JPH0529686A - Optical amplifier - Google Patents
Optical amplifierInfo
- Publication number
- JPH0529686A JPH0529686A JP3179712A JP17971291A JPH0529686A JP H0529686 A JPH0529686 A JP H0529686A JP 3179712 A JP3179712 A JP 3179712A JP 17971291 A JP17971291 A JP 17971291A JP H0529686 A JPH0529686 A JP H0529686A
- Authority
- JP
- Japan
- Prior art keywords
- optical
- rare earth
- filter
- doped
- waveguide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 186
- 238000005086 pumping Methods 0.000 claims abstract description 24
- 230000003321 amplification Effects 0.000 claims abstract description 7
- 238000003199 nucleic acid amplification method Methods 0.000 claims abstract description 7
- 239000013307 optical fiber Substances 0.000 claims description 19
- 239000000758 substrate Substances 0.000 claims description 8
- 239000000470 constituent Substances 0.000 claims 1
- 239000000835 fiber Substances 0.000 claims 1
- 230000005284 excitation Effects 0.000 abstract description 16
- 230000002269 spontaneous effect Effects 0.000 abstract description 11
- 230000000694 effects Effects 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 17
- 230000005540 biological transmission Effects 0.000 description 5
- 239000011521 glass Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000010354 integration Effects 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/06754—Fibre amplifiers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/094—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
- H01S3/094003—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/10007—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
- H01S3/10023—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by functional association of additional optical elements, e.g. filters, gratings, reflectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/094—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
- H01S3/094003—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
- H01S3/094015—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre with pump light recycling, i.e. with reinjection of the unused pump light back into the fiber, e.g. by reflectors or circulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/23—Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
- H01S3/2308—Amplifier arrangements, e.g. MOPA
- H01S3/2325—Multi-pass amplifiers, e.g. regenerative amplifiers
- H01S3/2333—Double-pass amplifiers
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Light Guides In General And Applications Therefor (AREA)
- Optical Integrated Circuits (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
- Lasers (AREA)
- Optical Communication System (AREA)
Abstract
(57)【要約】
【目的】 光増幅装置の部品点数の削減及び構成の簡素
化の実現、信号光の往復増幅による利得の増加、雑音の
低減を図る。
【構成】 光サーキュレータ1、希土類ドープ光導波路
2、波長選択光フィルタ3、及び励起光源4から構成さ
れる。波長選択光フィルタ3は、励起光を通過し、信号
光を反射する。このため、励起光源4の出力光は波長選
択フィルタ3を通して希土類ドープ光導波路2に注入さ
れることにより、光導波路2が励起される。光サーキュ
レータ側より入力された信号光は導波路2内で増幅され
た後、波長選択光フィルタ3により反射され再び導波路
2内で増幅され、光サーキュレータのポート12より出
力される。
【効果】 励起光を入力するための光カプラを不要と
し、装置が簡易となり、自然発光雑音の少ない高利得の
光増幅装置が実現できる。
(57) [Abstract] [Purpose] To reduce the number of parts of an optical amplifying device, realize simplification of the configuration, increase gain by round-trip amplification of signal light, and reduce noise. [Structure] An optical circulator 1, a rare earth-doped optical waveguide 2, a wavelength selection optical filter 3, and an excitation light source 4. The wavelength selection optical filter 3 passes the excitation light and reflects the signal light. Therefore, the output light of the excitation light source 4 is injected into the rare earth-doped optical waveguide 2 through the wavelength selection filter 3 to excite the optical waveguide 2. The signal light input from the optical circulator side is amplified in the waveguide 2, reflected by the wavelength selective optical filter 3, amplified again in the waveguide 2, and output from the port 12 of the optical circulator. [Effect] An optical coupler for inputting pumping light is not required, the device is simplified, and a high gain optical amplifier device with less spontaneous emission noise can be realized.
Description
【0001】[0001]
【産業上の利用分野】本発明は光増幅装置、更に詳しく
いえば、光伝送システム、光信号システムにおいて使用
される希土類ドープ光導波路を用いた光増幅装置に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical amplifying device, and more particularly to an optical amplifying device using a rare earth-doped optical waveguide used in an optical transmission system and an optical signal system.
【従来の技術】従来、光伝送システム、光信号システム
において使用される有効な光増幅装置として、希土類ド
ープ光導波路を用いた光増幅装置が、文献,第16回ヨ
ーロピアン コンファレンス オン オプティカル コ
ミュニケーション,1990年プロシーディングズ,ボ
リューム1,エムオージー4.3,第99頁−第102
頁(16th European Conferenc
e on Optical Communicatio
n 1990,Proceedings,Volume
−1,MoG4.3,pp.99−102.)に記載さ
れている。2. Description of the Related Art Conventionally, as an effective optical amplifying device used in an optical transmission system and an optical signal system, an optical amplifying device using a rare-earth doped optical waveguide has been described in the literature, 16th European Conference on Optical Communication, 1990. Proceedings, Volume 1, M OG 4.3, pp. 99-102
Page (16th European Conference
e on Optical Communicatio
n 1990, Proceedings, Volume
-1, MoG4.3, pp. 99-102. )It is described in.
【0002】図10は上記文献に記載されている従来の
光増幅装置の構成を示す。信号光入力は光サーキュレー
タ1、波長多重光カプラ6を介して希土類ドープ光ファ
イバ2に加えられる。励起光源4からの励起光も波長多
重光カプラ6を介して希土類ドープ光ファイバ2に加え
られる。光ファイバ2の一端には反射ミラー7が配置さ
れ、信号光及び励起光を反射し、光ファイバ2に再入力
するように構成される。この構成では、励起光を信号光
と共に希土類ドープ光ファイバに入力させため、励起光
用入力ポート、信号光用入力ポート及び波長多重光出力
ポートを有する波長多重光カプラ6が用いられている。
また、反射ミラー7を用いた往復増幅型であるが、信号
光に対する反射特性のみを利用した構成であり、励起光
に対する通過特性は利用していない。FIG. 10 shows the configuration of a conventional optical amplifier device described in the above document. The signal light input is applied to the rare earth-doped optical fiber 2 via the optical circulator 1 and the wavelength division multiplexing optical coupler 6. The pumping light from the pumping light source 4 is also added to the rare earth-doped optical fiber 2 via the wavelength multiplexing optical coupler 6. A reflection mirror 7 is arranged at one end of the optical fiber 2, and is configured to reflect the signal light and the excitation light and re-enter the optical fiber 2. In this configuration, the wavelength multiplexing optical coupler 6 having the pumping light input port, the signal light input port, and the wavelength multiplexing light output port is used to input the pumping light into the rare earth-doped optical fiber together with the signal light.
Further, although it is a reciprocal amplification type using the reflection mirror 7, it is a configuration that uses only the reflection characteristic for the signal light and does not use the transmission characteristic for the excitation light.
【0003】[0003]
【発明が解決しようとする課題】光増幅装置の構成にお
いては、小型化するために部品点数の削減、集積化など
が重要な課題である。図10に示した従来の光増幅装置
は信号光の往復増幅による利得の増加という利点を持つ
が、励起光用入力ポート、信号光用入力ポート及び波長
多重光出力ポートを有する波長多重光カプラ6が用いら
れているため、装置の構成を複雑にし、かつ反射ミラー
7の特性に特別の配慮が無されていないので、増幅され
た信号光のほかに自然放出光雑音がかなり含まれ信号雑
音比を劣化させている。本発明の目的は、部品点数の削
減及び光増幅器構成の簡素化、さらには集積化による高
信頼化を実現し、信号光の往復増幅による利得を維持
し、自然放出光雑音の低減する光増幅装置を実現するこ
とである。In the structure of the optical amplifying device, reduction of the number of parts and integration are important issues for downsizing. The conventional optical amplifying device shown in FIG. 10 has an advantage of increasing the gain by the round trip amplification of the signal light, but the wavelength multiplexing optical coupler 6 having the pumping light input port, the signal light input port and the wavelength multiplexing light output port. Is used, the structure of the device is complicated, and no special consideration is given to the characteristics of the reflection mirror 7. Therefore, in addition to the amplified signal light, spontaneous emission noise is considerably included, and the signal noise ratio is high. Is deteriorating. An object of the present invention is to reduce the number of components, simplify the optical amplifier configuration, and realize high reliability by integration, maintain the gain due to round-trip amplification of signal light, and reduce spontaneous emission optical noise. It is to realize the device.
【0004】[0004]
【課題を解決するための手段】上記目的を達成するた
め、本発明は、希土類ドープ光導波路に信号光と励起光
を加え信号光を増幅する光増幅器において、上記希土類
ドープ光導波路と励起光源との間に、励起光を通過さ
せ、かつ信号光を反射する第1の波長選択光フィルタを
設置して光増幅装置を構成した。希土類ドープ光導波路
としては光ファイバーが望ましいが、他の光集積回路型
の光導波路で構成してもよい。本発明の好ましい実施態
様として、上記構成の光増幅装置に、更に上記希土類ド
ープ光導波路の励起光入力部とは反対側の他端に、励起
光を反射し、信号光を通過させる第2の波長選択光フィ
ルタを設ける。In order to achieve the above object, the present invention provides an optical amplifier for amplifying signal light by adding signal light and pumping light to a rare earth-doped optical waveguide. A first wavelength-selective optical filter that allows the pumping light to pass therethrough and reflects the signal light is installed between the two to configure an optical amplifier. An optical fiber is desirable as the rare earth-doped optical waveguide, but other optical integrated circuit type optical waveguides may be used. As a preferred embodiment of the present invention, in the optical amplifying device having the above-mentioned configuration, the second end that reflects the pumping light and allows the signal light to pass through to the other end of the rare earth-doped optical waveguide opposite to the pumping light input section. A wavelength selective optical filter is provided.
【0005】[0005]
【作用】本発明による光増幅装置では、励起光に対して
は通過フィルタとして、信号光に対しては反射ミラーと
して作用する第1の波長選択光フィルタを希土類ドープ
光導波路の励起光入力端に設置するので、励起光はこの
波長選択光フィルタを通して希土類ドープ光導波路に注
入される。そのため従来の光増幅装置において必要とさ
れた波長多重カプラを取り除いて簡易な装置構成とする
ことができる。In the optical amplifying device according to the present invention, the first wavelength selecting optical filter that functions as a pass filter for pumping light and as a reflection mirror for signal light is provided at the pumping light input end of the rare earth-doped optical waveguide. Since it is installed, the excitation light is injected into the rare earth-doped optical waveguide through this wavelength selective optical filter. Therefore, it is possible to remove the wavelength multiplexing coupler required in the conventional optical amplifier and to make a simple device configuration.
【0006】一方、信号光は希土類ドープ光導波路の他
端より入力され、励起された光導波路中で増幅された
後、波長選択光フィルタにより反射され再び増幅されて
出力される。そのため、光増幅装置の利得が従来のもの
に比較して高められる。さらに第2の波長選択光フィル
タを用いることにより光増幅装置は、励起光が反射され
再利用できるので、光増幅装置の利得が更に改善され
る。On the other hand, the signal light is input from the other end of the rare earth-doped optical waveguide, amplified in the excited optical waveguide, reflected by the wavelength selective optical filter, amplified again, and output. Therefore, the gain of the optical amplifying device is increased as compared with the conventional one. Further, by using the second wavelength selective optical filter, the pumping light can be reflected and reused in the optical amplifier, so that the gain of the optical amplifier is further improved.
【0007】ここで、第1の波長選択光フィルタに、信
号光に対してのみ反射する狭帯域反射特性を持たせるこ
とにより、自然放出光が抑圧がされ、信号対雑音比が改
善される。更に第2の波長選択光フィルタに、信号光に
対して狭帯域通過特性を持たせることにより、信号対雑
音比は更に改善される。Here, by providing the first wavelength selective optical filter with a narrow band reflection characteristic that reflects only the signal light, the spontaneous emission light is suppressed and the signal-to-noise ratio is improved. Further, the signal-to-noise ratio is further improved by providing the second wavelength selective optical filter with a narrow bandpass characteristic for the signal light.
【0008】[0008]
【実施例】以下、本発明の実施例を図面を用いて説明す
る。図1は本発明による光増幅装置の第1の実施例の構
成ブロック図である。この光増幅装置は、光サーキュレ
ータ1、希土類ドープ光導波路2、波長選択光フィルタ
3及び励起光源4から構成される。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram of the configuration of a first embodiment of an optical amplifier according to the present invention. This optical amplifying device comprises an optical circulator 1, a rare earth-doped optical waveguide 2, a wavelength selection optical filter 3 and an excitation light source 4.
【0009】信号光は光サーキュレータ1の入力ポート
11を通して希土類ドープ光導波路2の一端に入力され
る。また、光サーキュレータ1は、信号光が増幅されて
希土類ドープ光ファイバ2から再び戻ってくる出力光を
出力ポート12に出力するために使用される。この機能
は光カプラによっても同様に実現できるので、光サーキ
ュレータ1を光カプラに置き換えてもよい。また、希土
類ドープ光導波路2を希土類ドープ光ファイバに置き換
えることにより、光ファイバ伝送システムと整合性の良
い光増幅装置を構成することができる。The signal light is input to one end of the rare earth-doped optical waveguide 2 through the input port 11 of the optical circulator 1. Further, the optical circulator 1 is used to output the output light, which is obtained by amplifying the signal light and returning again from the rare earth-doped optical fiber 2, to the output port 12. Since this function can be realized by an optical coupler as well, the optical circulator 1 may be replaced by an optical coupler. Further, by replacing the rare earth-doped optical waveguide 2 with a rare earth-doped optical fiber, it is possible to configure an optical amplification device having good compatibility with the optical fiber transmission system.
【0010】波長選択光フィルタ3は、理想的には図2
に示す特性を有する。λsは信号光の波長、λpは励起
光の波長である。従って、波長選択光フィルタ3は、励
起光に対しては通過フィルタとして、信号光に対しては
反射ミラーとして作用する。このため、励起光源4の出
力光が波長選択フィルタ3を通して効率良く希土類ドー
プ光導波路2に注入され、希土類ドープ光導波路2が励
起される。光サーキュレータ1側より入力された信号光
は励起された希土類ドープ光導波路2内で増幅された
後、波長選択光フィルタ3により反射され再び希土類ド
ープ光導波路2内で増幅され、光サーキュレータ1の出
力ポート12より出力される。希土類ドープ光導波路2
では、増幅信号光の他、広い波長帯域に雑音成分である
自然放出光が存在するが波長選択光フィルタ3により、
信号光近傍の波長域以外の自然放出光は反射されないた
め、再び光サーキュレータ1に戻る自然放出光は抑圧さ
れ自然放出光雑音は低減される。Ideally, the wavelength selective optical filter 3 has the structure shown in FIG.
It has the characteristics shown in. λs is the wavelength of the signal light, and λp is the wavelength of the pumping light. Therefore, the wavelength selection optical filter 3 acts as a pass filter for the excitation light and as a reflection mirror for the signal light. Therefore, the output light of the excitation light source 4 is efficiently injected into the rare earth-doped optical waveguide 2 through the wavelength selection filter 3, and the rare earth-doped optical waveguide 2 is excited. The signal light input from the optical circulator 1 side is amplified in the excited rare earth-doped optical waveguide 2, then reflected by the wavelength selection optical filter 3 and again amplified in the rare earth-doped optical waveguide 2, and the output of the optical circulator 1 It is output from the port 12. Rare earth doped optical waveguide 2
Then, in addition to the amplified signal light, there is spontaneous emission light that is a noise component in a wide wavelength band.
Since the spontaneous emission light other than the wavelength region near the signal light is not reflected, the spontaneous emission light returning to the optical circulator 1 is suppressed and the spontaneous emission light noise is reduced.
【0011】図3は本発明による光増幅装置の第2の実
施例の構成ブロック図である。基本構成は、上記第1の
実施例と同様である(同一機能、構成部については同一
番号を付し説明を省略する。以下の実施例についても同
じ)。本実施例では、波長選択フィルタ3として、光導
波路又は光ファイバ内に作製した回折格子により構成し
た光導波路内蔵型波長選択光フィルタ3’を用いる。こ
の光導波路内蔵型波長選択光フィルタ3’も図2に示し
た特性を有する。このフィルタ3’は光導波路と一体化
されているため、個別のバルク部品を挿入する必要がな
く、装置が小型化され、かつ高信頼化される効果があ
る。FIG. 3 is a block diagram of the configuration of a second embodiment of the optical amplifying device according to the present invention. The basic configuration is the same as that of the first embodiment (the same functions and components are designated by the same reference numerals and their description is omitted. The same applies to the following embodiments). In the present embodiment, as the wavelength selection filter 3, an optical waveguide built-in type wavelength selection optical filter 3 ′ constituted by a diffraction grating manufactured in an optical waveguide or an optical fiber is used. This wavelength selective optical filter 3'with a built-in optical waveguide also has the characteristics shown in FIG. Since this filter 3'is integrated with the optical waveguide, it is not necessary to insert an individual bulk component, and the device is downsized and highly reliable.
【0012】図4は光導波路内蔵型波長選択光フィルタ
3’の構成図である。図のように、光導波路又は光ファ
イバ内の光軸(光の進行方向)に垂直に屈折率n1,n2
の互いに異なる複数の薄層から成る周期構造である。グ
レーティングの作成方法については分布帰還型半導体レ
ーザ等の半導体レーザ分野で知られているグレーティン
グの作成方法が使用される。一般には、紫外線レーザビ
ームの干渉により作製できるものである。また、光ファ
イバで選択光フィルタを製造する技術は従来知られてい
る(例えば、エレクトロニックス レターズ “ELE
CTRONICS LETTERS”24th May
1990 Vol.26 No.11「ALL−FI
BRE NARROWBAND REFLECTION
GRATINGS AT 1500nm」)。FIG. 4 is a block diagram of a wavelength selective optical filter 3'having a built-in optical waveguide. As shown in the figure, the refractive indices n 1 and n 2 are perpendicular to the optical axis (light traveling direction) in the optical waveguide or optical fiber.
Is a periodic structure composed of a plurality of different thin layers. As a method of making a grating, a method of making a grating known in the field of semiconductor lasers such as a distributed feedback semiconductor laser is used. Generally, it can be produced by interference of an ultraviolet laser beam. Further, a technique of manufacturing a selective optical filter with an optical fiber has been conventionally known (for example, Electronic Letters “ELE”).
CTRONICS LETTERS "24th May
1990 Vol. 26 No. 26. 11 "ALL-FI
BRE NARROW BAND REFLECTION
GRATINGS AT 1500 nm ").
【0013】図5は本発明による光増幅装置の第3の実
施例の構成ブロック図である。基本構成は、上記第2の
実施例と同様であるが、励起光源4以外の光部品は同一
ガラス基板8上に集積化され、励起光源4は基板8上に
ハイブリッド実装されている。信号光入力と信号光出力
の分離は、ガラス基板8上集積化された光カプラで構成
されている。このように、集積化された光増幅装置を作
製することにより、さらに装置の小型化と高信頼化が図
れる効果がある。FIG. 5 is a block diagram showing the configuration of a third embodiment of the optical amplifying device according to the present invention. The basic configuration is the same as that of the second embodiment, but the optical components other than the excitation light source 4 are integrated on the same glass substrate 8, and the excitation light source 4 is hybrid-mounted on the substrate 8. The signal light input and the signal light output are separated by an optical coupler integrated on the glass substrate 8. As described above, by producing the integrated optical amplifying device, there is an effect that further miniaturization and high reliability of the device can be achieved.
【0014】図6は本発明による光増幅装置の第4の実
施例の構成ブロック図である。本実施例の光増幅装置
は、光サーキュレータ1、第2の波長選択光フィルタ
5、希土類ドープ光導波路2、第1の波長選択フィルタ
3及び励起光源4から構成される。 第2の波長選択光
フィルタ5を除いては、図1に示した光増幅装置と同じ
である。FIG. 6 is a block diagram showing the configuration of a fourth embodiment of the optical amplifier according to the present invention. The optical amplifying device of this embodiment comprises an optical circulator 1, a second wavelength selection optical filter 5, a rare earth-doped optical waveguide 2, a first wavelength selection filter 3 and a pumping light source 4. Except for the second wavelength selective optical filter 5, it is the same as the optical amplifying device shown in FIG.
【0015】波長選択光フィルタ5は、図7に示す特性
を有する。図7において、λsは信号光の波長、λpは
励起光の波長である。従って、波長選択光フィルタ5は
励起光に対しては反射ミラーとして、信号光に対しては
通過フィルタとして作用するものである。図6におい
て、光サーキュレータ1側より入力された波長λsの信
号光は、波長選択光フィルタ5を通過して希土類ドープ
光導波路2に入力され、希土類ドープ光導波路2内で増
幅された後、波長選択光フィルタ3により反射され再び
希土類ドープ光導波路2内で増幅され、波長選択光フィ
ルタ5を通して光サーキュレータのポート12より出力
される。The wavelength selective optical filter 5 has the characteristics shown in FIG. In FIG. 7, λs is the wavelength of the signal light and λp is the wavelength of the pump light. Therefore, the wavelength selection optical filter 5 acts as a reflection mirror for the excitation light and as a pass filter for the signal light. In FIG. 6, the signal light of wavelength λs input from the optical circulator 1 side passes through the wavelength selective optical filter 5, is input to the rare earth-doped optical waveguide 2, is amplified in the rare earth-doped optical waveguide 2, and then the wavelength The light is reflected by the selective optical filter 3, amplified again in the rare earth-doped optical waveguide 2, and output from the port 12 of the optical circulator through the wavelength selective optical filter 5.
【0016】励起光源4の出力光は波長選択光フィルタ
3を通して希土類ドープ光導波路2に注入され、波長選
択光フィルタ5により反射され再び希土類ドープ光導波
路2に注入され、希土類ドープ光導波路2が励起され
る。このように励起光を往復させて再利用できるため、
高効率な光増幅が可能となる。波長選択光フィルタ3の
特性を信号光に対して狭帯域反射特性、波長選択光フィ
ルタ5の特性を狭帯域通過特性とすることにより、信号
光近傍の波長以外の自然放出光を除去できるため、自然
放出光の雑音が低減される。本実施例においても、希土
類ドープ光導波路2を希土類ドープ光ファイバに置き換
えることにより、光ファイバ伝送システムと整合性の良
い光増幅装置を構成することができる。The output light of the pumping light source 4 is injected into the rare earth-doped optical waveguide 2 through the wavelength selection optical filter 3, reflected by the wavelength selection optical filter 5 and injected again into the rare earth-doped optical waveguide 2 to excite the rare earth-doped optical waveguide 2. To be done. Since the excitation light can be reciprocated and reused in this way,
Highly efficient optical amplification becomes possible. Since the characteristics of the wavelength selection optical filter 3 are narrow band reflection characteristics for the signal light and the characteristics of the wavelength selection optical filter 5 are the narrow band pass characteristics, spontaneous emission light other than the wavelength near the signal light can be removed. The noise of spontaneous emission light is reduced. Also in this embodiment, by replacing the rare earth-doped optical waveguide 2 with a rare earth-doped optical fiber, it is possible to construct an optical amplifier having good compatibility with the optical fiber transmission system.
【0017】図8は本発明による光増幅装置の第5の実
施例の構成ブロック図である。基本構成は、上記第4の
実施例と同様である。本実施例では、波長選択光フィル
タを光導波路又は光ファイバ内に作製した回折格子によ
り構成した光導波路内蔵型波長選択光フィルタ3’及び
5’を用いる。この光導波路内蔵型波長選択光フィルタ
も第7図に示した特性を有する。この光フィルタは光導
波路と一体化されているため、個別のバルク部品を挿入
する必要がなく、装置が小型化され、かつ高信頼化され
る効果がある。FIG. 8 is a block diagram showing the configuration of a fifth embodiment of the optical amplifying device according to the present invention. The basic structure is the same as that of the fourth embodiment. In the present embodiment, the optical waveguide built-in type wavelength selective optical filters 3'and 5'in which the wavelength selective optical filter is composed of a diffraction grating formed in the optical waveguide or the optical fiber are used. This wavelength selective optical filter with a built-in optical waveguide also has the characteristics shown in FIG. Since this optical filter is integrated with the optical waveguide, it is not necessary to insert an individual bulk component, and the device can be downsized and highly reliable.
【0018】図9は本発明による光増幅装置の第6の実
施例の構成図である。基本構成は、上記第5の実施例と
同様であるが、励起光源4以外の光部品は同一ガラス基
板8上に集積化され、励起光源4はその基板うえにハイ
ブリッド実装されている。このように、集積化光増幅装
置を作製することにより、さらに装置の小型化と高信頼
化が図れる効果がある。FIG. 9 is a block diagram of a sixth embodiment of the optical amplifying device according to the present invention. The basic structure is the same as that of the fifth embodiment, but the optical components other than the excitation light source 4 are integrated on the same glass substrate 8, and the excitation light source 4 is hybrid-mounted on the substrate. As described above, by manufacturing the integrated optical amplifier device, there is an effect that further miniaturization and high reliability of the device can be achieved.
【0019】[0019]
【発明の効果】本発明によれば、希土類ドープ光導波路
又は希土類ドープ光ファイバを用いた光増幅装置におい
て、構成を簡易化し、同時に利得の増加及び励起効率の
増加を実現すると共に、自然放出光は抑圧することによ
り低雑音化できる効果がある。さらに、光部品を集積化
することにより、さらなる小型化、高信頼化が実現され
る。According to the present invention, in an optical amplifying device using a rare earth-doped optical waveguide or a rare earth-doped optical fiber, the structure is simplified, at the same time, gain is increased and pumping efficiency is increased, and spontaneous emission light is increased. Has the effect of reducing noise by suppressing it. Furthermore, by integrating the optical components, further miniaturization and higher reliability are realized.
【図1】本発明による光増幅装置の第1の実施例の構成
ブロック図である。FIG. 1 is a configuration block diagram of a first embodiment of an optical amplifier according to the present invention.
【図2】図1の波長選択光フィルタ3の特性図である。FIG. 2 is a characteristic diagram of the wavelength selective optical filter 3 of FIG.
【図3】本発明による光増幅装置の第2の実施例の構成
ブロック図である。FIG. 3 is a configuration block diagram of a second embodiment of the optical amplifying device according to the present invention.
【図4】光導波路内蔵型波長選択光フィルタの構成図で
ある。FIG. 4 is a configuration diagram of a wavelength selective optical filter with a built-in optical waveguide.
【図5】本発明による光増幅装置の第3の実施例の構成
ブロック図である。FIG. 5 is a configuration block diagram of a third embodiment of the optical amplifier according to the present invention.
【図6】本発明による光増幅装置の第4の実施例の構成
ブロック図である。FIG. 6 is a configuration block diagram of a fourth embodiment of the optical amplifier according to the present invention.
【図7】他の波長選択光フィルタの特性図である。FIG. 7 is a characteristic diagram of another wavelength selective optical filter.
【図8】本発明による光増幅装置の第5の実施例の構成
ブロック図である。FIG. 8 is a configuration block diagram of a fifth embodiment of the optical amplifier according to the present invention.
【図9】本発明による光増幅装置の第6の実施例の構成
ブロック図である。FIG. 9 is a configuration block diagram of a sixth embodiment of the optical amplifying device according to the present invention.
【図10】従来の光増幅装置の構成を示すブロック図で
ある。FIG. 10 is a block diagram showing a configuration of a conventional optical amplifier.
1:光サーキュレータ、 2:希土類ドープ光導波路、
3,5:波長選択光フィルタ、 4:励起光源、
3’,5’:光導波路内蔵型波長選択光フィルタ、6:
波長多重光カプラ、 7:反射ミラー、
8:ガラス基板、 11:入力ポート、12:出力ポー
ト。1: optical circulator, 2: rare earth-doped optical waveguide,
3, 5: wavelength selective optical filter, 4: excitation light source,
3 ', 5': Wavelength selective optical filter with built-in optical waveguide, 6:
WDM optical coupler, 7: reflective mirror,
8: Glass substrate, 11: Input port, 12: Output port.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G02B 6/12 H 7036−2K G02F 1/35 501 7246−2K H01S 3/07 8934−4M ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical indication location G02B 6/12 H 7036-2K G02F 1/35 501 501246-2K H01S 3/07 8934-4M
Claims (8)
を加え信号光を増幅する光増幅器において、上記希土類
ドープ光導波路と励起光源との間に励起光を通過させ、
信号光を反射する波長選択光フィルタが設置されたこと
を特徴とする光増幅装置。1. An optical amplifier for amplifying signal light by adding signal light and pumping light to a rare earth-doped optical waveguide, wherein pumping light is passed between the rare earth-doped optical waveguide and the pumping light source,
An optical amplifying device, characterized in that a wavelength selective optical filter for reflecting signal light is installed.
記波長選択光フィルタが光集積回路の基板上に形成され
た光導波路内に作製された回折格子により構成されたこ
とを特徴とする光増幅装置。2. The optical amplifying device according to claim 1, wherein the wavelength selective optical filter comprises a diffraction grating formed in an optical waveguide formed on a substrate of an optical integrated circuit. Amplification device.
記希土類ドープ光導波路が希土類ドープ光ファイバで構
成されたことを特徴とする光増幅装置。3. The optical amplifying device according to claim 1, wherein the rare earth-doped optical waveguide comprises a rare earth-doped optical fiber.
記波長選択光フィルタがファイバ内に作製された回折格
子により構成されたことを特徴とする光増幅装置。4. The optical amplifying device according to claim 3, wherein the wavelength selective optical filter is composed of a diffraction grating formed in a fiber.
励起光源を構成要素に含む光増幅装置において、上記希
土類ドープ光導波路の一端に励起光を通過し信号光を反
射する第1の波長選択光フィルタと、他端に励起光を反
射し、信号光を通過する第2の波長選択光フィルタを設
置して構成されたことを特徴とする光増幅装置。5. An optical amplifier including a pumping light source for adding pumping light to a rare earth-doped optical waveguide as a constituent element, wherein the first wavelength-selective light that passes the pumping light and reflects the signal light at one end of the rare earth-doped optical waveguide. An optical amplifying device comprising a filter and a second wavelength selective optical filter which reflects pumping light and transmits signal light at the other end.
記第1及び第2の波長選択光フィルタの少なくとも一方
が光集積回路の基板上に形成された光導波路内に作製さ
れた回折格子により構成されたことを特徴とする光増幅
装置。6. The optical amplifying device according to claim 5, wherein at least one of the first and second wavelength selective optical filters is a diffraction grating formed in an optical waveguide formed on a substrate of an optical integrated circuit. An optical amplifying device characterized by being configured.
記希土類ドープ光導波路が希土類ドープ光ファイバで構
成されたことを特徴とする光増幅装置。7. The optical amplifying device according to claim 5, wherein the rare earth-doped optical waveguide comprises a rare earth-doped optical fiber.
記第1及び第2の波長選択光フィルタの少なくとも一方
が光ファイバ内に形成された回折格子により構成された
ことを特徴とする光増幅装置。8. The optical amplifying device according to claim 5, wherein at least one of the first and second wavelength selective optical filters is composed of a diffraction grating formed in an optical fiber. apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3179712A JPH0529686A (en) | 1991-07-19 | 1991-07-19 | Optical amplifier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3179712A JPH0529686A (en) | 1991-07-19 | 1991-07-19 | Optical amplifier |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0529686A true JPH0529686A (en) | 1993-02-05 |
Family
ID=16070558
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3179712A Pending JPH0529686A (en) | 1991-07-19 | 1991-07-19 | Optical amplifier |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0529686A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0685946A1 (en) * | 1994-06-02 | 1995-12-06 | Nortel Networks Corporation | Optical waveguide amplifiers |
JPH08160240A (en) * | 1994-12-09 | 1996-06-21 | Sumitomo Electric Ind Ltd | Silica-based optical component and manufacturing method thereof |
WO2000044072A1 (en) * | 1999-01-26 | 2000-07-27 | Ciena Corporation | Optical amplifier |
US6104528A (en) * | 1997-07-03 | 2000-08-15 | Samsung Electronics Co., Ltd. | Optical fiber amplifier for achieving high gain of small signal |
US6404525B1 (en) | 1997-07-31 | 2002-06-11 | Nec Corporation | Optical add-drop multiplexer |
US6424440B1 (en) | 1997-10-28 | 2002-07-23 | Nec Corporation | Optical switch, optical amplifier and optical power controller as well as optical add-drop multiplexer |
JP2010166317A (en) * | 2009-01-15 | 2010-07-29 | Kinki Univ | Optical signal amplification device |
-
1991
- 1991-07-19 JP JP3179712A patent/JPH0529686A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0685946A1 (en) * | 1994-06-02 | 1995-12-06 | Nortel Networks Corporation | Optical waveguide amplifiers |
JPH08160240A (en) * | 1994-12-09 | 1996-06-21 | Sumitomo Electric Ind Ltd | Silica-based optical component and manufacturing method thereof |
US6104528A (en) * | 1997-07-03 | 2000-08-15 | Samsung Electronics Co., Ltd. | Optical fiber amplifier for achieving high gain of small signal |
US6404525B1 (en) | 1997-07-31 | 2002-06-11 | Nec Corporation | Optical add-drop multiplexer |
US6895183B2 (en) | 1997-07-31 | 2005-05-17 | Nec Corporation | Optical add-drop multiplexer |
US6424440B1 (en) | 1997-10-28 | 2002-07-23 | Nec Corporation | Optical switch, optical amplifier and optical power controller as well as optical add-drop multiplexer |
US6466344B2 (en) | 1997-10-28 | 2002-10-15 | Nec Corporation | Optical switch, optical amplifier and optical power controller as well as optical add-drop multiplexer |
US7197246B2 (en) | 1997-10-28 | 2007-03-27 | Nec Corporation | Optical switch, optical amplifier and optical power controller as well as optical add-drop multiplexer |
WO2000044072A1 (en) * | 1999-01-26 | 2000-07-27 | Ciena Corporation | Optical amplifier |
JP2010166317A (en) * | 2009-01-15 | 2010-07-29 | Kinki Univ | Optical signal amplification device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5257273A (en) | Amplifier/filter combination | |
US6195200B1 (en) | High power multiwavelength light source | |
US5572357A (en) | Optical system for amplifying signal light | |
US5128801A (en) | Integrated optical signal amplifier | |
US6900885B2 (en) | White light source | |
JPH0529686A (en) | Optical amplifier | |
US6020991A (en) | Optical amplifier | |
JP2870235B2 (en) | Optical fiber amplifier | |
JP3019828B2 (en) | Bidirectional optical amplifier | |
EP0440049A1 (en) | Integrated optical signal amplifier | |
JP4072942B2 (en) | White light source | |
JP2753419B2 (en) | Optical amplifier | |
EP0964486B1 (en) | Optical fiber amplifier | |
JP3053255B2 (en) | Optical fiber amplifier | |
JP4703026B2 (en) | Broadband ASE light source | |
JP2856501B2 (en) | Optical fiber amplifier | |
JPH08250790A (en) | Light amplifier | |
JP3230458B2 (en) | Optical amplifier | |
JP3324675B2 (en) | Optical amplifier and optical amplification method | |
JPH06324368A (en) | Optical fiber amplifier | |
JPH07297469A (en) | Multistage optical fiber amplifier and its optical components | |
JPH0675254A (en) | Optical filter | |
WO2001065646A2 (en) | Multiple stage optical fiber amplifier | |
JP2995958B2 (en) | Optical amplifier | |
JP2663873B2 (en) | Light source for measuring transmission characteristics |