wherein the masking metal film in the step (c) is an Al alloy film, a TiN film, or a laminated structure film thereof.
JP13404892A 1992-05-27 1992-05-27 Manufacture of semiconductor element Withdrawn JPH05326719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13404892A JPH05326719A (en) 1992-05-27 1992-05-27 Manufacture of semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13404892A JPH05326719A (en) 1992-05-27 1992-05-27 Manufacture of semiconductor element

Publications (1)

Publication Number Publication Date
JPH05326719A true JPH05326719A (en) 1993-12-10

Family

ID=15119149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13404892A Withdrawn JPH05326719A (en) 1992-05-27 1992-05-27 Manufacture of semiconductor element

Country Status (1)

Country Link
JP (1) JPH05326719A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0855737A2 (en) * 1996-12-24 1998-07-29 Mitel Corporation Integrated processing for an etch module using a hard mask technique
JP2000003961A (en) * 1998-04-16 2000-01-07 St Microelectronics Integrated circuit and manufacturing method thereof
US6149730A (en) * 1997-10-08 2000-11-21 Nec Corporation Apparatus for forming films of a semiconductor device, a method of manufacturing a semiconductor device, and a method of forming thin films of a semiconductor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0855737A2 (en) * 1996-12-24 1998-07-29 Mitel Corporation Integrated processing for an etch module using a hard mask technique
EP0855737A3 (en) * 1996-12-24 1998-12-23 Mitel Corporation Integrated processing for an etch module using a hard mask technique
US6074946A (en) * 1996-12-24 2000-06-13 Mitel Corporation Integrated processing for an etch module using a hard mask technique
US6149730A (en) * 1997-10-08 2000-11-21 Nec Corporation Apparatus for forming films of a semiconductor device, a method of manufacturing a semiconductor device, and a method of forming thin films of a semiconductor
JP2000003961A (en) * 1998-04-16 2000-01-07 St Microelectronics Integrated circuit and manufacturing method thereof
JP4717972B2 (en) * 1998-04-16 2011-07-06 エスティマイクロエレクトロニクス エスエー Integrated circuit manufacturing method

Similar Documents

Publication Publication Date Title
KR19990083622A (en) Method for forming interconnection structure
JP3189970B2 (en) Method for manufacturing semiconductor device
JPH07201986A (en) Manufacture of semiconductor device
JP2001110900A (en) Integrated circuit having double damascene structure and its manufacturing process
JPH05326719A (en) Manufacture of semiconductor element
JPH11312734A (en) Forming method and structure of contact to copper layer inside insulating layer via of semiconductor wafer
JP2004128050A (en) Semiconductor device and its manufacturing method
JP3793995B2 (en) Multilayer wiring formation method
US6841471B2 (en) Fabrication method of semiconductor device
JP4207113B2 (en) Method for forming wiring structure
JPH08298287A (en) Metal wiring of semiconductor device and manufacture of semiconductor device
JPH0547720A (en) Removing method of natural oxide film
JP2000223477A (en) Fabrication of semiconductor device
JPH05121565A (en) Manufacture of semiconductor devices
US7901976B1 (en) Method of forming borderless contacts
JP3767522B2 (en) Multilayer wiring formation method
JPH05251566A (en) Multilayer interconnection structure
US6309963B1 (en) Method for manufacturing semiconductor device
JP2753098B2 (en) Method for manufacturing semiconductor device
JP3378693B2 (en) Method for manufacturing semiconductor device
JP3099381B2 (en) Semiconductor device and manufacturing method thereof
JP3065899B2 (en) Method of forming Al wiring
JPH06224150A (en) Forming method for multilayer interconnection structure
JP2003264228A (en) Method for manufacturing semiconductor device
KR100458589B1 (en) Fabrication method of semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990803