[go: up one dir, main page]

JPH0530893B2 - - Google Patents

Info

Publication number
JPH0530893B2
JPH0530893B2 JP59118956A JP11895684A JPH0530893B2 JP H0530893 B2 JPH0530893 B2 JP H0530893B2 JP 59118956 A JP59118956 A JP 59118956A JP 11895684 A JP11895684 A JP 11895684A JP H0530893 B2 JPH0530893 B2 JP H0530893B2
Authority
JP
Japan
Prior art keywords
color
alloy
heated
laser
spectral reflectance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59118956A
Other languages
English (en)
Other versions
JPS60262931A (ja
Inventor
Tetsuo Minemura
Hisashi Ando
Isao Ikuta
Yoshiaki Kita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11895684A priority Critical patent/JPS60262931A/ja
Priority to DE8484305743T priority patent/DE3483448D1/de
Priority to US06/643,293 priority patent/US4726858A/en
Priority to CA000461537A priority patent/CA1218285A/en
Priority to EP84305743A priority patent/EP0136801B1/en
Priority to KR1019840005112A priority patent/KR850002634A/ko
Publication of JPS60262931A publication Critical patent/JPS60262931A/ja
Publication of JPH0530893B2 publication Critical patent/JPH0530893B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は新規な分光反射率可変合金に係り、特
に光・熱エネルギーが与えられることにより合金
の結晶構造の変化にともなう分光反射率変化を利
用した情報記録、表示、センサ等の媒体に使用可
能な合金に関する。
〔発明の背景〕
近年、情報記録の高密度化、デジタル化が進む
につれて種々の情報記録再生方式の開発が進めら
れている。特にレーザの光エネルギを情報の記
録、消去、再生に利用した光デイスクは工業レア
メタルNo.80、1983(光デイスクと材料)に記載さ
れているように磁気デイスクに比べ、高い記録密
度が可能であり、今後の情報記録の有力な方式で
ある。このうち、レーザによる再生装置はコンパ
クト・デイスク(CD)として実用化されている。
一方、記録可能な方式には追記型と書き換え可能
型の大きく2つに分けられる。前者は1回の書き
込みのみが可能であり、消去はできない。後者は
くり返しの記録、消去が可能な方式である。追記
型の記録方法はレーザ光により記録部分の媒体を
破壊あるいは成形して凹凸をつけ、再生にはこの
凹凸部分でのレーザ光の干渉による光反射量の変
化を利用する。この記録媒体にはTeやその合金
を利用して、その溶解、昇華による凹凸の成形が
一般的に知られている。この種の媒体では毒性な
ど若干の問題を含んでいる。書き換え可能型の記
録媒体としては光磁気材料が主流である。この方
法は光エネルギを利用してキユリー点あるいは補
償点温度付近で媒体の局部的な磁気異方性を反転
させ記録し、その部分での偏光入射光の磁気フア
ラデー効果及び磁気力−効果による偏光面の回転
量にて再生する。この方法は書き換え可能型の最
も有望なものとして数年後の実用化を目指し精力
的な研究開発が進められている。しかし、現在の
ところ偏光面の回転量の大きな材料がなく多層膜
化などの種々の工夫をしてもS/N、C/Nなど
の出力レベルが小さいという大きな問題がある。
その他の書き換え可能型方式として記録媒体の非
晶質と結晶質の可逆的相変化による反射率変化を
利用したものがある。例えばNational
Technical Report Vol29No.5(1983)に記載
TeOxに少量のGeおよびSnを添加した合金があ
る。
しかし、この方式は非晶質相の結晶化温が低
く、常温における相の不安定さがデイスクの信頼
性に結びつく大きな問題点がある。
一方、色調変化を利用した合金として、特開昭
57−140845である。この合金は(12〜15)wt%
Al−(1〜5)wt%Ni−残Cuよりなる合金でマ
ルテンサイト変態温度を境にして、赤から黄金色
に可逆的に変化することを利用したものである。
マルテンサイト変態は温度を低下にともなつて必
然的に生ずる変態のため、マルテンサイト変態温
度以上に保持した状態で得られる色調はマルテン
サイト変調温度以下にもつてくることはできな
い。また逆にマルテンサイト変態温度以下で得ら
れる色調のものをマルテンサイト変態温度以上に
すると、変態をおこして別の色調に変化してしま
う。したがつて、マルテンサイト変態の上下でお
こる2つの色調は同一温度で同時に得ることがで
きない。したがつてこの原理では記録材料として
適用することはできない。
〔発明の目的〕
本発明の目的は、同一温度で部分的に異なつた
分光反射率を保持することのできる分光反射率可
変合金を提供するにある。
〔発明の概要〕
(発明の要旨) 本発明は、高温及び低温状態で異なつた結晶構
造を有する合金において、該合金は前記高温から
の過冷によつて前記低温における非過冷による結
晶構造と異なる結晶構造を有することを特徴とす
る分光反射率可変合金にある。
特に、本発明の分光反射率可変合金は、電磁波
を照射することによつて分光反射率が可逆的に変
化するものであつて、同一温度で、高温相温度領
域から急冷することによつて形成される第一の結
晶と、低温相温度領域から冷却することによつて
形成される第一の結晶と異なる第二の結晶との可
逆的に相変化する2種類の結晶構造を有し、第一
の結晶と第二の結晶との間の分光反射率の差が5
%以上であることを特徴とするものである。
本発明合金は固相状態での加熱冷却処理により
同一温度で少なくとも2種の分光反射率を有し、
可逆的に分光反射率を変えることのできるもので
ある。すなわち、本発明に係る合金は固相状態で
少なくとも2つの温度領域で結晶構造の異なつた
相を有し、それらの内、高温相を過冷した状態と
非過冷の標準状態の低温相状態とで分光反射率が
異なり、高温相温度領域での加熱急冷と低温相温
度領域での加熱冷却により分光反射率が可逆的に
変化するものである。
本発明合金の可逆的反射率の変化についてその
原理を第1図を用いて説明する。図はX−Y二元
系合金の状態図でありα固溶体とβ,γ金属間化
合物が存在する。A組成の合金を例にとると、こ
の合金は固相状態において、β単相、(β+γ)
相及び(α+γ)相がある。結晶構造はα,β,
γのそれぞれ単相状態で異なり、これら単独及び
混合相においてそれぞれ光学的性質、たとえば分
光反射率は異なる。このような合金はT1温度、
一般的に室温であるが、第2の結晶としての(α
+γ)相が安定である。これをT4温度まで加熱
急冷すると第1の結晶としてのβ相がT1温度ま
で過冷する。この状態は(α+γ)相とは異なる
ため、分光反射率も異なつてくる。この過冷β相
合金をTe温度以下のT2温度まで加熱冷却すると
β相は(α+γ)相に変態し、分光反射率は最初
の状態に戻る。このような2つの加熱冷却処理を
繰返すことにより、分光反射率を可逆的に変化さ
せることが可能である。
(合金組成) 本発明合金は、高温及び低温状態で異なつた結
晶構造を有するもので、高温からの過冷によつて
その過冷された結晶構造が形成されるものでなけ
ればならない。更に、この過冷されて形成された
相は所定の温度での加熱によつて低温状態での結
晶構造に変化するものでなければならない。
本発明合金は、周期律表のb族元素の少なく
とも1種のb族、b族、b族及びb族元
素から選ばれた少なくとも1種との合金からなる
ものが好ましい。これらの合金のうち、銅を主成
分とし、Al、Ga、In、Ge及びSnとの合金が好ま
しく、更にこれらの合金に第3元素としてNi、
Mn、Fe及びCrを含む合金が好ましい。
また、銀を主成分とし、Al、Cd及びZnを含む
合金が好ましく、更にこれらの合金に第3元素と
してCu、Al、Auを含有する合金が好ましい。
金を主成分とし、Alを含む合金が好ましい。
本発明合金は前記b族元素とb族、b
族、b族及びb族元素との金属間化合物を有
するものが好ましい。
(ノンバルク) 本発明合金は反射率の可変性を得るために材料
の加熱急冷によつて過冷相を形成できるものが必
要である。材料の加熱急冷効果を高めるためには
材料は熱容量の小さいノンバルクである箔、膜、
細線あるいは粉末等が望ましい。一般に金属間化
合物は塑性加工が難しい。従つて、箔、膜、細線
あるいは粉末にする手法として材料を気相あるい
は液相から直接急冷固化させて所定の形状にする
ことが有効である。これらの方法にはPVD法
(蒸着、スパツタリング法等)、CVD法、溶湯を
高速回転する金属ロール上に注湯して急冷凝固さ
せる溶湯急冷法、電気メツキ、化学メツキ法等が
ある。膜あるいは粉末状の材料を利用する場合、
基板上に直接形成するか、塗布して基板上に接着
することが効果的である。塗布する場合、粉末を
加熱しても反応などを起こさないバインダーがよ
い。また、加熱による材料の酸化等を防止するた
め、材料表面、基板上に形成した膜あるいは塗布
層表面をコーテイングすることも有効である。
箔又は細線は溶湯急冷法によつて形成するのが
好ましく、厚さ又は直径0.1mm以下が好ましい。
特に0.1μm以下の結晶粒径の箔又は細線を製造す
るには0.05mm以下の厚さ又は直径が好ましい。
粉末は、溶湯をガスとともに噴霧させて水中に
投入されて急冷するガイアトマイズ法によつて形
成させることが好ましい。その粒径は0.1mm以下
が好ましく、特に粒径1μm以下の超微粉が好ま
しい。
膜は前述の如く蒸着、スパツタリング、CVD
電気メツキ、化学メツキ等によつて形成できる。
特に、0.1μm以下の膜厚を形成するにはスパツタ
リングが好ましい。スパツタリングは目標の合金
組成のコントロールが容易にできる。
(組織) 本発明合金は、高温及び低温において異なる結
晶構造を有し、高温からの過冷によつて高温にお
ける結晶構造を低温で保持される過冷相の組成を
有するものでなければならない。高温では不規則
格子の結晶構造を有するが、過冷相は一例として
Cs−Cl型規則格子を有する金属間化合物が好ま
しい。光学的性質を大きく変化させることのでき
るものとして本発明合金はこの金属間化合物を主
に形成する合金が好ましく、特に合金全体が金属
間化合物を形成する組成が好ましい。この金属間
化合物は電子化合物と呼ばれ、特に3/2電子化合
物(平均外殻電子濃度e/aが3/2)の合金組成
付近のものが良好である。
また、本発明合金は共析変態を有する合金組成
が好ましく、その合金は高温からの過冷と非過冷
によつて分光反射率の差の大きいものが得られ
る。
本発明合金は超微細結晶粒を有する合金が好ま
しく、特に結晶粒径は0.1μm以下が好ましい。即
ち、結晶粒は可視光領域の波長の値より小さいの
が好ましいが、半導体レーザ光の波長の値より小
さいものでもよい。
(特性) 本発明の分光反射率可変合金は、可視光領域に
おいて分光反射率が同一温度で少なくとも2種類
有している。即ち、高温からの過冷によつて形成
された結晶構造(組織)を有するものの分光反射
率が非過冷によつて形成された結晶構造(組織)
を有するものの分光反射率と異なつており、両者
の分光反射率は少なくとも可視光領域において10
%以上であることが好ましく、特に20%以上が好
ましい。
また、過冷と非過冷によつて得られるものの分
光反射率の差は5%以上が好ましく、特に10%以
上有することが好ましい。分光反射率の差が大き
ければ、目視にる色の識別が容易であり、後で記
載する各種用途において顕著な効果がある。
分光反射させる光源として、電磁波であれば可
視光以外でも使用可能であり、赤外線、紫外線な
ども使用可能である。
本発明合金のその他の特性として、電気抵抗
率、屈折率、偏光率、透過率なども分光反射率と
同様に可逆的に変えることができ、各種情報の記
録、表示、センサー等の再生、検出手段として利
用することができる。
分光反射率は合金の表面あらさ状態に関係する
ので、前述のように少なくとも可視光領域におい
て10%以上有するように少なくとも目的とする部
分において鏡面になつているのが好ましい。
(用途) 本発明合金は、加熱急冷によつて部分的又は全
体に結晶構造の変化による分光反射率、電気抵抗
率、屈折率、偏光率、透過率等の物理的又は電気
的特性を変化させ、これらの特性の変化を利用し
て記録、表示、センサー等の素子に使用すること
ができる。
情報等の記録の手段として、電磁波(可視光、
赤外線、紫外線、電子ビーム、アルゴン、半導体
レーザ等のレーザ光線、熱等)を用いることがで
き、特にその照射による分光反射率の変化を利用
して光デイスクの記録媒体に利用するのが好まし
い。光デイスクには、デイジタルオーデイオデイ
スク(DAD又はコンパクトデイスク)、ビデオデ
イスク、メモリーデイスクなどがあり、これらに
使用可能である。本発明合金を光デイスクの記録
媒体に使用することにより再生専用型、追加記録
型、書換型デイスク装置にそれぞれ使用でき、特
に書換型デイスク装置においてきわめて有効であ
る。
本発明合金を光デイスクの記録媒体に使用した
場合の記録及び再生の原理は次の通りである。先
ず、記録媒体を局部的に加熱し該加熱後の過冷に
よつて高温度領域での結晶構造を低温度領域で保
持させれ所定の情報を記録し、又は高温相をベー
スとして、局部的に加熱して高温相中に局部的に
低温相によつて記録し、記録部分に光を照射して
加熱部分と非加熱部分の光学的特性の差を検出し
て情報を再生することができる。更に情報として
記録された部分を記録時の加熱温度より低い温度
又は高い温度で加熱し記録された情報を消去する
ことができる。光はレーザ光線が好ましく、特に
短波長レーザが好ましい。本発明の加熱部分と非
加熱部分との反射率が500nmの波長において最
も大きいので、このような波長を有するレーザ光
を再生に用いるのが好ましい。記録、再生には同
じレーザ源が用いられ、消去に記録のものよりエ
ネルギー密度を小さくした他のレーザ光を照射す
るのが好ましい。
また、本発明合金を記録媒体に用いたデイスク
は情報が記録されているか否かが目視で判別でき
る大きなメリツトがある。
表示として、特に可視光での分光反射率を部分
的に変えることができるので塗料を使用せずに文
字、図形、記号等を記録することができ、それら
の表示は目視によつて識別することができる。ま
た、これらの情報は消去することができ、記録と
消去のくり返し使用のほか、永久保存も可能であ
る。その応用例として時計の文字盤、アクセサリ
ーなどがある。
センサーとして、特に可視光での分光反射率の
変化を利用する温度センサーがある。予め高温相
に変る温度が分つている本発明の合金を使用した
センサーを測定しようとする温度領域に保持し、
その過冷によつて過冷相を保持させることによつ
ておおよその温度検出ができる。
(製造法) 本発明は、固体状態で室温より高い第1の温度
と該第1の温度より低い第2の温度とで異なつた
結晶構造を有する合金表面の一部に、前記第1の
温度より過冷して前記第2の温度における結晶構
造と異なる結晶構造を有する領域を形成し、前記
過冷されて形成された結晶構造を有する領域と前
記第2の温度での結晶構造を有する領域とで異な
つた分光反射率を形成させることを特徴とする分
光反射率可変合金の製造法にある。
更に、本発明は固体状態で室温より高い第1の
温度と該第1の温度より低い第2の温度で異なつ
た結晶構造を有する合金表面の全部に、前記第1
の温度から過冷して前記第2の温度における結晶
構造と異なる結晶構造を形成させ、次いで前記合
金表面の一部を前記第2の温度に加熱して前記第
2の温度における結晶構造を有する領域を形成
し、前記過冷されて形成された結晶構造を有する
領域と前記第2の温度における結晶構造を有する
領域とで異なつた分光反射率を形成させることを
特徴とする分光反射率可変合金の製造法にある。
第1の温度からの冷却速度は102℃/秒以上、
より好ましくは103℃/秒以上が好ましい。
〔発明の実施例〕
実施例 1 Cu−15.0重量%Al合金を、真空高周波誘導炉
で溶解しインゴツトとした。このインゴツトは黄
金色であつた。このインゴツトを溶融し、その溶
湯を高速回転する単ロールの表面又は多ロールの
ロール間に注湯急冷することによりリボン状の箔
を製造した。前者は直径300mmのCu製ロール(表
面はCrメツキ)、後者は直径120mmのCu−Be製ロ
ールであり、ロールを周速10〜20m/sに設定し
た。母合金溶解には石英製ノズルを用い、1チヤ
ージ10g前後を溶解、急冷して幅5mm、厚さ40μ
m、長さ数mのリボン状箔を作製した。このリボ
ンの室温での色調は赤銅色であつた。このものの
一部分を350℃で1分間加熱した所、室温で黄金
色を示した。これらの色調について分光反射率を
測定した。
第2図は、赤銅色と黄金色の波長と分光反射率
との関係を示す線図である。図に示す如く、赤銅
色と黄金色とで720nmの波長領域を除いて、い
ずれの領域でも分光反射率が大きい所で異なり、
約10%の差が見られることが分る。従つて、両者
の色別が可能である。これらの色調は室温でいず
れも永久保存可能である。更に、このことはレー
ザーによる局部的な加熱によつて黄金色基地に赤
銅色による信号、文字、記号等の情報を記憶させ
ることが可能であることを示すものである。ま
た、逆の赤銅色基地に黄金色による信号等の情報
の記録が可能である。
実施例 2 スパツタ蒸着法により製作した薄膜で色調の可
逆的変化を確認した。実施例1で作製したインゴ
ツトから直径100mm、厚さ5mmの円板を切り出し
スパツタ用のターゲツトとした。スパツタ蒸着基
板としてはガラス板(厚さ0.8mm)を用いた。ス
パツタ膜を書込み、消去時での加熱酸化、基板か
らの剥離などを防止するためその表面にSiO2
保護膜(厚さ30nm)を蒸着によつて形成させ
た。合金膜の蒸着にはDC−マグネトロン型を、
SiO2膜にはRF型のスパツタ法をそれぞれ使用し
た。スパツタ出力は140〜200W、基板温度は200
℃の条件に設定した。容器内は10-5Torr程度ま
で真空排気後、Arガスを5〜30mTorr導入して
薄膜を作製した。膜厚はSiO2膜は30nm程度と
し、合金膜厚を0.05〜10μmの種々の厚さのもの
を作製した。以上のようなスパツタ蒸着条件で作
製した合金膜(膜厚300nm)の結晶粒は超微細
であり、粒径は約30nmと超微細であり、記録、
再生、消去における結晶粒の影響は全くないと考
えられる。蒸着されたままの合金膜は赤銅色であ
つた。
第3図はスパツタリング法によつて作製した合
金膜について350℃で1分加熱し、黄金色に変え
た後、Arレーザによる加熱・冷却を利用して書
込み、消去を行なつた合金膜の色調を示した図で
ある。Arレーザは連続発振である。試料を手動
移動ステージの上に設置し、試料を移動させてレ
ーザ光を膜表面に焦点を合せ走査させた。レーザ
光を照射させた部分は赤銅色に変化し、斜線のよ
うに書込みさせた。点線部分も同様である。書込
みはスポツト径10μmの200mWのArレーザ光を
走査させた跡である。合金膜はあらかじめ基板ご
とに黄金色になる熱処理を施してある。次にレー
ザ光の焦点を膜表面から若干ずらし、レーザの出
力密度を低くして図中の点線部分に図の上下方向
に走査させた。その結果、元の赤銅色は消去され
た黄金色に変化した。以上の結果から薄膜状態の
合金においても色調変化による記録、消去が可能
であることを確認された。この書込み、消去は何
回でも繰返しが可能であることが確認された。
室温で前述の作製したままの全面が赤銅色の試
料にArレーザの出力を50mW程度にして、走査
させた。Arレーザ走査部は室温において黄金色
に変化し、基地の赤銅色と識別でき、記録が可能
なことがわかつた。
その後全体を350℃に1min加熱すると、赤銅色
の部分は黄金色に変化し、室温では全面黄金色を
呈し、消去可能なことがわかつた。
実施例 3 実施例1で製造したインゴツトを粉末にしてそ
の色調変化を調べた。インゴツトを機械的に切削
後、その切り粉を粉砕した。インゴツトは脆いた
め切り粉状態でかなり細かな紛状となるが、これ
をさらに粉砕し−100メツシユ程度とした。粉砕
したままの状態では黄金色であるが、これを800
℃で1分加熱後水冷すると赤銅色に変化すること
が確認された。
更に、インゴツトから粉砕した粉末をボールミ
ルを用いて粒径数μmの粉末にし、有機物に混合
してガラス基板を塗布し、非酸化性雰囲気中で焼
成し、約100μmの厚さの合金膜を形成した。こ
の合金膜表面に約30nmの厚さのSiO2皮膜を蒸着
によつて形成させた。ガラス基板は鏡面研摩した
ものであり、合金膜を形成後、同様に鏡面研摩し
たものである。この合金膜を形成したままのもの
は黄金色を呈しているが、前述と同様にレーザ光
を他の相に変態する温度に照射することにより赤
銅色に変化することが確認された。
実施例 4 Cu−14重量%Al−10重量%Ni合金を実施例1
と同様に約40μmの厚さのリボンを作製した。こ
のリボンは室温で赤銅色であつた。このリボンを
350℃2min加熱空冷すると黄金色に変化した。
220〜300℃では赤銅色と黄金色の中間色であり、
300〜600℃では黄金色、600℃以上では赤銅色と
なる。このようにして黄金色になつた箔を600℃
以上に加熱すると赤銅色となり、赤銅色となつた
箔を550℃以下に加熱すると黄金色にもどる。
第4図はAl14%及びNi10%の銅合金のこれら
両者の分光反射率を測定した結果である。個々に
特有な反射率変化を示し、450又は600nm付近を
除いた波長領域で識別することが可能であつた。
以後、この2つの加熱急冷を繰り返してもこの相
違はほとんど変化せず可逆的に変化した。
実施例 5 Cu−15重量%Al−9重量%Ni合金を実施例1
と同様に約40μmの厚さのリボンを作製した。こ
のリボンは室温で赤紫色であつた。このリボンを
350℃2min加熱空冷すると薄黄金色に変化した。
220〜300℃では赤紫色と薄黄金色の中間色であ
り、300〜600℃では薄黄金色、600℃以上では赤
紫色となる。このようにして薄黄金色になつた箔
を600℃以上に加熱する赤紫色となり、赤紫色に
なつた箔を550℃以下に加熱すると薄黄金色にも
どる。
第5図はこれら両者の分光反射率を測定した結
果である。個々に特有な反射率変化を示し500n
m付近を除いた波長領域で識別することが可能で
あつた。以後、この2つの加熱急冷を繰り返して
もこの相違はほとんど変化せず可逆的に変化し
た。
実施例 6 Cu−16重量%Al−12重量%Ni合金を溶融状態
にして、その溶湯を高速回転するロール外周上に
注湯急冷液体急冷法によつて約40μm厚さのリボ
ン状箔を作製した。このリボンは室温で紫色であ
つた。このリボンを350℃2min加熱後空冷すると
薄赤銅色に変化した。220〜300℃では紫色と薄赤
銅色の中間色であり、約300〜約650℃では薄赤銅
色、700℃以上では紫色となる。このようにして
薄赤銅色になつた箔を700℃以上に加熱すると紫
色となり、紫色になつた箔を600℃以下に加熱す
ると薄赤銅色にどる。第6図はこれら両者の分光
反射率を測定した結果である。個々に特有な反射
率変化を示す490nm以下、620nm付近を除いた
波長領域で識別することが可能であつた。この2
つの加熱急冷を繰り返してもこの相違はほとんど
変化せず可逆的に変化した。
実施例 7 スパツタ蒸着によりガラス基板上に50nm厚さ
の実施例4と同組成の合金薄膜を作製し、その上
に保護膜としてAl2O3もしくはSiO2を50nm厚さ
スパツタ蒸着により被覆した。作製した膜は赤銅
色を呈した。ついで、この膜を350℃2min加熱空
冷した結果色調は黄金色に変化した。この分光反
射率は第6図に示した結果とほぼ同等であつた。
膜の全面を黄金色化した試料にスポツト径約2μ
mの半導体レーザを出力30mW以下で走査させ
た。室温でレーザ照射部を観察した結果黄金色の
基地に幅約2μmの赤銅色の線が描かれ、記録で
きることが分つた。次に、レーザ出力を低くする
か、レーザ光の焦点を膜面からわずかにずらした
状態で変色部にレーザ光を照射すると前記の赤銅
色に変化した線部分は基地の黄金色に可逆的に変
化し、赤銅色に記録したものを消去することがで
きることを確認した。この可逆的変化は繰返し生
じた。
以上の結果はArレーザによつても得られるこ
とを確認した。
スパツタ蒸着したままの室温で全面が赤銅色の
試料に半導体レーザ(出力20mW)を走査させ
た。レーザ走査部は室温において黄金色に変化
し、基地の色と識別できレーザによる記録ができ
た。その後、全体を350℃で2分間加熱すると全
体が黄金色に変化し、記録した部分を消去するこ
とができた。Arレーザによる加熱によつても実
現できた。
実施例 8 Cu−15重量%Al−5重量%Fe合金を実施例1
と同様に約40μm厚さのリボン状箔を作製した。
このリボンは室温で赤銅色であつた。このリボン
を350℃2min加熱後空冷すると黄金色に変化し
た。さらにこのリボンを750℃2min加熱水冷する
とその色調は赤銅色に変化した。200〜300℃では
赤銅色と黄金色の中間色であり、約300〜約700℃
では黄金色、750℃以上では赤銅色となる。これ
は加熱時間によつてほとんど変化しない。このよ
うにして黄金色になつた箔を750℃以上に加熱す
ると赤銅色となり、赤銅色になつた箔を700℃以
下で加熱すると黄金色にもどる。第7図はこれら
両者の分光反射率を測定した結果である。個々に
特有な反射率変化を示し、400nm又は600nm付
近を除いた波長領域で識別することが可能であつ
た。この2つの加熱急冷を繰り返しても可逆的に
変化した。
実施例 9 スパツタ蒸着によりガラス基板上に50nm厚さ
の実施例8と同組成の合金薄膜を作製し、その上
に保護膜としてAl2O3もしくはSiO2を50nm厚さ
スパツタ蒸着により被覆した。作製した膜は赤銅
色を呈した。ついで、この膜を350℃2min加熱空
冷した結果色調は黄金色に変化した。この分光反
射率は第7図に示した結果とほぼ同等であつた。
膜の全面を黄金色化した試料表面に前述と同様
に、半導体レーザを照射し、室温でレーザ照射部
を観察した結果黄金色の基地に幅約2μmの赤銅
色の線が描かれ記録できることが分つた。次に、
レーザ出力を低くするか、レーザ光の焦点を膜面
からわずかにずらした状態で変色部にレーザ光を
照射すると前記の赤銅色に変化した線部分は基地
の黄金色に可逆的に変化し、赤銅色に記録したも
のを消去することができることを確認した。この
可逆的変化は以後繰返し可能であることも確認さ
れた。
スパツタ蒸着したままの室温で全面が赤銅色の
試料に半導体レーザ(出力20mW)を走査させ
た。レーザ走査部は室温において黄金色に変化
し、基地の色と識別でき、レーザによる記録がで
きた。その後、全体を350℃で2分加熱した結果、
全体が黄金色に変化し、記録した部分を消去する
ことができた。また、Arレーザによる加熱によ
つて同様に実現できた。
更に、14.5重量%Al及び3重量%Crを含むCu
合金でも同様であつた。
実施例 10 Cu−14重量%Al−5重量%Mn合金を実施例1
と同様に約40μm厚さのリボン状箔を作製した。
このリボンは室温で紫色であつた。このリボンを
350℃2min加熱後空冷すると白黄色に変化した
(Cu−Al二元合金では赤銅色に対して黄金色であ
なMnを含むと紫色と白黄色に変化する)。さら
にこのリボンを750℃2min加熱水冷するとその色
調は紫色に変化した。200〜300℃では紫色と白黄
色の中間色であり、350〜700℃では白黄色、750
℃以上では紫色となる。これは加熱時間によつて
ほとんど変化しない。このようにして白黄色にな
つた箔を750℃以上に加熱すると紫色となり、紫
色になつた箔を700℃以下で加熱すると白黄色に
もどる。第8図はこれら両者の分光反射率を測定
した結果である。個々に特有な反射率変化を示し
450nm付近を除いた波長領域で識別することが
可能であつた。この2つの加熱急冷を繰り返して
もこの相違はほとんど変化せず可逆的に変化し
た。
実施例 11 スパツタ蒸着によりガラス基板上に50nm厚さ
の実施例10と同組成の合金薄膜を作製し、その上
に保護膜としてAl2O3もしくはSiO2を50nm厚さ
スパツタ蒸着により被覆した。作製した膜は紫色
を呈した。ついで、この膜を350℃2min加熱空冷
した結果色調は白黄色に変化した。この分光反射
率は第8図に示した結果とほぼ同等であつた。膜
の全面を白黄色化した試料面に前述と同様に半導
体レーザを照射し、室温でレーザ照射部を観察し
た結果白黄色の基地に幅約2μmの紫色の線が描
かれ、記録できることが分つた。次に、レーザ出
力を低くするから、レーザ光の焦点を膜面からわ
ずかにずらした状態で変色部にレーザ光を照射す
ると前記の紫色に変化した線部分は基地の白黄色
に可逆的に変化し、紫色に記録したものを消去で
きた。
スパツタ蒸着したままの室温で全面が紫色の試
料に半導体レーザ(出力20mW)を走査させた。
レーザ走査部は室温において白黄色に変化し、基
地の色と識別でき、レーザによる記録ができた。
その後、全体を350℃で2分加熱すると全体が白
黄色に変化し、記録した部分を消去することがで
きた。Arレーザによる加熱でも同様に実現でき
た。
実施例 12 Cu−22.5重量%Ga合金を実施例1と同様に厚
さ約30μmのリボン状箔を製作した。室温でのリ
ボンの色調は黄色であつた。黄色のリボンの一部
をArガス雰囲気中で650℃に2分加熱した所、室
温で黄色を呈したままであつたが、500℃に2分
加熱した所、白黄色を呈した。650℃に2分加熱
したリボンと500℃に2分加熱したリボンの分光
反射率を測定した結果を第9図に示すが、黄色
(β相)と白黄色(ζ+γ相)とでは400nm及び
520nm以外の波長領域で反射率が異なつており、
両者の識別が可能なことがわかる。
実施例 13 スパツタ蒸着法により200℃に加熱したガラス
基板上に50nm厚さのCu−22.5重量%Ga合金膜を
作製し、その上に保護膜としてSiO2を100nm厚
さ被覆した。室温での薄膜の色は白黄色を呈し
た。ついで650℃に1分加熱した後の室温での色
は黄色を呈した。両者の薄膜について分光反射率
を測定したが傾向は第9図とほぼ同様であつた。
全面を白黄色にした薄膜試料にスポツト径2μm
の半導体レーザ光を出力30mWで走査させた。光
学顕微鏡でレーザ照射部を観察した結果、色の基
地に幅2μmの黄色の線が形成された。次にレー
ザ光のスポツト径を5μmとし、かつエネルギー
密度を低下させて、前記レーザ照射部上を走査さ
せた結果、黄色の線の部分は白黄色に変化し、基
地の色調と同じになつた。以上の記録と消去の操
作は何回でも繰返しが可能であつた。同様の実験
をArレーザ光を用いて行つたが、結果は半導体
レーザ光による場合と同様であつた。
実施例 14 実施例13と同じ方法で作製した室温で白黄色の
薄膜試料を650℃で1分加熱して全面黄色の薄膜
試料とした。次に半導体レーザの出力を20mW程
度にしてスポツト径2μmのレーザ光を走査させ
た。レーザ照射部は白黄色に変化し、基地の黄色
部と識別できた。
その後半導体レーザ光のスポツト径を5μmと
し、かつエネルギー密度を高めてレーザ光を前記
レーザ照射部上を走査させた結果、白黄色の線の
部分に黄色に変化し、基地の色調と同じになつ
た。以上の記録と消去の操作は何回でも繰り返し
が可能であつた。
実施例 15 Cu−25重量%Ga−1重量%Al合金を実施例1
と同様に約40μm厚さのリボン状箔を作製した。
このリボンは室温で、黄色であつた。このリボン
を500℃2min加熱後空冷すると白黄色に変化し
た。このリボンを650℃2min加熱水冷するとその
色調は黄色に変化した。300〜380℃では黄色と白
黄色の中間色であり、400〜600℃では白黄色、
650℃では黄色となる。これは加熱時間によつて
ほとんど変化しない。このようにして白黄色にな
つた箔を650℃以上に加熱すると黄色となり、黄
色になつた箔を600℃以下で加熱すると白黄色に
もどる。第10図はこれら両者の分光反射率を測
定した結果である。個々に特有な反射率変化を示
し530nm付近を除いた波長領域で識別すること
が可能であつた。この2つの加熱急冷を繰り返し
てもこの相違はほとんど変化せず可逆的な変化の
再現性が確認できた。
実施例 16 スパツタ蒸着によりガラス基板上に50nm厚さ
の実施例1と同組成の合金薄膜を作製し、その上
に保護膜としてAl2O3もしくはSiO2を50nm厚さ
スパツタ蒸着により被覆した。作製した膜は黄色
を呈した。ついで、この膜を550℃2min加熱空冷
した結果色調は白黄色に変化した。この分光反射
率は第10図に示した結果とほぼ同等であつた。
膜の全面を白黄色化した試料表面に前述と同様に
半導体レーザを走査させた。室温でレーザ照射部
を観察した結果白黄色の基地に幅約2μmの黄色
の線が描かれ、記録できることが分つた。次に、
レーザ出力を低くするか、レーザ光の焦点を膜面
からわずかにずらした状態で変色部にレーザ光を
照射すると前記の黄色に変化した線部分は基地の
白黄色に可逆的に変化し、黄色に記録したものを
消去することができることを確認した。
スパツタ蒸着したままの室温で全面が黄色の試
料に半導体レーザ(出力20mW)を走査させた。
レーザ走査部は室温において白黄色に変化し、基
地の色と識別でき、レーザによる記録ができた。
その後、全体を550℃で2分間加熱すると全体が
白黄色に変化し、記録した部分を消去できた。
実施例 17 Cu−31wt%In合金を実施例1と同様に約40μm
厚さのリボン状箔を作製した。このリボンは室温
で薄赤銅色であつた。このリボンを550℃2min加
熱後空冷すると銀白色に変化した。このリボンを
650℃2分加熱水冷するとその色調は薄赤銅色に
変化した。これら両者の分光反射率を測定した結
果、第11図に示すように個個に特有な反射率変
化を示し570nm付近を除いた波長領域で識別す
ることが可能であつた。
実施例 18 スパツタ蒸着によりガラス基板上に50nm厚さ
の実施例16と同組成の合金薄膜を作製し、その上
に保護膜としてAl2O3もしくはSiO2を50nm厚さ
スパツタ蒸着により被覆した。作製した膜は薄赤
銅色を呈した。ついで、この膜を550℃2分加熱
空冷した結果色調は銀白色に変化した。この分光
反射率は第11図に示した結果とほぼ同等であつ
た。膜の全面を銀白色化した試料にスポツト径
2μmの半導体レーザを出力30mW以下で走査さ
せた。室温でレーザ照射部を観察した結果銀白色
の基地に幅約2μmの薄赤銅色の線が描かれ、記
録できることが分つた。次に、レーザ出力を低く
するか、レーザ光の焦点を膜面からわずかにずら
した状態で変色部にレーザ光を照射すると前記の
薄赤銅色に変化した線部分は基地の銀白色に可逆
的に変化し、薄赤銅色に記録したものを消去する
ことができることを確認した。
スパツタ蒸着たままの室温で全面が薄赤銅色の
試料に半導体レーザ(出力20mW)を走査させ
た。レーザ走査部は室温において銀白色に変化
し、基地の色と識別でき、レーザによる記録がで
きた。その後、全体を550℃で2分加熱すると銀
白色に変化した。
実施例 19 Cu−25重量%In−1.0重量%Alwt%合金を実施
例1と同様に約40μm厚さのリボン状箔を作製し
た。このリボンは室温で薄赤銅色であつた。この
リボンを550℃2min加熱後空冷すると銀白色に変
化した。さらにこのリボンを650℃2min加熱水冷
するとその色調は薄赤銅色に変化した。370〜450
℃では銀白色と薄赤銅色の中間色であり、500〜
640℃では銀白色、650℃以上では薄赤銅色とな
る。これは加熱時間によつてほとんど変化しな
い。このようにして銀白色になつた箔を650℃以
上に加熱すると薄赤銅色となり、薄赤銅色になつ
た箔を600℃以下で加熱すると銀白色にもどる。
第12図はこれら両者の分光反射率を測定した結
果である。個々に特有な反射率変化を示し420及
び530nm付近を除いた波長領域で識別すること
が可能であつた。この2つの加熱急冷を繰り返し
てもこの相違はほとんど変化せず可逆的な変化の
再現性が確認できた。
実施例 20 スパツタ蒸着によりガラス基板上に50nm厚さ
の実施例19と同組成の合金薄膜を作製し、その上
に保護膜としてAl2O3もしくはSiO2を50nm厚さ
スパツタ蒸着により被覆した。作製した膜は薄赤
銅色を呈した。この膜を550℃2min加熱空冷した
結果色調は銀白色に変化した。この分光反射率は
第12図に示した結果とほぼ同等であつた。膜の
全面を銀白色化した試料に前述と同様に、半導体
レーザを走査させた。室温でレーザ照射部を観察
した結果銀白色の基地に幅約2μmの薄赤銅色の
線が描かれ、記録できることが分つた。次に、レ
ーザ出力を低くするか、レーザ光の焦点の膜面か
らわすかにずらした状態で変色部にレーザ光を照
射すると前記の薄赤銅色に変化した線部分は基地
の銀白色に可逆的に変化し、薄赤銅色に記録した
ものを消去することができることを確認した。
スパツタ蒸着したままの室温で全面が薄赤銅色
の試料に半導体レーザ(出力20mW)を走査させ
た。レーザ走査部は室温において銀白色に変化
し、基地の色と識別でき、レーザによる記録がで
きた。その後、全体を550℃で2分加熱すると銀
白色に変化した。
実施例 21 Cu−22.5重量%Ge合金を実施例1と同様に厚
さ約30μmのリボン状箔を製作した。室温でのリ
ボンの色調は紫色であつた。紫色のリボンの一部
をArガス雰囲気中で500℃に2分加熱した所、室
温で紫色を呈したままであつたが、650℃に2分
加熱した所白紫色を呈した。500℃に2分加熱し
たリボンと650℃に2分加熱したリボンの分光反
射率を測定した結果を第13図に示すが紫色(ζ
+ε1相)と白紫色(ζ+ε相)とでは700nm付近
の波長領域以外で反射率が異なつており、両者の
識別が可能なことがわかる。
実施例 22 スパツタ蒸着によりガラス基板上に50nm厚さ
のCu−22.5重量%Ge合金膜を作製し、その上に
保護膜としてSiO2を100nm厚さ被覆した。室温
での薄膜の色は白紫色を呈した。ついで500℃に
1分加熱した後の室温での色は紫色を呈した。両
者の薄膜について分光反射率を測定したが傾向は
第13図とほぼ同様であつた。全面を紫色にした
薄膜試料にスポツト径2μmの半導体レーザ光を
出力30mWで走査させた。光学顕微鏡でレーザ照
射部を観察した結果、紫色の基地に幅2μmの白
紫色の線が形成され、情報を記録できることが分
つた。次にレーザ光のスポツト径を5μmとし、
かつエネルギー密度を低下させて、前記レーザ照
射部上を走査させた結果、白紫色の線の部分は紫
色に変化し、基地の色調と同じになつた。すなわ
ち情報を消去できることが分つた。以上の記録と
消去の操作は何回でも繰返しが可能であつた。
実施例 23 実施例22と同じ方法で作製した室温で白紫色の
薄膜試料を650℃で1分加熱して全面白紫色の薄
膜試料とした。次に半導体レーザの出力を20mW
程度にしたスポツト径2μmのレーザ光を走査さ
せた。レーザ照射部は紫色に変化し、基地の白紫
色部と識別できた。
その後半導体レーザ光のスポツト径を5μmと
し、かつエネルギー密度を高めてレーザ光を前記
レーザ照射部上を走査させた結果、紫色の線の部
分は白紫色に変化し、基地の色調と同じになつ
た。以上の記録と消去の操作は何回でも繰り返し
が可能であつた。
実施例 24 Cu−22重量%Ge−1重量%Alwt%合金を約
40μm厚さのリボン状箔を作製した。このリボン
は室温で紫色であつた。このリボンを550℃2min
加熱後空冷すると白紫色に変化した。このリボン
を650℃2min加熱水冷するとその色調は紫色に変
化した。300〜380℃では紫色と白紫色の中間色で
あり、400〜600℃では白紫色、650℃以上では紫
色となる。これは加熱時間によつてほとんど変化
しない。このようにして白紫色になつた箔を650
℃以上に加熱すると紫色となり、紫色になつた箔
を600℃以下で加熱すると白紫色にもどる。
第14図はこれら両者の分光反射率を測定した
結果である。個々に特有な反射率変化を示し
680nm付近を除いた波長領域で識別することが
可能であつた。この2つの加熱急冷を繰り返して
もこの相違はほとんど変化せず可逆点な変化の再
現性が確認できた。
実施例 24 スパツタ蒸着によりガラス基板上に50nm厚さ
の実施例22と同組成の合成薄膜を作製し、その上
に保護膜としてAl2O3もしくはSiO2を50nm厚さ
のスパツタ蒸着により被覆した。作製した膜は紫
色を呈した。ついで、この膜を550℃2min加熱空
冷した結果色調は白紫色に変化した。この分光反
射率は第14図に示した結果とほぼ同等であつ
た。膜の全面を白紫色化した試料に前述と同様に
半導体レーザ走査させた。室温でレーザ照射部を
観察した結果白紫色の基地に幅約2μmの紫色の
線が描かれ、記録できることが分かつた。次に、
レード出力を低くするか、レーザ光の焦点を膜面
からわずかにずらした状態で変色部にレーザ光を
照射すると前記の紫色に変化した線部分は基地の
白紫色に可逆的に変化し、紫色に記録したものを
消去できた。
スパツタ蒸着したままの室温で全面が紫色の試
料に半導体レーザ(出力20mW)を走査させた。
レーザ走査部は室温において白紫色に変化し、基
地の色と識別でき、レーザによる記録ができた。
その後、全体を550℃で2分加熱すると全体が白
紫色に変化した。
実施例 26 Cu−30重量%Sn合金を実施例1と同様に約40μ
m厚さのリボン状箔を作製した。このリボンは室
温で黄金色であつた。このリボンを400℃、2min
加熱後空冷すると銀白色に変化した。さらにこの
リボンを650℃2分加熱水冷するとその色調は黄
金色に変化した。これら両者の分光反射率を測定
した結果、第15図に示すように個々に特有な反
射率変化を示し540nm付近を除いた波長領域で
識別することが可能であつた。
実施例 27 スパツタ蒸着によりガラス基板上に50nm厚さ
の実施例 と同組成の合金薄膜を作製し、その
上に保護膜としてAl2O3もしくはSiO2を50nm厚
さにスパツタ蒸着により被覆した。作製した膜は
黄金色を呈した。ついで、この膜を400℃2分加
熱空冷した結果色調は銀白色に変化した。この分
光反射率は第15図に示した結果とほぼ同等であ
つた。膜の全面を銀白色化した試料にスポツト径
約20μmの半導体レーザを出力30mW以下で走査
させた。室温でレーザ照射部を観察した結果銀白
色の基地に幅約2μmの黄金色の線が描かれ、記
録できることが分つた。次に、レーザ出力を低く
するか、レーザ光の焦点を膜面からわずかにずら
した状態で変色部にレーザ光を照射すると前記黄
金色に変化した線部分は基地の銀白色に可逆的に
変化し、黄金色に記録したものを消去できた。こ
の可逆的変化は以後繰返しても可能であつた。
スパツタ蒸着したままの室温で全面が黄金色の
試料に半導体レーザ(出力20mW)を走査させ
た。レーザ走査部は室温において銀白色に変化
し、基地の色と識別でき、レーザによる記録がで
きた。その後、全体を400℃で2分間加熱すると
銀白色に変化し、記録した部分を消去することが
できた。またArレーザによる加熱によつても実
現できた。
実施例 28 Cu−20重量%Sn−1重量%Al合金を実施例1
と同様に約40μm厚さのリボン状箔を作製した。
このリボンは室温で黄金色であつた。このリボン
を500℃2min加熱後空冷すると銀白色に変化し
た。さらにこのリボンを650℃2min加熱水冷する
とその色調は黄金色に変化した。300〜380℃では
黄金色と銀白色の中間色であり、400〜550℃では
銀白色、600℃以上では黄金色となる。これは加
熱時間によつてほとんど変化しない。このように
して銀白色になつた箔を600℃以上に加熱すると
黄金色となり、黄金色になつた箔を550℃以下で
加熱すると銀白色にもどる。
第16図はこれら両者の分光反射率を測定した
結果である。個々に特有な反射率変化を示し
630nm付近を除いた波長領域で識別することが
可能であつた。この2つの熱空急冷を繰り返して
もこの相違はほとんど変化せず可逆的に変化し
た。
実施例 29 スパツタ蒸着によりガラス基板上に50nm厚さ
の実施例1と同組成の合金薄膜を作製し、その上
に保護膜としてAl2O3もしくはSiO2を50nm厚さ
スパツタ蒸着により被覆した。作業した膜は黄金
色を呈した。ついで、この膜を550℃2min加熱空
冷した結果色調は銀白色に変化した。この分光反
射率は第16図に示した結果とほぼ同等であつ
た。膜の全面を銀白色化した試料に前述と同様に
半導体レーザを走査させた。室温でレーザ照射部
を観察した結果銀白色の基地に幅約2μmの黄金
色の線が描かれ、記録できることが分つた。次
に、レーザ出力を低くするか、レーザ光の焦点を
膜面からわずかにずらした状態で変色部にレーザ
光を照射すると前記の黄金色に変化した線部分は
基地の銀白色に可逆的に変化し、黄金色に記録し
たものを消去できた。
スパツタ蒸着したままの室温で全面が黄金色の
試料に半導体レーザ(出力20mW)を走査させ
た。レーザ走査部は室温において銀白色に変化
し、基地の色と識別でき、レーザによる記録がで
きた。その後、全体を550℃で2分加熱すると銀
白色に変化した。
実施例 30 Ag−35重量%Zn、40重量%Zn合金を実施例1
と同様に約50μm厚さ、幅5mmのリボンを作製し
た。これらのリボンはいずれも室温でピンク色で
あつた。これらの合金を200℃で2分加熱した所
銀白色に変化した。また、いずれの合金も300℃
で加熱後急冷した所、再びピンク色に変化した。
第17図は35%Zn及び第18図は40%Zn−Ag合
金の分光反射率を示す。これらのピンク色と銀白
色における分光反射率は570nm又は600nmの波
長において差が見られないほかは400〜800nmの
範囲では明らかに差が見られる。その差は10%以
上である。
実施例 31 Ag−40重量%Zn合金をアルゴン雰囲気中で溶
解し約120mmφの円筒状に凝固させた。これから
厚さ5mm、直径100mmφの円板を切り出しスパツ
タ蒸着用のターゲツトとした。
スパツタ蒸着法としてはDC−マグネトロン型
を使用し基板には約26mmφ、厚さ1.2mmの硬質ガ
ラスを用い、基板温度200℃、スパツタパワー150
mWの条件で約80nm厚さスパツタ蒸着した。ガ
スには20mTorrのArを使用した。膜面にはさら
にRF−スパツタによりAl2O3またはSiO2を約20n
m厚さに保護膜として蒸着させた。
スパツタ蒸着状態では膜は銀白色であつた。こ
れを基板ごとに350℃で2分熱処理後水冷すると
ピンク色になつた。これをさらに200℃で同条件
で熱処理すると銀白色に戻つた。このようにスパ
ツタ膜においても箔同様の色変化を示した。
実施例 32 実施例 と同様な方法で作製したAg−40wt
%Znスパツタ膜にレーザ光による記録、再生、
消去を実施した。レーザ光としては半導体レーザ
(波長830nm)もしくはArレーザ(波長488nm)
を用いた。レーザ光のパワーを膜面で10〜50m
W、ビーム径を約1μmから10μm程度まで変え、
銀白色の膜面上を走査させた結果、ピンク色に変
色した線を描くことができた。この線幅はレーザ
出力により、約1μmから20μmまで変化できた。
このような線を何本か書き、半導体レーザを線を
横切るように走査させると反射率変化により、約
20%の直流電圧レベルの変化として色変化を電気
信号に変えることができた。
このように描いた線は膜全体を200℃近くまで
加熱するか、パワー密度の低いレーザ光で走査す
ることにより元の銀白色に容易に戻すことができ
た。
実施例 33 Ag−7.5重量%Al合金を実施例1と同様にして
約40μm厚さのリボン状箔を作製した。このリボ
ンは室温で薄黄金色であつた。このリボンを210
℃2min加熱後空冷すると銀白色に変化した。さ
らにこのリボンを450℃2分加熱水冷するとその
色調は薄黄金色に変化した。これら両者の分光反
射率を測定した結果、第19図に示すように個々
に特有な反射率変化を示し620nm付近を除した
波長領域で識別することが可能であつた。
実施例 34 スパツタ蒸着によりガラス基板上に50nm厚さ
の実施例1と同組成の合金薄膜を作製し、その上
に保護膜としてAl2O3もしくはSiO2を50nm厚さ
スパツタ蒸着により被覆した。作製した膜は薄黄
金色を呈した。ついで、この膜を210℃2分加熱
空冷した結果色調は銀白色に変化した。この分光
反射率は第19図に示した結果とほぼ同等であつ
た。膜の全面を銀白色化した試料にスポツト径約
2μmの半導体レーザ出力30mW以下で走査させ
た。室温でレーザ照射部を観察した結果銀白色の
基地に幅約2μmの薄黄金色の線を描けているこ
とが分つた。次に、レーザ出力を低くするか、レ
ーザ光の焦点を膜面からわずかにずらした状態で
変色部にレーザ光を照射すると前記の薄黄金色に
変化した線部分は基地の銀白色に可逆的に変化し
た。この可逆的変化は以後繰り返しても可能であ
ることも確認された。
室温で全面が薄黄金色の試料に半導体レーザ
(出力20mW)を走査させた。レーザ走査部は室
温において銀白色に変化し、基地の色と識別で
き、レーザによる記録ができた。
実施例 35 Cdの蒸発を防止するためAgとCdを石英管内に
真空封入し、800℃で合金化後、650℃で均質化処
理することによりAg−52重量%Cd合金のインゴ
ツトを製造した。インゴツトをやすりがけして粉
末を採取し、次に粉末を酸化防止の為透明石英管
内に真空封入し、これを650℃、350℃および200
℃の各温度に5分間保持後水冷した時、室温で粉
末の色はそれぞれ、灰色、ピンク色および紫色を
呈した。この結果からβ相、ξ相およびβ′相の各
相はそれぞれ室温で灰色、ピンク色および紫色の
色調を有すると判断した。次に前記インゴツトか
ら厚さ1mmの板を切り出し、板表面を研摩後、石
英管内に真空封入し、これを350℃および200℃で
5分間保持後、管を割つて板を水冷し、両者の分
光反射率を室温で測定した。その結果を第20図
に示すが、350℃で保持した板(ζ相、ピンク色)
と200℃で保持した板(β′相、紫色)とでは、
470nm及び670nmの波長領域を除いて、分光反
射率が異なり、両者の識別が可能なことがわか
る。
実施例 36 スパツタ蒸着法により200℃に加熱したガラス
基板上に50nm厚さのAg−52重量%Cd合金膜を
作製し、その上に保護膜としてSiO2を200nm厚
さ被覆した。室温での薄膜の色は紫色を呈した。
ついで350℃に1分加熱した後の室温での色はピ
ンク色を呈した。両者の薄膜について分光反射率
を測定したが傾向は第20図とほぼ同様であつ
た。全面を紫色にした薄膜試料にスポツト径2μ
mの半導体レーザ光を出力30mWで走査させた。
光学顕微鏡でレーザ照射部を観察した結果、紫色
の基地に幅2μmのピンク色の線が形成されてい
ることを確認した。すなわち情報を記録できるこ
とが分つた。次にレーザ光のスポツト径を5μm
とし、かつ、エネルギー密度を低下させて、前記
レーザ照射部上を走査させた結果、ピンク色の線
の部分は紫色に変化し、基地の色調と同じになつ
た。すなわち情報を消去できることが分つた。以
上の記録と消去の操作は何回でも繰り返しが可能
であることも確認された。
室温で紫色の薄膜試料を350℃で1分加熱して
全面ピンク色の薄膜試料とした。次に半導体レー
ザの出力を20mW程度にしてスポツト径2μmの
レーザ光を走査させた。レーザ照射部は紫色に変
化し、基地のピンク色部と識別できた。
その後半導体レーザ光のスポツト径を5μmと
し、かつエネルギー密度を高めてレーザ光を前記
レーザ照射部上を走査させた結果、紫色の線の部
分はピンク色に変化し、基地の色調と同じになつ
た。以上の記録と消去の操作は何回でも繰り返し
が可能であた。
実施例 37 Ag−55重量%Cd−0.25重量%Al合金を実施例
1と同様に厚さ約30μmのリボン状箔を製作し
た。室温でのリボンの色調はピンク色であつた。
ピンク色のリボンの一部をArガス雰囲気中で300
℃に2分加熱した所、室温でピンク色を呈したま
まであつたが、200℃に2分加熱した所、紫色を
呈した。300℃に2分加熱したリボンと200℃に2
分加熱したリボンの分光反射率を測定した結果を
第21図に示すがピンク色(ζ相)と紫色
(β′相)とでは470nm及び670nm以外の波長領域
で反射率が異なつており、両者の識別が可能なこ
とがわかる。
実施例 38 スパツタ蒸着法により200℃に加熱したガラス
基板上に50nm厚さのAg−55重量%Cd0.25重量%
Al合金膜を作製し、その上に保護膜としてSiO2
を100mm厚さ被覆した。室温での薄膜の色は紫色
を呈した。ついで350℃に1分加熱した後の室温
での色はピンク色を呈した。両者の薄膜について
分光反射率を測定したが傾向は第21図とほぼ同
様であつた。全面を紫色にした薄膜試料に前述と
同様に半導体レーザ光を走査させた。光学顕微鏡
でレーザ照射部を観察した結果、紫色の基地に幅
2μmのピンク色の線が形成された。次にレーザ
光のスポツト径を5μmとし、かつエネルギー密
度を低下させて前記レーザ照射部上を走査させた
結果、ピンク色の線の部分は紫色に変化し、基地
の色調と同じになつた。以上の記録と消去の操作
は何回でも繰り返しが可能であつた。同様の実験
をArレーザ光を用いて行つたが、結果は半導体
レーザ光による場合と同様であつた。
室温で紫色の薄膜試料を350℃で1分加熱して
全面ピンク色の薄膜試料とした。次に半導体レー
ザの出力を20mW程度にしてスポツト径2μmの
レーザ光を走査させた。レーザ照射部は紫色に変
化し、基地のピンク色部と識別できた。
その後半導体レーザ光のスポツト径を5μmと
し、かつエネルギー密度を高めてレーザ光を前記
レーザ照射部上を走査させた結果、紫色の線の部
分はピンク色に変化し、基地の色調と同じになつ
た。以上の記録と消去の操作は何回でも繰り返し
が可能であつた。
実施例 39 Ag−7.5重量%Al−10重量%Cu合金を実施例
1と同様に約40μm厚さのリボン状箔を作製し
た。このリボンは室温で薄黄金色であつた。この
リボンを400℃2min加熱後空冷すると銀白色に変
化した。さらにこのリボンを600℃2min加熱水冷
するとその色調は薄黄金色に変化した。これらの
色調変化は150〜200℃では薄黄金色と銀白色の中
間色であり、220〜500℃では銀白色、550℃以上
では薄黄金色となる。これは加熱時間によつてほ
とんど変化しない。このようにして銀白色になつ
た箔を600℃以上に加熱すると薄黄金色となり、
薄黄金色になつた箔を500℃以下で加熱すると銀
白色にもどる。第22図はこれらの両者の分光反
射率を測定した結果である。個々に特有な反射率
変化を示し580nm付近を除した波長領域で識別
することが可能であつた。以後、この2つの加熱
急冷を繰り返してもこの相違はほとんど変化せず
可逆的に変化した。
実施例 40 スパツタ蒸着によりガラス基板上に50nm厚さ
の実施例1と同組成の合金薄膜を作製し、その上
に保護膜としてAl2O3もしくはSiO2を50nm厚さ
スパツタ蒸着により被覆した。作製した膜は薄黄
金色を呈した。ついで、この膜を55℃2min加熱
空冷した結果色調は銀白色に変化した。この分光
反射率は第22図に示した結果とほぼ同等であつ
た。膜の全面を銀白色化した試料に前述と同様に
半導体レーザを走査させた。室温でレーザ照射部
を観察した結果銀白色の基地に幅約2μmの薄黄
金色の線を描けていることが分つた。次に、レー
ザ出力を低くするか、レーザ光の焦点を膜面から
わずかにずらした状態で変色部にレーザ光を照射
すると前記の薄黄金色に変化した線部分は基地の
銀白色に可逆的に変化した。この可逆的変化は以
後繰り返しても可能であつた。
室温で全面が薄黄金色の試料に半導体レーザ
(出力20mW)を走査させた。レーザ走査部は室
温において銀白色に変化し、基地の色と識別でき
た。
実施例 41 Au−2.9重量%Al合金を実施例1と同様に約
40μm厚さのリボン状箔を作製した。このリボン
は室温で薄黄金色であつた。このリボンを130℃
2min加熱後空冷すると銀白色に変化した。さら
に、このリボンを530℃2分加熱水冷するとその
色調は黄金色に変化した。これら両者の分光反射
率を測定した結果、第23図に示すように個々に
特有な反射率変化を示し550nm付近を除いた波
長領域で識別することが可能であつた。
実施例 42 スパツタ蒸着によりガラス基板上に50nm厚さ
の実施例1と同組成の合金薄膜を作製し、その上
に保護膜としてAl2O3もしくはSiO2を50nm厚さ
スパツタ蒸着により被覆した。作製した膜は薄黄
金色を呈した。ついで、この膜を130℃2分加熱
空冷した結果色調は銀白色に変化した。この分光
反射率は第23図に示した結果とほぼ同等であつ
た。膜の全面を銀白色化した試料にスポツト径約
2μmの半導体レーザを出力30mW以下で走査さ
せた。室温でレーザ照射部を観察した結果銀白色
の基地に幅約2μmの黄金色の線を描けているこ
とが分つた。次に、レーザ出力を低くするか、レ
ーザ光の焦点を膜面からわずかにずらした状態で
変色部にレーザ光を照射すると前記の黄金色に変
化した線部分は基地の銀白色に可逆的に変化し
た。この可逆的変化は以後繰り返しても可能であ
ることも確認された。
室温で全面が黄金色の試料に半導体レーザ(出
力20mW)を走査させた。レーザ走査部は室温に
おいて銀白色に変化し、基地の色と識別でき、レ
ーザによる記録ができた。
〔発明の効果〕
本発明合金によれば、部分的に分光反射率を変
えることができ、特に情報記録再生装置として容
易に書換えができるきわめて顕著な効果が発揮さ
れる。
【図面の簡単な説明】
第1図は本発明合金に係る二元状態図の模式
図、第2図、第4図〜第23図は本発明合金の過
冷による結晶構造と非過冷による結晶構造を有す
るものの分光反射率を示す線図及び第3図は基板
上に形成した本発明合金からなる薄膜にレーザ光
を照射したときの色調を示した図である。

Claims (1)

  1. 【特許請求の範囲】 1 電磁波を照射することによつて分光反射率が
    可逆的に変化する分光反射率可変合金であつて、 前記合金が、同一温度で、高温相温度領域から
    急冷することによつて形成される第一の結晶と、
    低温相温度領域から冷却することによつて形成さ
    れる前記第一の結晶と異なる第二の結晶との、可
    逆的に相変化する2種類の結晶構造を有し、前記
    第一の結晶と前記第二の結晶との間の分光反射率
    の差が5%以上であることを特徴とする分光反射
    率可変合金。 2 特許請求の範囲第1項記載の分光反射率可変
    合金において、前記高温相温度領域は、前記合金
    の共析変態点より高い温度領域であることを特徴
    とする分光反射率可変合金。 3 特許請求の範囲第1項記載の分光反射率可変
    合金において、前記合金は、結晶粒径0.1μm以下
    であることを特徴とする分光反射率可変合金。
JP11895684A 1983-08-24 1984-06-08 分光反射率可変合金 Granted JPS60262931A (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP11895684A JPS60262931A (ja) 1984-06-08 1984-06-08 分光反射率可変合金
DE8484305743T DE3483448D1 (de) 1983-08-24 1984-08-22 Aufzeichnungsmaterial.
US06/643,293 US4726858A (en) 1983-08-24 1984-08-22 Recording material
CA000461537A CA1218285A (en) 1983-08-24 1984-08-22 Recording medium
EP84305743A EP0136801B1 (en) 1983-08-24 1984-08-22 Recording material
KR1019840005112A KR850002634A (ko) 1983-08-24 1984-08-23 기록재료

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11895684A JPS60262931A (ja) 1984-06-08 1984-06-08 分光反射率可変合金

Publications (2)

Publication Number Publication Date
JPS60262931A JPS60262931A (ja) 1985-12-26
JPH0530893B2 true JPH0530893B2 (ja) 1993-05-11

Family

ID=14749430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11895684A Granted JPS60262931A (ja) 1983-08-24 1984-06-08 分光反射率可変合金

Country Status (1)

Country Link
JP (1) JPS60262931A (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3783637D1 (de) * 1986-04-09 1993-03-04 Hitachi Ltd Optisches speichermedium und dessen informationsaufzeichnungs- und -loeschmethode und geraet dazu.
JP5594618B1 (ja) * 2013-02-25 2014-09-24 三菱マテリアル株式会社 スパッタリングターゲット及びその製造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57140845A (en) * 1981-02-25 1982-08-31 Toshiba Corp Alloy for color tone storing element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57140845A (en) * 1981-02-25 1982-08-31 Toshiba Corp Alloy for color tone storing element

Also Published As

Publication number Publication date
JPS60262931A (ja) 1985-12-26

Similar Documents

Publication Publication Date Title
JPS61133349A (ja) 分光反射率可変合金及び記録材料
JPS6169935A (ja) 分光反射率可変合金及び記録材料
JPS6119747A (ja) 分光反射率可変合金及び記録材料
JPS619542A (ja) 記録材料及びその製造法
JPH0530893B2 (ja)
JPS6119745A (ja) 分光反射率可変合金及び記録材料
JPS6119752A (ja) 分光反射率可変合金及び記録材料
JPS61133356A (ja) 分光反射率可変合金及び記録材料
JPS61190028A (ja) 分光反射率可変合金および記録材料
JPS61133352A (ja) 分光反射率可変合金及び記録材料
JPS61133350A (ja) 分光反射率可変合金及び記録材料
JPS6169934A (ja) 分光反射率可変合金及び記録材料
JPS6176638A (ja) 分光反射率可変合金及び記録材料
JPS6137936A (ja) 分光反射率可変合金及び記録材料
JPS62112742A (ja) 分光反射率可変合金
JPS6119746A (ja) 分光反射率可変合金及び記録材料
JPS6137939A (ja) 分光反射率可変合金及び記録材料
JPS61133337A (ja) 分光反射率可変合金及び記録材料
JPS61133353A (ja) 分光反射率可変合金及び記録材料
JPS61190030A (ja) 分光反射率可変合金および記録材料
JPS61110738A (ja) 分光反射率可変合金及び記録材料
JPS61190033A (ja) 分光反射率可変合金及び記録材料
JPS61194141A (ja) 分光反射率可変合金及び記録材料
JPS6134153A (ja) 分光反射率可変合金及び記録材料
JPS6176637A (ja) 分光反射率可変合金及び記録材料