JPH05315547A - Resistance element and manufacture thereof - Google Patents
Resistance element and manufacture thereofInfo
- Publication number
- JPH05315547A JPH05315547A JP12050392A JP12050392A JPH05315547A JP H05315547 A JPH05315547 A JP H05315547A JP 12050392 A JP12050392 A JP 12050392A JP 12050392 A JP12050392 A JP 12050392A JP H05315547 A JPH05315547 A JP H05315547A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- substrate
- atoms
- impurity
- region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Semiconductor Integrated Circuits (AREA)
Abstract
(57)【要約】
【目的】 本発明は、その抵抗値が設計値と精度よく一
致させて形成可能であり、形成後の抵抗値が安定な構造
の化合物半導体LSIの構成要素である抵抗素子および
その製造方法を提供することを目的とする。
【構成】 半絶縁性GaAs基板1表面を含む領域に、
基板1を構成するGa原子の一部をn型不純物であるS
i原子で置換されたn型活性層である抵抗体層2と、抵
抗体層2の隣接下方に基板1を構成するGa原子の一部
をBe原子で置換させたn極性とは反対極性のp型活性
層である障壁層3と、抵抗体層2の縦方向両端近傍で抵
抗体層2に接続される第1電極4および第2電極5で構
成される。抵抗体層2と障壁層3の境界部は空乏化して
いる。
(57) [Summary] [Object] The present invention provides a resistance element that is a constituent element of a compound semiconductor LSI having a structure in which its resistance value can be accurately matched with a design value and the resistance value after formation is stable. And a method for manufacturing the same. [Configuration] In a region including the surface of the semi-insulating GaAs substrate 1,
A part of Ga atoms forming the substrate 1 is S which is an n-type impurity.
The resistor layer 2 is an n-type active layer substituted with i atoms, and has a polarity opposite to the n-polarity obtained by substituting a part of Ga atoms constituting the substrate 1 below the resistor layer 2 with Be atoms. The barrier layer 3 is a p-type active layer, and the first electrode 4 and the second electrode 5 connected to the resistor layer 2 near both ends of the resistor layer 2 in the vertical direction. The boundary between the resistor layer 2 and the barrier layer 3 is depleted.
Description
【0001】[0001]
【産業上の利用分野】本発明は、化合物半導体を使用す
る集積回路の構成要素である抵抗素子に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resistance element which is a constituent element of an integrated circuit using a compound semiconductor.
【0002】[0002]
【従来の技術】化合物半導体を使用する大規模集積回路
(以後、化合物半導体LSIと呼ぶ)を構成する素子の
一つに、トランジスタ素子への印加バイアス電圧を決定
したり、回路網内での帰還量を決定するための抵抗素子
がある。従来、化合物半導体LSI内に実装される抵抗
素子として、半絶縁化された化合物半導体材料でできた
基板の所定領域に、n型またはp型の薄膜状活性層(以
後、抵抗層と呼ぶ)を形成することによって得られるも
のが知られている。2. Description of the Related Art One of the elements constituting a large-scale integrated circuit using a compound semiconductor (hereinafter referred to as a compound semiconductor LSI) is to determine a bias voltage applied to a transistor element, and to feed back in a circuit network. There is a resistive element to determine the quantity. Conventionally, as a resistance element mounted in a compound semiconductor LSI, an n-type or p-type thin film active layer (hereinafter referred to as a resistance layer) is formed in a predetermined region of a substrate made of a semi-insulated compound semiconductor material. What is obtained by forming is known.
【0003】図3は、以上のようにして得られる抵抗素
子の構成図であり、図3(a)はこの抵抗素子の平面図
を、図3(b)は縦断面図を示す。図示のとうり、半絶
縁化された基板1内に、イオン注入法によるn型または
p型不純物注入の後、アニール法により不純物濃度を均
一化した基板表面を含む所定領域に抵抗体層2が形成さ
れる。抵抗体層2の両端には、それぞれ、第1電極4お
よび第2電極5が接続され、電圧の印加および電流の経
路に使用される。抵抗素子の形成にあたっては、注入不
純物濃度、不純物注入エネルギ、不純物注入領域を調整
して、抵抗体層の形状および平均抵抗率を決定し、意図
する抵抗値の抵抗素子を得ている。FIG. 3 is a structural diagram of the resistance element obtained as described above, FIG. 3 (a) is a plan view of this resistance element, and FIG. 3 (b) is a longitudinal sectional view. As shown in the figure, after the n-type or p-type impurity implantation by the ion implantation method into the semi-insulated substrate 1, the resistor layer 2 is formed in a predetermined region including the substrate surface where the impurity concentration is uniformized by the annealing method. It is formed. A first electrode 4 and a second electrode 5 are connected to both ends of the resistor layer 2, respectively, and are used for voltage application and current path. In forming the resistance element, the shape and average resistivity of the resistor layer are determined by adjusting the implantation impurity concentration, the impurity implantation energy, and the impurity implantation region to obtain the resistance element having the intended resistance value.
【0004】[0004]
【発明が解決しようとする課題】半絶縁化された基板中
に形成された活性層中の不純物は、化合物半導体LSI
のアニール後に製造過程で生じる高温プロセスで拡散す
ることが知られている。この拡散は、微視的には不純物
が置換した原子の原子面に沿って進行するが、不純物の
混入が多数の原子面に及び、かつ原子面が基板表面と斜
交差する化合物半導体へのイオン注入などの場合には、
巨視的には等方的に進行する。従来の化合物半導体LS
I中の抵抗素子では、この拡散を抑制することは不可能
であり、抵抗体層の形状および平均抵抗率の変化にとも
ない抵抗値が変化する。この抵抗値の変化は、正確な制
御が不可能であり、実装した抵抗素子の抵抗値の設計値
からの誤差となって現れていた。The impurities in the active layer formed in the semi-insulated substrate are compound semiconductor LSIs.
It is known to diffuse in a high temperature process that occurs in the manufacturing process after annealing. Microscopically, this diffusion proceeds along the atomic planes of the atoms replaced by the impurities, but the impurities are mixed into many atomic planes, and the ions in the compound semiconductor in which the atomic planes cross the substrate surface obliquely. In case of injection,
Macroscopically, it progresses isotropically. Conventional compound semiconductor LS
In the resistance element in I, it is impossible to suppress this diffusion, and the resistance value changes as the shape of the resistor layer and the average resistivity change. This change in resistance value cannot be accurately controlled, and has appeared as an error from the designed value of the resistance value of the mounted resistance element.
【0005】本発明は、以上の問題点を解消するために
なされたもので、その抵抗値が設計値と精度よく一致さ
せて形成可能であり形成後の抵抗値が安定な、化合物半
導体LSIの構成要素である抵抗素子およびその製造方
法を提供することを目的とする。The present invention has been made in order to solve the above-mentioned problems, and a compound semiconductor LSI having a stable resistance value after being formed can be formed with its resistance value accurately matching a design value. An object of the present invention is to provide a resistance element that is a constituent element and a method for manufacturing the same.
【0006】[0006]
【課題を解決するための手段】本発明の抵抗素子は、抵
抗体層である基板表面を含む所定領域に形成された第1
の極性型活性層と、抵抗体層の基板内隣接部中、少なく
とも深層部を含む領域に、抵抗体層を活性化した第1の
極性型不純物が置換した原子と同一種の原子を第2の不
純物で置換し、第1の極性と反対極性であるの第2の極
性型活性層(以後、障壁層と呼ぶ)とを備える構造を有
することを特徴とする。A resistance element of the present invention is a first element formed in a predetermined region including a substrate surface which is a resistor layer.
Of the same type as the atoms replaced by the first polar type impurity that activated the resistive layer in a region including at least a deep layer part in the adjacent portion of the polar type active layer and the resistive layer in the substrate. And a second polarity type active layer having a polarity opposite to the first polarity (hereinafter referred to as a barrier layer).
【0007】また、本発明の抵抗素子の製造方法は、半
絶縁性の化合物半導体基板に、イオン注入法により、注
入領域において前記化合物半導体を構成する特定種の原
子と置き変わり、第1の極性型活性を発現させる第1の
不純物原子を注入する第1の工程と、同じくイオン注入
法により、第1の工程で注入した第1の不純物の平均到
達深さ距離より大きな平均到達深さ距離となるようなエ
ネルギを付与して、注入領域において前記の特定種の原
子と同一種の原子の一部置き変わり、第1の極性と反対
極性である第2の極性型活性を発現させる第2の不純物
を注入する第2の工程と、アニーリング法を使用して注
入した二種の不純物の注入領域の活性化を促し、基板表
面を含む基板内部領域に、第1の極性型活性を持つ抵抗
体層を、抵抗体層の基板内隣接部の内、深層部を含む領
域に第2の極性型活性を持つ障壁層を形成する第3の工
程とを有することを特徴とする。According to the method of manufacturing a resistance element of the present invention, an atom of a specific species forming the compound semiconductor is replaced in the implantation region on the semi-insulating compound semiconductor substrate by the ion implantation method to obtain the first polarity. A first step of injecting a first impurity atom that exhibits type activity, and an average arrival depth distance larger than the average arrival depth distance of the first impurity implanted in the first step by the same ion implantation method. By applying such energy, a part of atoms of the same species as the atoms of the above-mentioned specific species are replaced in the implantation region, and a second polarity type activity having a polarity opposite to the first polarity is expressed. The second step of implanting impurities, and the activation of the implanted regions of the two types of impurities implanted by using the annealing method, and the resistor having the first polarity type activity in the substrate internal region including the substrate surface. Layer, resistor layer Of the substrate adjacent portion, and having a third step of forming a barrier layer having a second polarity type active region including a deep portion.
【0008】[0008]
【作用】本発明の発明者は実験により、化合物半導体中
の特定種原子を置換した不純物は、その不純物が含まれ
ることで活性化する極性と反対極性活性を、同一種の原
子を別の不純物で置換した結果として具備する層内にお
いて、またはこの層を越えては拡散しないという結果を
得ている。The inventor of the present invention has conducted experiments to confirm that an impurity in which a specific species atom in a compound semiconductor is substituted has a polarity opposite to that of the polarity activated by the inclusion of the impurity, and an impurity of the same species has a different polarity. The result is that diffusion does not occur in the layer provided as a result of the substitution with or beyond the layer.
【0009】以上の結果に鑑み、本発明の抵抗素子によ
れば、抵抗層に含まれる不純物の拡散を厚さ方向に関し
て、抵抗体層の隣接深層部を含む領域に形成した障壁層
によって抑止するので、抵抗体層形成後の化合物半導体
集積回路製作工程および実使用における通電動作におい
ても抵抗体層の形状変化を抑制可能であり、従来に比べ
て精度良く一定の抵抗値を維持できる。In view of the above results, according to the resistance element of the present invention, the diffusion of impurities contained in the resistance layer is suppressed in the thickness direction by the barrier layer formed in the region including the adjacent deep layer portion of the resistance layer. Therefore, the shape change of the resistor layer can be suppressed even in the energization operation in the compound semiconductor integrated circuit manufacturing process after the resistor layer is formed and in actual use, and a constant resistance value can be maintained more accurately than in the conventional case.
【0010】また本発明の抵抗素子の製造方法によれ
ば、設計時の抵抗値を精度良く付与した抵抗素子を安定
して製造できる。Further, according to the method of manufacturing the resistance element of the present invention, it is possible to stably manufacture the resistance element to which the resistance value at the time of design is accurately applied.
【0011】[0011]
【実施例】本発明の実施例を図面を参照して説明する。
図1は第1実施例に係わる抵抗素子の斜視図であり、図
1(a)はその平面図であり、図1(b)は横断面図で
ある。この抵抗素子は、半絶縁性GaAs基板1の表面
を含む所定領域に、基板1を構成するGa原子の一部を
n型不純物であるSi原子で置換されたn型活性層であ
る抵抗体層2と、抵抗体層2の隣接深層領域に基板1を
構成するGa原子の一部をBe原子で置換させたp型活
性層である障壁層3と、抵抗体層2の両端近傍で抵抗体
層2に接続される第1電極4および第2電極5で構成さ
れる。n型活性層とp型活性層の接する、抵抗体層2と
障壁層3の境界部は空乏化している。Embodiments of the present invention will be described with reference to the drawings.
1 is a perspective view of a resistance element according to the first embodiment, FIG. 1 (a) is a plan view thereof, and FIG. 1 (b) is a transverse sectional view. This resistance element is a resistor layer which is an n-type active layer in which a part of Ga atoms forming the substrate 1 is replaced with Si atoms which are n-type impurities in a predetermined region including the surface of the semi-insulating GaAs substrate 1. 2, a barrier layer 3 which is a p-type active layer in which a part of Ga atoms constituting the substrate 1 are replaced with Be atoms in an adjacent deep region of the resistor layer 2, and a resistor element near both ends of the resistor layer 2. It is composed of a first electrode 4 and a second electrode 5 connected to the layer 2. The boundary portion between the resistor layer 2 and the barrier layer 3, which is in contact with the n-type active layer and the p-type active layer, is depleted.
【0012】上記のような構造で抵抗素子を構成するの
で、抵抗体層2中のn型不純物であるSi原子は、抵抗
値の変化が大きな基板表面垂直方向への拡散が、p型活
性層である障壁層3によって抑止されるので、一度形成
されたこの抵抗素子の抵抗値は以後安定して維持され
る。Since the resistance element is constructed with the above-described structure, the Si atoms, which are n-type impurities in the resistor layer 2, are diffused in the vertical direction of the substrate surface where the change in resistance value is large, and the p-type active layer is diffused. The resistance value of the resistance element once formed is maintained stable thereafter.
【0013】この抵抗素子は、図2に示す工程で製作さ
れる。This resistance element is manufactured by the process shown in FIG.
【0014】まず、半絶縁化されたGaAs基板2の所
定表面領域下に、イオン注入法を使用して、n型不純物
であるSi原子のイオンを、加速エネルギ=50ke
V、注入イオン濃度=2.0×1012cm-2で注入し
て、抵抗体層となるべきn型注入層21(以後、前抵抗
体層と呼ぶ)を形成する(図2(a))。First, under a predetermined surface region of the semi-insulated GaAs substrate 2, ions of Si atoms, which are n-type impurities, are accelerated by an ion implantation method to accelerate energy = 50 ke.
Implantation is performed at V and implantation ion concentration = 2.0 × 10 12 cm −2 to form an n-type implantation layer 21 (hereinafter referred to as a front resistance layer) to be a resistance layer (FIG. 2A). ).
【0015】次いで、前抵抗体層21の深層に、イオン
注入法を使用して、p型不純物であるBe原子のイオン
を、加速エネルギ=100keV、注入イオン濃度=
1.0×1011cm-2で注入して、障壁層となるべきp
型注入層31(以後、前障壁層と呼ぶ)を形成する(図
2(b))。Next, by using an ion implantation method, ions of Be atoms, which are p-type impurities, are acceleration energy = 100 keV, implantation ion concentration =
Implanted at 1.0 × 10 11 cm -2 to form a barrier layer p
A mold injection layer 31 (hereinafter referred to as a front barrier layer) is formed (FIG. 2B).
【0016】引き続き、アニ−ルを施して、前抵抗体層
21内のGa原子を置換したSi原子分布および前障壁
層31内のGa原子を置換したBe原子分布を平滑化
し、設計時に意図した形状と抵抗率を持つ抵抗体層2お
よび、抵抗体層2の表面垂直方向への変形を抑止する障
壁層3を形成する。この平滑化過程で抵抗体層2と障壁
層3の境界部は空乏化する。この後、抵抗体層2の両端
でこの層と接続する第1電極4および第2電極5を形成
する(図2(c))。Subsequently, annealing is performed to smooth the distribution of Si atoms substituted with Ga atoms in the pre-resistor layer 21 and the distribution of Be atoms substituted with Ga atoms in the front barrier layer 31, which is intended at the time of design. A resistor layer 2 having a shape and a resistivity and a barrier layer 3 for suppressing deformation of the resistor layer 2 in the direction perpendicular to the surface are formed. In the smoothing process, the boundary between the resistor layer 2 and the barrier layer 3 is depleted. After that, the first electrode 4 and the second electrode 5 connected to both ends of the resistor layer 2 are formed (FIG. 2C).
【0017】つぎに、第2実施例に関して説明する。第
2実施例の抵抗素子の構成図は第1実施例と同一であ
り、抵抗体層2の不純物原子種と活性型および障壁層3
の不純物原子種が異なる。この抵抗素子では、抵抗体層
2の不純物原子種はBeであり、活性型はp型である。
また、障壁層3の不純物原子種はSiであり、活性型は
n型である。Next, the second embodiment will be described. The configuration diagram of the resistance element of the second embodiment is the same as that of the first embodiment, and the impurity atom species of the resistor layer 2 and the active type and the barrier layer 3 are shown.
The impurity atomic species of are different. In this resistance element, the impurity atom species of the resistor layer 2 is Be, and the active type is p-type.
The impurity atomic species of the barrier layer 3 is Si, and the active type is n type.
【0018】上記のような構造で抵抗素子を構成するの
で、抵抗体層2中のp型不純物であるBe原子は、抵抗
値の変化が大きな基板表面垂直方向への拡散が、n型活
性層である障壁層3によって抑止されるので、第1実施
例と同様に、一度形成されたこの抵抗素子の抵抗値は以
後安定して維持される。Since the resistance element is constructed with the above-described structure, Be atoms, which are p-type impurities in the resistor layer 2, are diffused in the direction perpendicular to the substrate surface where the change in resistance value is large, and the Be type atoms are diffused. Since it is suppressed by the barrier layer 3, the resistance value of the resistance element once formed is maintained stable thereafter, as in the first embodiment.
【0019】この抵抗素子の製造工程は、図2で示され
る第1実施例の製造工程と同様であり、注入する不純物
イオン種、加速エネルギ、および注入イオン濃度が異な
る。前抵抗体層21を形成する際には、Be原子イオン
を、加速エネルギ=10keV、注入イオン濃度=2.
0×1013cm-2で基板に注入する。また、前障壁層3
1を形成する際には、Si原子イオンを、加速エネルギ
=100keV、注入イオン濃度=2.0×1011cm
-2で基板に注入する。The manufacturing process of this resistance element is the same as the manufacturing process of the first embodiment shown in FIG. 2, and the impurity ion species to be implanted, the acceleration energy, and the concentration of implanted ions are different. When forming the pre-resistor layer 21, Be atom ions are used as acceleration energy = 10 keV, implantation ion concentration = 2.
Implant the substrate at 0 × 10 13 cm -2 . Also, the front barrier layer 3
1 is formed, Si atomic ions are accelerated energy = 100 keV, implantation ion concentration = 2.0 × 10 11 cm.
Inject into the substrate with -2 .
【0020】本発明は、上記実施例に限定されるもので
はなく、様々な変形が可能である。The present invention is not limited to the above embodiment, but various modifications can be made.
【0021】例えば、第1実施例、第2実施例の基板材
料である化合物半導体は、GaAs以外にInPなどを
使用してもよいし、注入不純物種は、Si原子とBe原
子の組み合わせ以外に、例えばSn原子とBe原子の組
み合わせのような,基板材料の化合物半導体を構成する
原子種の内、同一種の原子を置換し異なる活性型を生じ
させる1組の原子を、基板材料等を考慮して使用しても
よい。また、障壁層は抵抗体層に隣接した深層領域での
みでなく、隣接領域全体に形成してもよい。For example, the compound semiconductors used as the substrate material in the first and second embodiments may use InP or the like in addition to GaAs, and the implanted impurity species may be other than the combination of Si atoms and Be atoms. In consideration of the substrate material, etc., one set of atoms, such as a combination of Sn atom and Be atom, that substitutes the same type of atoms among the atomic species forming the compound semiconductor of the substrate material and produces different active types. You may use it. The barrier layer may be formed not only in the deep region adjacent to the resistor layer but also in the entire adjacent region.
【0022】[0022]
【発明の効果】以上、詳細に説明した通り本発明の抵抗
素子によれば、抵抗形成後の化合物半導体LSI製作工
程および実使用における通電動作においても、精度良く
一定の抵抗値を維持できるので、LSIが安定して動作
可能となる。また本発明の抵抗素子の製造方法によれ
ば、設計時の抵抗値を精度良く付与した抵抗素子を安定
して製造できるとともに、ひいては化合物半導体LSI
の品質を向上できる。As described in detail above, according to the resistance element of the present invention, a constant resistance value can be accurately maintained even in the compound semiconductor LSI manufacturing process after resistance formation and the energization operation in actual use. The LSI can operate stably. Further, according to the method of manufacturing a resistance element of the present invention, it is possible to stably manufacture a resistance element to which a resistance value at the time of design is accurately applied, and further, a compound semiconductor LSI
Can improve the quality of.
【図面の簡単な説明】[Brief description of drawings]
【図1】実施例1の抵抗素子の平面図および横断面図で
ある。1A and 1B are a plan view and a cross-sectional view of a resistance element according to a first exemplary embodiment.
【図2】図1に示す抵抗素子の製造工程図である。FIG. 2 is a manufacturing process diagram of the resistance element shown in FIG.
【図3】従来の抵抗素子の平面図および横断面図であ
る。FIG. 3 is a plan view and a cross-sectional view of a conventional resistance element.
1…半絶縁性化合物半導体基板,2…抵抗体層,21…
前抵抗体層,3…障壁層,31…前障壁層,4…第1電
極,5…第2電極。1 ... Semi-insulating compound semiconductor substrate, 2 ... Resistor layer, 21 ...
Front resistor layer, 3 ... Barrier layer, 31 ... Front barrier layer, 4 ... First electrode, 5 ... Second electrode.
Claims (2)
る基板の表面を含む第1の領域内で、前記化合物半導体
を構成する特定種の原子の一部が第1の不純物原子に置
き換えられることにより形成された、第1の極性型活性
を持つ第1の層と、 前記第1の領域に隣接する前記基板内の領域の内、少な
くとも前記第1の領域の深層部を含む第2の領域内で、
前記特定種の原子と同一種の原子の一部が第2の不純物
原子に置き換えられることにより形成された、第2の極
性型活性を持つ第2の層と、 を備えることを特徴とする抵抗素子。1. In a first region including a surface of a substrate made of a semi-insulating compound semiconductor material, a part of atoms of a specific species constituting the compound semiconductor is replaced with a first impurity atom. A first layer having a first polarity-type activity and a second region including at least a deep layer portion of the first region in a region in the substrate adjacent to the first region. At the inner,
A second layer having a second polar type activity, which is formed by replacing a part of atoms of the same kind as the atoms of the specific kind with a second impurity atom; element.
る基板に、イオン注入法により、注入領域において前記
化合物半導体を構成する特定種の原子と置き換わり、第
1の極性型活性を発現させる第1の不純物原子を注入す
る第1の工程と、 前記基板に、イオン注入法により、前記第1の不純物を
注入した前記基板表面領域を含む基板表面領域を対象と
して、注入領域において前記特定種の原子と同一種の原
子の一部と置き換わり、第2の極性型活性を発現させる
第2の不純物を、前記第1の不純物の平均到達深さより
大きな平均到達深さとなるようなエネルギで注入する第
2の工程と、 アニーリング法により、前記基板中の前記二種の不純物
の注入領域を活性化する第3の工程と、 を有することを特徴とする抵抗素子の製造方法。2. A substrate, which is made of a semi-insulated compound semiconductor, is replaced with an atom of a specific species constituting the compound semiconductor in an implantation region by an ion implantation method to develop a first polar type activity. A first step of injecting one impurity atom, and targeting a substrate surface region including the substrate surface region in which the first impurity is implanted into the substrate by an ion implantation method, in the implantation region A second impurity that replaces a part of the atom of the same species as the atom and causes the second polar type activity to be expressed, with the energy such that the average arrival depth is larger than the average arrival depth of the first impurity. 2. The method for manufacturing a resistance element, comprising: the step 2); and a third step of activating an implantation region of the two kinds of impurities in the substrate by an annealing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12050392A JPH05315547A (en) | 1992-05-13 | 1992-05-13 | Resistance element and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12050392A JPH05315547A (en) | 1992-05-13 | 1992-05-13 | Resistance element and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05315547A true JPH05315547A (en) | 1993-11-26 |
Family
ID=14787812
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12050392A Pending JPH05315547A (en) | 1992-05-13 | 1992-05-13 | Resistance element and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05315547A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1158584A2 (en) * | 2000-05-24 | 2001-11-28 | Sony Corporation | Semiconductor device having semiconductor resistance element and fabrication method thereof |
-
1992
- 1992-05-13 JP JP12050392A patent/JPH05315547A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1158584A2 (en) * | 2000-05-24 | 2001-11-28 | Sony Corporation | Semiconductor device having semiconductor resistance element and fabrication method thereof |
US6667538B2 (en) * | 2000-05-24 | 2003-12-23 | Sony Corporation | Semiconductor device having semiconductor resistance element and fabrication method thereof |
US6902992B2 (en) | 2000-05-24 | 2005-06-07 | Sony Corporation | Method of fabricating semiconductor device having semiconductor resistance element |
EP1158584A3 (en) * | 2000-05-24 | 2007-01-03 | Sony Corporation | Semiconductor device having semiconductor resistance element and fabrication method thereof |
JP4599660B2 (en) * | 2000-05-24 | 2010-12-15 | ソニー株式会社 | Semiconductor device having semiconductor resistance element and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3752191T2 (en) | Ultra-high frequency self-aligning field effect transistor and method of manufacturing the same | |
US4242691A (en) | MOS Semiconductor device | |
US4283236A (en) | Method of fabricating lateral PNP transistors utilizing selective diffusion and counter doping | |
DE69324630T2 (en) | Doping process, semiconductor device and process for its production | |
US5227315A (en) | Process of introduction and diffusion of platinum ions in a slice of silicon | |
JPS61181161A (en) | Manufacturing method of semiconductor device | |
JPS6399577A (en) | metal semiconductor field effect transistor | |
JPS61501807A (en) | Integrated circuit electrode formation method | |
US4432008A (en) | Gold-doped IC resistor region | |
DE3685842T2 (en) | METHOD FOR PRODUCING AN OHMIC CONTACT ON A III-V SEMICONDUCTOR AND PRODUCED SEMICONDUCTOR INTERMEDIATE PRODUCT. | |
JPH05315547A (en) | Resistance element and manufacture thereof | |
USH291H (en) | Fully ion implanted junction field effect transistor | |
DE1803026C3 (en) | Semiconductor component and method for its manufacture | |
US4089103A (en) | Monolithic integrated circuit device construction methods | |
US6902992B2 (en) | Method of fabricating semiconductor device having semiconductor resistance element | |
DE2627922A1 (en) | SEMI-CONDUCTOR COMPONENT | |
JP3189847B2 (en) | Compound semiconductor integrated circuit | |
JPH07254641A (en) | Method for manufacturing AlGaAs semiconductor device having high resistance region and low resistance region | |
JPS62198162A (en) | Mos transistor and manufacture thereof | |
JP2709086B2 (en) | Method for forming electrode of semiconductor device | |
JPS63226922A (en) | Manufacturing method of semiconductor device | |
JPH0226781B2 (en) | ||
JP3119168B2 (en) | Semiconductor device and manufacturing method thereof | |
JPH0132669B2 (en) | ||
KR100260363B1 (en) | Gate electrode of semiconductor device and method for forming the same |