[go: up one dir, main page]

JPH0529881B2 - - Google Patents

Info

Publication number
JPH0529881B2
JPH0529881B2 JP63085895A JP8589588A JPH0529881B2 JP H0529881 B2 JPH0529881 B2 JP H0529881B2 JP 63085895 A JP63085895 A JP 63085895A JP 8589588 A JP8589588 A JP 8589588A JP H0529881 B2 JPH0529881 B2 JP H0529881B2
Authority
JP
Japan
Prior art keywords
refractive index
index layer
optical element
blank
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63085895A
Other languages
Japanese (ja)
Other versions
JPH01255802A (en
Inventor
Izumi Kataoka
Kazuyuki Eto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP8589588A priority Critical patent/JPH01255802A/en
Publication of JPH01255802A publication Critical patent/JPH01255802A/en
Publication of JPH0529881B2 publication Critical patent/JPH0529881B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Optical Filters (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、低屈折率層と高屈折率層が両者の
境界における光の反射を強める厚みで交互に形成
された多層光学素子に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a multilayer optical element in which low refractive index layers and high refractive index layers are alternately formed with a thickness that enhances the reflection of light at the boundary between the layers.

「従来の技術」 第5図に示すように、石英やBK−7などの光
学ガラスからなる基板31上に、それぞれ対象波
長領域において光の吸収の少ない、SiO2などか
らなる相対的に屈折率の低い層32と、TiO2
どからなる相対的に屈折率の高い層33を、全体
として10数層〜20数層にわたつて交互に形成し
て、高反射率の反射膜を構成したものが考えられ
ている。
``Prior art'' As shown in FIG. 5, a substrate 31 made of optical glass such as quartz or BK-7 is coated with a material having a relatively refractive index made of SiO 2 or the like, which has low absorption of light in the target wavelength range. A reflective film with a high reflectance is constructed by alternately forming a layer 32 with a low refractive index and a layer 33 with a relatively high refractive index made of TiO 2 or the like in a total of 10 to 20 layers. is being considered.

「発明が解決しようとする課題」 しかしながら、第5図に示す従来の多層光学素
子のように屈折率の異なる物質を交互に被着して
反射膜を形成するときは、半導体レーザの端面な
どに反射膜を精度よく形成するのが難かしい、最
近注目されている極短波長領域では光の吸収の少
ない材料を得ることができないために反射膜を形
成できない、などの不都合がある。
``Problems to be Solved by the Invention'' However, when forming a reflective film by alternately depositing materials with different refractive indexes as in the conventional multilayer optical element shown in FIG. There are disadvantages such as it is difficult to form a reflective film with high precision, and it is not possible to form a reflective film in the extremely short wavelength region, which has recently been attracting attention, because it is not possible to obtain a material that absorbs little light.

そこで、この発明は、半導体レーザの端面など
にも高反射率の反射部を精度よく容易に形成する
ことができ、高反射率の反射部を備えた半導体レ
ーザなどを容易に実現することができるととも
に、極短波長領域を対象波長領域とする高反射率
の反射体ないし反射部をも容易に実現することが
できるようにしたものである。
Therefore, according to the present invention, it is possible to accurately and easily form a reflective portion with a high reflectance even on the end face of a semiconductor laser, and it is possible to easily realize a semiconductor laser having a reflective portion with a high reflectance. At the same time, it is possible to easily realize a reflector or a reflecting part with a high reflectance whose target wavelength range is an extremely short wavelength range.

「課題を解決するための手段」 この発明においては、基体に同一厚さ、同一ピ
ツチで複数の層状スリツトを平行に形成し、これ
らスリツト部分を、これに固体および液体を充填
することなく低屈折率層と高屈折率層の一方と
し、その他方を上記スリツト間の層状部分とす
る。
"Means for Solving the Problem" In the present invention, a plurality of layered slits are formed in parallel with the same thickness and the same pitch on a substrate, and these slit portions are made to have a low refractive index without being filled with solid or liquid. one of the index layer and the high refractive index layer, and the other is the layered portion between the slits.

「作用」 このように構成された、この発明の多層光学素
子においては、固体および液体が充填されないス
リツト部分(以下、ブランク部という)を真空に
し、またはブランク部に空気や適当なガスを存在
させることにより、ブランク部からなる低屈折率
層または高屈折率層が極短波長領域を含む全波長
領域において屈折率が1ないしほぼ1の光の吸収
を無視できるものとなり、高い反射率が得られ
る。
"Operation" In the multilayer optical element of the present invention configured as described above, the slit part (hereinafter referred to as the blank part) which is not filled with solid or liquid is evacuated, or air or a suitable gas is made to exist in the blank part. As a result, the low refractive index layer or high refractive index layer consisting of the blank portion can ignore the absorption of light with a refractive index of 1 or almost 1 in the entire wavelength range including the extremely short wavelength range, and a high reflectance can be obtained. .

「実施例」 第1図は、この発明の多層光学素子の一例であ
る。
"Example" FIG. 1 is an example of a multilayer optical element of the present invention.

基体11にスリツト構造のブランク部12が一
定の厚みおよび一定のピツチで多数層状かつ平行
に形成され、対象波長領域に応じて基体11の屈
折率が1に対して高低いずれかに選ばれて、ブラ
ンク部12が高屈折率層または低屈折率層とさ
れ、基体11のそれぞれのブランク部12の両側
の層状部13が低屈折率層または高屈折率層とさ
れる。例えば、基体11がタングステンで形成さ
れるときは、ブランク部12が高屈折率層とな
り、層状部13が低屈折率層となる。ブランク部
12および層状部13の厚みは、両者の境界にお
ける光の反射を強めるように、対象波長領域と屈
折率に応じて選定される。
A number of blank portions 12 having a slit structure are formed on the base body 11 in parallel layers with a constant thickness and a constant pitch, and the refractive index of the base body 11 is selected to be either high or low with respect to 1 depending on the target wavelength region. The blank portion 12 is a high refractive index layer or a low refractive index layer, and the layered portions 13 on both sides of each blank portion 12 of the base body 11 are a low refractive index layer or a high refractive index layer. For example, when the base body 11 is made of tungsten, the blank part 12 becomes a high refractive index layer and the layered part 13 becomes a low refractive index layer. The thicknesses of the blank part 12 and the layered part 13 are selected according to the target wavelength range and the refractive index so as to strengthen the reflection of light at the boundary between the two.

ブランク部12は、基体11へのドライエツチ
ングなどにより、精度よく容易に形成することが
できる。
The blank portion 12 can be easily formed with high accuracy by dry etching the base 11 or the like.

上述の多層光学素子は、その基体11を真空中
または空気や適当なガス中に保持させる。これに
より、ブランク部12は極短波長領域を含む全波
長領域において屈折率が1ないしほぼ1となり、
ブランク部12での波長に対する屈折率の分散お
よび光の吸収は無視できるものとなつて、高い反
射率が得られる。
The multilayer optical element described above allows its substrate 11 to be kept in vacuum or in air or a suitable gas. As a result, the blank portion 12 has a refractive index of 1 or approximately 1 in the entire wavelength range including the extremely short wavelength range,
Dispersion of the refractive index with respect to wavelength and absorption of light in the blank portion 12 can be ignored, and a high reflectance can be obtained.

第2図は、第1図の例の多層光学素子におい
て、基体11をタングステンで形成して、ブラン
ク部12を高屈折率層とし、層状部13を低屈折
率層とするとともに、ブランク部12を真空にし
たものについて、光の入射角度をブランク部12
の積層方向である法線方向に対して70゜にし、波
長領域を10〜100Åにして、極短波長領域での反
射特性をコンピユータ・シミユレーシヨンにより
求めた結果である。また、第3図は、ブランク部
12の代わりに極短波長領域で光の吸収が少ない
とされるカーボンにより高屈折率層を形成し、他
は上述と同じにした場合の、同じく極短波長領域
での反射特性をコンピユータ・シミユレーシヨン
により求めた結果である。
FIG. 2 shows the multilayer optical element of the example shown in FIG. 1 in which the base 11 is made of tungsten, the blank part 12 is a high refractive index layer, the layered part 13 is a low refractive index layer, and the blank part 12 is a high refractive index layer. For those that are evacuated, the incident angle of light is set to the blank part 12.
The reflection characteristics in the extremely short wavelength region were determined by computer simulation at an angle of 70° with respect to the normal direction, which is the stacking direction, and the wavelength region was set to 10 to 100 Å. FIG. 3 also shows a case where a high refractive index layer is formed using carbon, which is said to have low absorption of light in the extremely short wavelength region, instead of the blank portion 12, and the other conditions are the same as above. These are the results obtained by computer simulation of the reflection characteristics in the area.

第2図および第3図から明らかなように、ブラ
ンク部12を高屈折率層とした例の、この発明の
多層光学素子の方が、10〜100Åの極短波長領域
全域で反射率が高くなる。
As is clear from FIGS. 2 and 3, the multilayer optical element of the present invention in which the blank portion 12 is a high refractive index layer has a higher reflectance over the entire extremely short wavelength region of 10 to 100 Å. Become.

第4図は、この発明の多層光学素子の他の例
で、この発明を半導体レーザに適用した場合であ
る。
FIG. 4 shows another example of the multilayer optical element of the present invention, in which the present invention is applied to a semiconductor laser.

この例においては、半導体からなる基体21の
中央部に溝22が形成され、溝22に臨む基体2
1の面21a上にクラツド層23、活性層24、
クラツド層25および電極26が順次形成され
て、増幅媒質部が構成されるとともに、この増幅
媒質部の両側において基体21に溝構造のブラン
ク部28が一定の厚みおよび一定のピツチで多数
形成されて、ブランク部28を低屈折率層とし、
基体21のそれぞれのブランク部28の両側の層
状部29を高屈折率層とする反射部が構成され
る。例えば、GaAs半導体レーザの場合、低屈折
率層であるブランク部28の屈折率が1ないしほ
ぼ1であるのに対して、高屈折率層である層状部
29の屈折率は3.6となつて、両者の間に屈折率
の大きな差が得られる。ブランク部28および層
状部29の厚みは、両者の境界における光の反射
を強めるように、対象波長領域と屈折率に応じて
選定される。
In this example, a groove 22 is formed in the center of a base 21 made of a semiconductor, and the base 21 facing the groove 22
A cladding layer 23, an active layer 24,
A cladding layer 25 and an electrode 26 are sequentially formed to constitute an amplification medium section, and a large number of groove-shaped blank sections 28 are formed on both sides of the amplification medium section at a constant thickness and a constant pitch on the base body 21. , the blank portion 28 is a low refractive index layer,
A reflective portion is constructed in which the layered portions 29 on both sides of each blank portion 28 of the base body 21 are high refractive index layers. For example, in the case of a GaAs semiconductor laser, the refractive index of the blank portion 28, which is a low refractive index layer, is 1 or approximately 1, whereas the refractive index of the layered portion 29, which is a high refractive index layer, is 3.6. A large difference in refractive index is obtained between the two. The thicknesses of the blank portion 28 and the layered portion 29 are selected according to the target wavelength range and the refractive index so as to strengthen the reflection of light at the boundary between the two.

反射部は、増幅媒質部を形成したのちドライエ
ツチングなどにより基体21にブランク部28を
形成することにより、精度よく容易に形成するこ
とができる。
The reflecting section can be easily and accurately formed by forming a blank section 28 on the base 21 by dry etching or the like after forming the amplification medium section.

この例においても、基体21を真空中または適
当なガス中に保持させることにより、反射部にお
いて高い反射率が得られる。そして、この例にお
いては、増幅媒質部の両側に高反射率の反射部が
設けられることにより、レーザ光が増幅媒質部近
辺に効率よく閉じ込められて伝搬する。
In this example as well, by keeping the base 21 in vacuum or in an appropriate gas, a high reflectance can be obtained in the reflective portion. In this example, reflective parts with high reflectance are provided on both sides of the amplification medium part, so that the laser light is efficiently confined and propagated in the vicinity of the amplification medium part.

「発明の効果」 この発明によれば、半導体レーザの端面などに
も高反射率の反射部を精度よく容易に形成するこ
とができ、高反射率の反射部を備えた半導体レー
ザなどを容易に実現することができるとともに、
極短波長領域を対象波長領域とする高反射率の反
射体ないし反射部をも容易に実現することができ
る。
"Effects of the Invention" According to the present invention, it is possible to easily form a reflective part with a high reflectance even on the end face of a semiconductor laser with high precision, and it is possible to easily form a semiconductor laser etc. equipped with a reflective part with a high reflectance. In addition to being able to realize
It is also possible to easily realize a reflector or a reflecting part with a high reflectance whose target wavelength range is an extremely short wavelength range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の多層光学素子の一例を示す
斜視図、第2図は第1図の素子で基体をタングス
テンにしたときのコンピユータ・シミユレーシヨ
ンによる反射特性の結果を示す図、第3図は第1
図の素子のブランク部をカーボンにより形成され
た高屈折率層に代えた場合についてのコンピユー
タ・シミユレーシヨンによる反射特性の結果を示
す図、第4図はこの発明の多層光学素子の他の例
である半導体レーザを示す断面図、第5図は従来
の多層光学素子を示す断面図である。
Figure 1 is a perspective view showing an example of the multilayer optical element of the present invention, Figure 2 is a diagram showing the results of computer simulation of the reflection characteristics of the element shown in Figure 1 when the base is made of tungsten, and Figure 3 is 1st
Figure 4 is a diagram showing the results of computer simulation of the reflection characteristics when the blank part of the element shown in the figure is replaced with a high refractive index layer made of carbon. Figure 4 is another example of the multilayer optical element of the present invention. FIG. 5 is a cross-sectional view showing a semiconductor laser, and FIG. 5 is a cross-sectional view showing a conventional multilayer optical element.

Claims (1)

【特許請求の範囲】 1 低屈折率層と高屈折率層が両者の境界におけ
る光の反射を強める厚みで交互に形成された多層
光学素子において、 基体に同一厚さ、同一ピツチで複数の層状スリ
ツトが平行に形成され、これらのスリツト部分
が、これに固体および液体が充填されることなく
上記低屈折率層と上記高屈折率層の一方とされ、
その他方が上記スリツト間の層状部分とされた多
層光学素子。
[Claims] 1. In a multilayer optical element in which low refractive index layers and high refractive index layers are alternately formed with a thickness that strengthens light reflection at the boundary between the layers, a plurality of layers with the same thickness and the same pitch are formed on the base body. slits are formed in parallel, and these slit portions serve as one of the low refractive index layer and the high refractive index layer without being filled with solid or liquid,
A multilayer optical element, the other of which is a layered portion between the slits.
JP8589588A 1988-04-06 1988-04-06 multilayer optical element Granted JPH01255802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8589588A JPH01255802A (en) 1988-04-06 1988-04-06 multilayer optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8589588A JPH01255802A (en) 1988-04-06 1988-04-06 multilayer optical element

Publications (2)

Publication Number Publication Date
JPH01255802A JPH01255802A (en) 1989-10-12
JPH0529881B2 true JPH0529881B2 (en) 1993-05-06

Family

ID=13871618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8589588A Granted JPH01255802A (en) 1988-04-06 1988-04-06 multilayer optical element

Country Status (1)

Country Link
JP (1) JPH01255802A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5070039A (en) * 1973-03-14 1975-06-11

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5070039A (en) * 1973-03-14 1975-06-11

Also Published As

Publication number Publication date
JPH01255802A (en) 1989-10-12

Similar Documents

Publication Publication Date Title
JP2627864B2 (en) Mirror for reflecting light of selected frequency and method for forming the same
US4773720A (en) Optical waveguide
EP3557291B1 (en) Methods for enhancing the durability and manufacturability of multilayer interference mirrors
US5282219A (en) Semiconductor laser structure having a non-reflection film
JPS5860701A (en) Reflection preventing film
JPH0529881B2 (en)
JPH0242201B2 (en)
JP2874439B2 (en) Optical wavelength tunable filter and method of manufacturing the same
JPH10133253A (en) Light quantity stopping device
JPS62143846A (en) Antireflection treatment of transparent substrate
JPH09258116A (en) Tunable filter
JPH0784105A (en) Reflecting film
JPH0766500A (en) Formation of optical thin film
JPH07280999A (en) Multilayer film x-ray reflector
JP2000261095A5 (en)
JP2752061B2 (en) Quantum well semiconductor laser
JP4136744B2 (en) Reflective film
JP2792385B2 (en) High reflection dielectric mask and method of manufacturing the same
JPH07104122A (en) Bandpass filter
JPH0271198A (en) Half mirror for x-ray
JPH0380588A (en) Etalon of laser device
JPH04145677A (en) High efficiency reflector for visible laser beam
JPH085795A (en) Soft X-ray multilayer mirror
JPH01286476A (en) Laser mirror having flat spectral characteristics in narrow wavelength band
JPH0322602B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees