JPH05294731A - Silicon nitride-based sintered compact and its production - Google Patents
Silicon nitride-based sintered compact and its productionInfo
- Publication number
- JPH05294731A JPH05294731A JP4119853A JP11985392A JPH05294731A JP H05294731 A JPH05294731 A JP H05294731A JP 4119853 A JP4119853 A JP 4119853A JP 11985392 A JP11985392 A JP 11985392A JP H05294731 A JPH05294731 A JP H05294731A
- Authority
- JP
- Japan
- Prior art keywords
- silicon nitride
- sintering
- sintered body
- temperature
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Ceramic Products (AREA)
Abstract
(57)【要約】
【目的】 本発明の目的は、高温酸化性雰囲気下であっ
ても機械的強度の低下が小さい等の耐熱性を有し、しか
も高い靭性を有する窒化珪素質焼結体とその製造方法を
提供することにある。
【構成】 本発明の窒化珪素質焼結体は、窒化珪素を主
成分とし、粒界相としてZr3Er4O12結晶相が存在す
ることを特徴とする。その製造方法としては、酸化エル
ビウム、ジルコンおよび残部が窒化珪素からなる混合粉
末を成形し、窒素雰囲気中にて焼結し、降温過程もしく
は再加熱処理において粒界にZr3Er4O12結晶相を生
成させることを特徴とする。
【効果】 本発明により、高温酸化雰囲気中で安定で、
1400℃大気中にて抗折強さ500MPa以上、靭性
値5MPam1/2以上と優れた特性を有する窒化珪素質
焼結体の製造が可能となった。(57) [Summary] [Object] An object of the present invention is to provide a silicon nitride sintered body which has heat resistance such as a small decrease in mechanical strength even in a high temperature oxidizing atmosphere and has high toughness. And a method of manufacturing the same. [Structure] The silicon nitride sintered material of the present invention is characterized by containing silicon nitride as a main component and having a Zr 3 Er 4 O 12 crystal phase as a grain boundary phase. The manufacturing method is as follows: a mixed powder of erbium oxide, zircon and the balance of silicon nitride is molded and sintered in a nitrogen atmosphere, and the Zr 3 Er 4 O 12 crystal phase is formed in the grain boundary during the temperature lowering process or the reheating process. Is generated. According to the present invention, it is stable in a high temperature oxidizing atmosphere,
It has become possible to manufacture a silicon nitride sintered body having excellent properties such as a transverse strength of 500 MPa or more and a toughness value of 5 MPam 1/2 or more in the atmosphere of 1400 ° C.
Description
【0001】[0001]
【産業上の利用分野】本発明は、高温大気中における強
度および靭性の優れた高密度窒化珪素質焼結体とその製
造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-density silicon nitride sintered body excellent in strength and toughness in a high temperature atmosphere and a method for producing the same.
【0002】[0002]
【従来の技術】窒化珪素は共有結合性の強い物質であ
り、強度、硬度、耐熱性、化学的安定性等において優れ
た特性を有することから、構造部材、特に熱機関として
例えばガスタービンエンジン部材等への適用が検討され
ている。2. Description of the Related Art Silicon nitride is a substance having a strong covalent bond and has excellent properties such as strength, hardness, heat resistance, and chemical stability. Therefore, it is used as a structural member, particularly as a heat engine, for example, a gas turbine engine member. Etc. are being considered for application.
【0003】エンジンの高効率化に伴い、1400℃以
上の温度での利用が期待されており、この条件下におい
て使用可能な高強度、高靭性、かつ高耐酸化性の材料が
望まれている。As the engine becomes more efficient, it is expected to be used at a temperature of 1400 ° C. or higher, and a material having high strength, high toughness and high oxidation resistance which can be used under these conditions is desired. ..
【0004】窒化珪素は単味では焼結が困難であるた
め、一般に種々の添加物を加えて焼結されている。Since it is difficult to sinter silicon nitride by itself, it is generally sintered by adding various additives.
【0005】例えば酸化イットリウム(Y2O3)と酸化
アルミニウム(Al2O3)を添加した系では、耐熱衝撃
性においては優れたものが得られているが、耐熱性、機
械的強度、靭性に劣っている場合があった。For example, in a system to which yttrium oxide (Y 2 O 3 ) and aluminum oxide (Al 2 O 3 ) are added, excellent thermal shock resistance is obtained, but heat resistance, mechanical strength, and toughness are obtained. It was sometimes inferior to.
【0006】耐熱性を向上させることを目的として、特
開昭56―59674号公報に開示されている焼結体中
にメリライト鉱物相(Y2O3・Si3N4化合物)を生成
させた窒化珪素焼結体、および特開昭62―20286
4号公報に開示されている酸化ジルコニウム(Zr
O2)+酸化イットリウム(Y2O3)+酸化珪素(Si
O2)を添加し、焼結体中にZrO 2を析出させた窒化珪
素焼結体が試みられており、高温強度の向上等に効果が
認められることが知られている。[0006] For the purpose of improving heat resistance,
In the sintered body disclosed in Japanese Patent Laid-Open No. 56-59674
Melilite mineral phase (Y2O3・ Si3NFourCompound)
Sintered silicon nitride sintered body, and JP-A-62-20286
Zirconium oxide (Zr
O2) + Yttrium oxide (Y2O3) + Silicon oxide (Si
O2) Is added, and ZrO is added to the sintered body. 2Deposited silicon nitride
An elemental sintered body has been tried, and it is effective in improving high temperature strength.
It is known to be recognized.
【0007】また、特開昭62―246865号公報に
開示されている希土類酸化物、ZrO2を含む焼結体で
粒界相にJ相(Si2N2O・2Y2O3)固溶体が存在す
る窒化珪素焼結体が試みられており、耐熱性、耐酸化
性、静的疲労特性の向上に効果が認められることが知ら
れている。Further, a J-phase (Si 2 N 2 O.2Y 2 O 3 ) solid solution is formed in the grain boundary phase in a sintered body containing the rare earth oxide ZrO 2 disclosed in Japanese Patent Application Laid-Open No. 62-246865. The existing silicon nitride sintered bodies have been tried, and it is known that they are effective in improving heat resistance, oxidation resistance and static fatigue characteristics.
【0008】また、ZrO2を焼結助剤として用いた焼
結体の耐酸化性の向上を目的として窒化珪素の焼結助剤
として酸化イットリウム(Y2O3)と共にジルコン(Z
rSiO4)を添加した系が特開平2―107566号
公報に開示されている。Further, for the purpose of improving the oxidation resistance of a sintered body using ZrO 2 as a sintering aid, zircon (Z) together with yttrium oxide (Y 2 O 3 ) is used as a sintering aid for silicon nitride.
A system to which rSiO 4 ) is added is disclosed in Japanese Patent Application Laid-Open No. 2-107566.
【0009】ところが、上記材料では、高温即時破断強
度は優れるものの、高温強度を維持したまま靭性および
耐酸化性を飛躍的に改善するには至っていない。However, although the above materials have excellent high-temperature immediate rupture strength, the toughness and oxidation resistance have not been dramatically improved while maintaining the high-temperature strength.
【0010】例えば、焼結助剤として酸化ジルコニウム
(ZrO2)を用いた系では、焼結過程で添加したZr
O2の一部が、Si3N4と反応を起こし、焼結体中に窒
化ジルコニウム(ZrN)として残留する。For example, in a system using zirconium oxide (ZrO 2 ) as a sintering aid, Zr added in the sintering process
A part of O 2 reacts with Si 3 N 4, and remains as zirconium nitride (ZrN) in the sintered body.
【0011】このZrNは高温大気中でZrNからZr
O2への酸化過程において約30%程度の体積膨張を起
こし、焼結体表面にクラックを生成せしめ強度特性を著
しく劣化させることが知られている。This ZrN changes from ZrN to Zr in a high temperature atmosphere.
It is known that volume expansion of about 30% occurs in the process of oxidation to O 2 , causing cracks on the surface of the sintered body and significantly deteriorating the strength characteristics.
【0012】従って、ZrNを含有する焼結体は、高温
構造材料としての信頼性に欠ける問題点があった。しか
し、ZrNの残留を完全に抑制することは困難であっ
た。Therefore, the sintered body containing ZrN has a problem that it lacks reliability as a high temperature structural material. However, it was difficult to completely suppress the residual ZrN.
【0013】[0013]
【発明が解決しようとする課題】本発明の目的は、高温
酸化性雰囲気下であっても機械的強度の低下が小さい等
の耐熱性を有し、しかも高い靭性を有する窒化珪素質焼
結体とその製造方法を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a silicon nitride sintered body which has heat resistance such as a small decrease in mechanical strength even in a high temperature oxidizing atmosphere and has high toughness. And a method of manufacturing the same.
【0014】[0014]
【課題を解決するための手段】本発明の窒化珪素質焼結
体は、窒化珪素(Si3N4)を主成分とし、粒界相とし
てZr3Er4O12結晶相が存在することを特徴とするも
のである。The silicon nitride-based sintered body of the present invention contains silicon nitride (Si 3 N 4 ) as a main component and has a Zr 3 Er 4 O 12 crystal phase as a grain boundary phase. It is a feature.
【0015】その製造方法としては、酸化エルビウム
(Er2O3)5〜15重量%,ジルコン(ZrSi
O4)1〜20重量%、及び残部が窒化珪素(Si
3N4)からなる混合粉末を成形し、該成形体を窒素ガス
雰囲気中にて1700〜2000℃の温度範囲で焼結
し、以下の少なくとも1つの手段により粒界相としてZ
r3Er4O12結晶相を生成させることを特徴とするもの
である。The manufacturing method is as follows: erbium oxide (Er 2 O 3 ) 5 to 15% by weight, zircon (ZrSi
O 4 ) 1 to 20% by weight, and the balance silicon nitride (Si
3 N 4 ) mixed powder is molded, the molded body is sintered in a nitrogen gas atmosphere in a temperature range of 1700 to 2000 ° C., and Z is used as a grain boundary phase by at least one of the following means.
It is characterized in that an r 3 Er 4 O 12 crystal phase is produced.
【0016】粒界相としてZr3Er4O12相を結晶化さ
せるためには、焼結の降温過程において5℃/分以下の
降温速度で冷却するか、降温過程で1500〜1700
℃、2時間以上保持の熱処理、あるいは焼結後、窒素雰
囲気にて1500〜1700℃、2時間以上保持の再加
熱処理の少なくとも1つの処理を行うようにする。In order to crystallize the Zr 3 Er 4 O 12 phase as a grain boundary phase, cooling is performed at a temperature lowering rate of 5 ° C./min or less in the temperature lowering process of sintering, or 1500 to 1,700 in the temperature lowering process.
After the heat treatment at 2 ° C. for 2 hours or more, or after the sintering, at least one treatment of 1500 to 1700 ° C. and the reheating treatment at 2 hours or more is performed in a nitrogen atmosphere.
【0017】本発明における焼結体の粒界相としては、
実質的にZr3Er4O12結晶相のみが存在することが好
ましい。As the grain boundary phase of the sintered body in the present invention,
It is preferred that substantially only the Zr 3 Er 4 O 12 crystalline phase be present.
【0018】ここでZr3Er4O12結晶相は、粉末X線
回折法により同定されJCDPSカード30―539で
示される3ZrO2・2Er2O3と同じ型の回折線を持
ち、高温酸化雰囲気中にて安定な高融点の結晶相であ
る。Here, the Zr 3 Er 4 O 12 crystal phase has the same type of diffraction line as 3ZrO 2 .2Er 2 O 3 shown in JCDPS card 30-539, which is identified by the powder X-ray diffraction method, and has a high temperature oxidizing atmosphere. It is a crystalline phase with a high melting point that is stable inside.
【0019】ZrN相の生成を抑制し、焼結後の結晶化
処理によりZrを安定な化合物であるZr3Er4O12と
することにより上述した課題を解決することが可能とな
る。The above-mentioned problems can be solved by suppressing the formation of the ZrN phase and by converting Zr to Zr 3 Er 4 O 12 which is a stable compound by the crystallization treatment after sintering.
【0020】本発明においては、焼結助剤としてEr2
O3を用いるが、Er2O3は、Si3N4の焼結時にα相
からβ相への結晶相転移をその融液中で促進させる機能
を持ち、更にSi3N4の柱状相の成長を助長することに
より高温強度及び靭性を向上させる。In the present invention, Er 2 is used as a sintering aid.
The O 3 is used but, Er 2 O 3 is a crystal phase transition from Si 3 N alpha phase during sintering of 4 to β-phase has a function to promote its melt during further columnar phase the Si 3 N 4 The high temperature strength and toughness are improved by promoting the growth of.
【0021】また、本発明においては、Er2O3は焼結
降温過程もしくは再加熱処理中にZr SiO4と反応
し、Zr3Er4O12相を生成する。Further, in the present invention, Er2O3Is sintered
Zr during cooling process or reheating process SiOFourReact with
And Zr3ErFourO12Generate a phase.
【0022】Er2O3の添加量が15重量%を超えると
得られた焼結体の高温での機械的強度および耐酸化性が
低下するので、15重量%以下であることが好ましい。If the amount of addition of Er 2 O 3 exceeds 15% by weight, the mechanical strength and oxidation resistance of the obtained sintered body at high temperature will decrease, so it is preferably 15% by weight or less.
【0023】また5重量%より少ないと融液が不十分
で、相対密度で95%以下と十分な緻密化がなされない
ため好ましくない。On the other hand, if the amount is less than 5% by weight, the melt is insufficient and the relative density is 95% or less, which is not sufficient, so that it is not preferable.
【0024】従ってその添加量としては5〜15重量%
の範囲であることがよく、特に十分に高い機械的強度、
靭性を得るためには、7〜12重量%の範囲であること
がより好ましい。Therefore, the addition amount is 5 to 15% by weight.
Is often in the range of, especially high mechanical strength,
In order to obtain toughness, the range is more preferably 7 to 12% by weight.
【0025】ZrSiO4は上記Er2O3と共に焼結時
に液相を形成するが、ZrO2に比べて酸素原子を多く
保有しているため、ZrNが生成しにくい。ZrSiO 4 forms a liquid phase during sintering together with Er 2 O 3 described above, but since it has many oxygen atoms as compared with ZrO 2 , ZrN is less likely to be produced.
【0026】焼結助剤としてZrO2とSiO2を添加し
ても同様のモル比とすることは可能であるが、ZrO2
の窒化を抑制するためには、混練の際に各助剤が均一分
散する必要が有る。It is possible to add ZrO 2 and SiO 2 as sintering aids to obtain the same molar ratio, but ZrO 2
In order to suppress the nitriding, it is necessary that each auxiliary agent be uniformly dispersed during kneading.
【0027】助剤の段階で既に酸素リッチの化合物とし
て存在するZrSiO4の方がZrNの生成抑制には有
利である。ZrSiO 4 which is already present as an oxygen-rich compound at the auxiliary stage is more advantageous for suppressing the formation of ZrN.
【0028】また、ZrSiO4相は焼結の冷却過程も
しくは再加熱処理中においてEr2O3と反応し、高融点
でかつ高温酸化雰囲気中で安定なZr3Er4O12相を焼
結体の粒界相に析出することにより、優れた高温特性を
得ることができる。Further, the ZrSiO 4 phase reacts with Er 2 O 3 during the cooling process of sintering or the reheating process, and the Zr 3 Er 4 O 12 phase having a high melting point and stable in a high temperature oxidizing atmosphere is sintered. By precipitating in the grain boundary phase of, excellent high temperature characteristics can be obtained.
【0029】本発明では焼結助剤としてZrSiO4を
1〜20重量%含むが、1重量%より少ないと十分緻密
な焼結体が得られにくく、また、20重量%より多いと
十分な高温強度が得られない。In the present invention, 1 to 20% by weight of ZrSiO 4 is contained as a sintering aid, but if it is less than 1% by weight, it is difficult to obtain a sufficiently dense sintered body, and if it is more than 20% by weight, a sufficiently high temperature is obtained. No strength can be obtained.
【0030】本発明において使用されるSi3N4粉末
は、α型の結晶構造をもつSi3N4粉末が焼結性の点か
ら好ましいが、β型あるいは非晶質Si3N4粉末が含ま
れていてもかまわない。The Si 3 N 4 powder used in the present invention is Si 3 N 4 powder having an α-type crystal structure is preferable from the viewpoint of sintering property, beta type or amorphous Si 3 N 4 powder It does not matter if it is included.
【0031】焼結時に十分に高い密度とするためには、
平均粒径1μm以下の微粒子であることが望ましい。In order to obtain a sufficiently high density during sintering,
Fine particles having an average particle diameter of 1 μm or less are desirable.
【0032】焼結助剤として添加するEr2O3、ZrS
iO4も均質かつ高密度の焼結体を得るためには平均粒
径が2μm以下の微粒子であることが好ましい。Er 2 O 3 and ZrS added as sintering aids
In order to obtain a homogeneous and high density sintered body, iO 4 is also preferably fine particles having an average particle diameter of 2 μm or less.
【0033】本発明方法においては、これらの各成分の
混合は精製水、アセトンもしくはエタノール等の溶媒を
用い、Si3N4もしくはSiCのポット及びボールを用
いて遊星型混合機もしくはポットミル混合機にて行な
う。このように調整された混合粉末を加圧成形し所望の
形状の成形体とする。In the method of the present invention, these components are mixed using purified water, a solvent such as acetone or ethanol, and a planetary mixer or a pot mill mixer using Si 3 N 4 or SiC pots and balls. Do it. The mixed powder thus adjusted is pressure-molded to obtain a molded body having a desired shape.
【0034】この成形体を窒素ガス雰囲気中にて170
0〜2000℃の温度範囲で焼結し、焼結体を得る。This molded body was heated to 170 in a nitrogen gas atmosphere.
Sintering is performed in a temperature range of 0 to 2000 ° C. to obtain a sintered body.
【0035】焼結方法としては、常圧焼結法、ガス圧焼
結法、熱間静水圧プレス焼結法、ホットプレス焼結法を
用いることが可能であり、更に1種もしくは複数の焼結
法を組み合わせることも可能である。As the sintering method, an atmospheric pressure sintering method, a gas pressure sintering method, a hot isostatic pressing sintering method, a hot pressing sintering method can be used. It is also possible to combine the methods.
【0036】焼結時の雰囲気はSi3N4の高温での分解
を抑制するために窒素ガス雰囲気とする。The atmosphere during sintering is a nitrogen gas atmosphere in order to suppress decomposition of Si 3 N 4 at high temperature.
【0037】Si3N4は窒素ガス1気圧下では約185
0℃以上で分解が生じるため、1850℃以上にて焼結
を行う場合は、窒素ガス圧を焼結温度におけるSi3N4
の臨界分解圧力以上に設定するようにする。Si 3 N 4 is about 185 under 1 atmosphere of nitrogen gas.
Since decomposition occurs at 0 ° C or higher, when sintering is performed at 1850 ° C or higher, nitrogen gas pressure is set to Si 3 N 4 at the sintering temperature.
Set it above the critical decomposition pressure of.
【0038】ここで窒素ガスとは実質的にN2ガスのこ
とであるが、Ar等のその他の不活性ガスが含まれても
かまわない。Here, the nitrogen gas is substantially N 2 gas, but other inert gas such as Ar may be contained.
【0039】焼結は1700〜2000℃の温度範囲に
て行われるが、1700℃未満ではSi3N4のβ粒の成
長が不十分であり高い靭性が得られず、また、十分な焼
結密度が得られない。2000℃超では生成するβ―S
i3N4針状粒成長が著しく、強度が低下する。Sintering is carried out in the temperature range of 1700 to 2000 ° C., but if the temperature is lower than 1700 ° C., the growth of β grains of Si 3 N 4 is insufficient and high toughness cannot be obtained. Density cannot be obtained. Β-S generated above 2000 ° C
i 3 N 4 Needle-like grains grow remarkably and the strength decreases.
【0040】また焼結の際には、焼結助剤からなる液相
中にSi3N4が溶解し再析出することで結晶相転移が生
じると伴に、緻密化し焼結が進行するが、この溶解・再
析出過程で、融液中へのSi3N4の固溶限界があるた
め、30分以上の保持が好ましい。Further, during sintering, Si 3 N 4 is dissolved and reprecipitated in a liquid phase composed of a sintering aid to cause a crystal phase transition, and densification and sintering proceed. In this dissolution / reprecipitation process, since there is a solid solution limit of Si 3 N 4 in the melt, holding for 30 minutes or more is preferable.
【0041】また、粒界相としてZr3Er4O12相を結
晶化させるためには、焼結の降温過程に5℃/分以下の
降温速度で冷却するか、降温過程で1500〜1700
℃、2時間以上保持の熱処理、あるいは焼結後、窒素雰
囲気中にて1500〜1700℃、2時間以上保持の再
加熱処理を行う、の少なくとも1つの手段を適用する。In order to crystallize the Zr 3 Er 4 O 12 phase as a grain boundary phase, cooling is performed at a temperature lowering rate of 5 ° C./min or less in the temperature lowering process of sintering, or 1500 to 1700 in the temperature lowering process.
At least one means of applying heat treatment at 2 ° C. for 2 hours or more, or performing reheating treatment at 1500 to 1700 ° C. for 2 hours or more in a nitrogen atmosphere after sintering is applied.
【0042】降温過程でZr3Er4O12相を析出させる
場合の降温速度は5℃/分以下が好ましいが、更に望ま
しくは2℃/分以下である。When the Zr 3 Er 4 O 12 phase is precipitated in the temperature lowering process, the temperature lowering rate is preferably 5 ° C./min or less, more preferably 2 ° C./min or less.
【0043】降温速度が5℃/分より速い場合はZr3
Er4O12相が十分生成しない。また、降温過程の際の
保持温度、および、再加熱処理の際の温度が1500℃
未満、1700℃超の場合も同様にZr3Er4O12相が
十分に生成しない。When the temperature lowering rate is faster than 5 ° C./minute, Zr 3
Er 4 O 12 phase is not sufficiently formed. In addition, the holding temperature during the temperature lowering process and the temperature during the reheating treatment are 1500 ° C.
If the temperature is less than 1700 ° C., the Zr 3 Er 4 O 12 phase is not sufficiently formed.
【0044】本発明の窒化珪素質焼結体の製造方法は、
Er2O35〜15重量%,ZrSiO41〜20重量
%,及び残部がSi3N4からなる混合粉末を成形し、該
成形体を窒素ガス雰囲気中で1700〜2000℃の温
度範囲で焼結し、降温過程あるいは再加熱処理により粒
界相としてZr3Er4O12結晶相を生成させるものであ
るが、これら条件の組み合わせにより初めて本課題が達
成された。The method for manufacturing a silicon nitride sintered body of the present invention is as follows:
Er 2 O 3 5 to 15 wt%, ZrSiO 4 1 to 20 wt%, and the balance consisting of Si 3 N 4 were molded into a mixed powder, and the molded body was heated in a nitrogen gas atmosphere at a temperature range of 1700 to 2000 ° C. The Zr 3 Er 4 O 12 crystal phase is generated as a grain boundary phase by sintering and temperature reduction process or reheat treatment, and this problem was achieved only by combining these conditions.
【0045】[0045]
【作用】本発明により得られる焼結体は、Si3N4の平
均結晶粒度が1〜3μm程度と大きくかつ柱状結晶粒が
絡み合った組織を呈し、またさらに粒界結晶相として融
点が高く高温酸化雰囲気中で安定なZr3Er4O12結晶
相が存在することにより、高温大気中にて高い強度を維
持したまま高い靭性を有し、抗折強さが大気中1400
℃にて500MPa以上の高強度でかつ靭性値KICが5
MPam1/2以上の高靭性を有する。The sintered body obtained according to the present invention has a large average grain size of Si 3 N 4 of about 1 to 3 μm and has a structure in which columnar grains are entangled with each other. Due to the existence of a stable Zr 3 Er 4 O 12 crystal phase in an oxidizing atmosphere, it has a high toughness while maintaining a high strength in a high temperature atmosphere, and a flexural strength of 1400 in the atmosphere.
High strength of 500 MPa or more at ℃ and toughness value K IC of 5
It has a high toughness of at least MPam 1/2 .
【0046】特に高い坑折強度および靭性を有する焼結
体を得るためには、ガス圧焼結法、熱間静水圧プレス焼
結法、もしくはホットプレス法の加圧焼結法を用いるこ
とが好ましい。In order to obtain a sintered body having particularly high folding strength and toughness, it is preferable to use a gas pressure sintering method, a hot isostatic pressing sintering method, or a hot pressing pressure sintering method. preferable.
【0047】後述する実施例に示されているように14
00℃における坑折強さが700MPaを示す焼結体、
もしくはKICが7MPam1/2と極めて高い焼結体が得
られている。As shown in the embodiments described later, 14
A sintered body showing a bending strength of 700 MPa at 00 ° C.,
Alternatively, a sintered body having an extremely high K IC of 7 MPam 1/2 is obtained.
【0048】また複雑形状の焼結体を得るためには、ガ
ス圧焼結法、熱間静水圧プレス焼結法を用いることが好
ましい。In order to obtain a sintered body having a complicated shape, it is preferable to use a gas pressure sintering method or a hot isostatic pressing sintering method.
【0049】次に本発明の実施例を比較例と共に説明す
る。Next, examples of the present invention will be described together with comparative examples.
【0050】[0050]
【0051】[0051]
【実施例1】Si3N4(平均粒径0.5μm、α化率9
7%以上)にEr2O3粉末(平均粒径0.8μm)、及
びZrSiO4粉末(平均粒径0.3μm)を第1表に
示す所定量(重量%)添加し、溶媒としてアセトンを用
いてSi3N4製ボールミルで24時間混練した。Example 1 Si 3 N 4 (average particle size 0.5 μm, alpha conversion 9
7% or more), Er 2 O 3 powder (average particle size 0.8 μm) and ZrSiO 4 powder (average particle size 0.3 μm) were added in a predetermined amount (% by weight) shown in Table 1, and acetone was used as a solvent. The mixture was kneaded for 24 hours using a ball mill made of Si 3 N 4 .
【0052】次いで得られた混合粉末を使い、成形後、
常圧焼結を行った。成形条件としては金型1軸成形圧1
50MPa、冷間静水圧による加圧500MPaとし、
50mm×50mm×10mmの板状体を得た。Next, using the obtained mixed powder, after molding,
Pressureless sintering was performed. Molding conditions include a mold 1 axis molding pressure 1
50 MPa, pressurization by cold hydrostatic pressure 500 MPa,
A plate-like body having a size of 50 mm × 50 mm × 10 mm was obtained.
【0053】常圧焼結条件としては、1気圧窒素雰囲気
中1700〜1800℃にて6時間保持とした。As the atmospheric pressure sintering conditions, the temperature was maintained at 1700 to 1800 ° C. for 6 hours in a nitrogen atmosphere of 1 atmosphere.
【0054】粒界相の結晶化の条件としては、焼結後の
降温過程の徐冷を利用する場合には、降温速度を5℃/
分以下とし、降温過程にて保持する場合は1550〜1
650℃にて6時間保持とし、焼結後に再加熱処理を施
す場合は1500〜1700℃にて12時間保持とし
た。As a condition for crystallizing the grain boundary phase, when slow cooling in the temperature decreasing process after sintering is used, the temperature decreasing rate is 5 ° C. /
If it is less than a minute and is kept in the temperature decreasing process, 1550 to 1
The temperature was held at 650 ° C. for 6 hours, and when reheating treatment was performed after sintering, the temperature was held at 1500 to 1700 ° C. for 12 hours.
【0055】本発明により得られた各焼結体の特性を焼
結助剤の添加量、常圧焼結温度、結晶化条件、Zr3E
r4O12結晶相の有無と共に第1表に示す。The characteristics of each sintered body obtained according to the present invention are shown in the following: the amount of sintering aid added, normal pressure sintering temperature, crystallization conditions, Zr 3 E
Table 1 shows the presence or absence of the r 4 O 12 crystalline phase.
【0056】強度については、JIS R1601およ
び、JIS R1604に準拠し室温及び大気中140
0℃にて3点曲げ試験を行い坑折強さとして測定した。Regarding the strength, in accordance with JIS R1601 and JIS R1604, 140
A 3-point bending test was performed at 0 ° C. and the bending strength was measured.
【0057】1400℃での試験に際しては、大気中で
の酸化劣化を考慮し、予め1400℃大気中に24時間
保持した試験片を用いた。In the test at 1400 ° C., in consideration of the oxidative deterioration in the air, a test piece preliminarily kept in the air at 1400 ° C. for 24 hours was used.
【0058】靭性については室温にてJISR1607
のSEPB法により破壊靭性値KICを測定した。また焼
結体の結晶相はX線回折法を用いて分析した。Regarding toughness, JIS R1607 was used at room temperature.
The fracture toughness value K IC was measured by the SEPB method. The crystal phase of the sintered body was analyzed by the X-ray diffraction method.
【0059】なお、本発明の範囲以外の条件にて作製さ
れた焼結体の特性値を併せて第1表に比較例として示
す。The characteristic values of the sintered bodies produced under conditions outside the range of the present invention are also shown in Table 1 as a comparative example.
【0060】第1表に示すように、本発明の実施例によ
るものは坑折強さ、靭性共に優れるが、比較例に該当す
る試料では本発明の実施例と比べて特に高温坑折強さが
劣ることが確認された。As shown in Table 1, the samples according to the examples of the present invention are excellent in both fold strength and toughness, but the samples corresponding to the comparative examples are particularly high temperature fold strength as compared with the examples of the present invention. Was confirmed to be inferior.
【0061】本発明の場合、何れも、Zr3Er4O12結
晶相の存在がX線回折法により確認された。In each case of the present invention, the presence of the Zr 3 Er 4 O 12 crystal phase was confirmed by the X-ray diffraction method.
【0062】[0062]
【表1】 [Table 1]
【0063】[0063]
【表2】 [Table 2]
【0064】[0064]
【表3】 [Table 3]
【0065】[0065]
【実施例2】前記実施例1と同様に混合粉末を成形後、
加圧焼結により焼結体を作製した。Example 2 After molding a mixed powder in the same manner as in Example 1,
A sintered body was produced by pressure sintering.
【0066】加圧焼結には、ガス圧焼結法、熱間静水圧
プレス法およびホットプレス法を用いた。For pressure sintering, a gas pressure sintering method, a hot isostatic pressing method and a hot pressing method were used.
【0067】ガス圧焼結の場合は、前記実施例1と同様
に常圧焼結法により焼結体を作製した後、窒素ガス雰囲
気中4MPaの気圧下で、温度1700〜2000℃、
保持時間4時間の条件で再焼結した。In the case of gas pressure sintering, after producing a sintered body by the atmospheric pressure sintering method as in Example 1, the temperature was 1700 to 2000 ° C. under a pressure of 4 MPa in a nitrogen gas atmosphere.
Resintering was performed under the condition of holding time of 4 hours.
【0068】また、熱間静水圧プレス焼結の場合は、常
圧焼結法により作製された焼結体を窒素ガス雰囲気中1
00MPaの気圧下で、温度1800〜2000℃、保
持時間1時間の条件で再焼結した。Further, in the case of hot isostatic pressing sintering, the sintered body produced by the atmospheric pressure sintering method is used in a nitrogen gas atmosphere for 1 hour.
Resintering was performed under the conditions of a pressure of 00 MPa and a temperature of 1800 to 2000 ° C. and a holding time of 1 hour.
【0069】ホットプレス焼結の場合は、混合粉末を黒
鉛ダイス中に装填し、1気圧窒素ガス雰囲気中、40M
Paの圧力下で1750〜1850℃、保持時間2時間
の条件にて焼結した。In the case of hot press sintering, the mixed powder was charged into a graphite die and 40 M was added in a nitrogen gas atmosphere of 1 atm.
Sintering was performed under a pressure of Pa at 1750 to 1850 ° C. for a holding time of 2 hours.
【0070】いずれの加圧焼結法を用いた場合も焼結
後、窒素雰囲気中大気圧にて1550℃、保持時間12
時間の再加熱処理を施した。When any of the pressure sintering methods is used, after sintering, the temperature is 1550 ° C. and the holding time is 12 at the atmospheric pressure in a nitrogen atmosphere.
It was reheated for an hour.
【0071】実施例1と同様に本発明の範囲以外の条件
にて作製された焼結体の特性値を第2表に比較例として
示す。Similar to Example 1, the characteristic values of the sintered body produced under the conditions outside the range of the present invention are shown in Table 2 as a comparative example.
【0072】実施例1と同様に焼結体の特性を焼結助剤
の添加量、焼結条件、Zr3Er4O12結晶相の有無と共
に第2表に示す。As in Example 1, the characteristics of the sintered body are shown in Table 2 together with the addition amount of the sintering aid, the sintering conditions, and the presence or absence of the Zr 3 Er 4 O 12 crystal phase.
【0073】実施例1同様、本発明による焼結体の特性
は坑折強さ、靭性共に優れるが、比較例に該当する試料
では本発明の実施例と比べて特に高温坑折強さ及び靭性
が劣ることが確認された。Similar to Example 1, the sintered body according to the present invention is excellent in both fold strength and toughness, but the samples corresponding to Comparative Examples are particularly high temperature fold strength and toughness as compared with the Examples of the present invention. Was confirmed to be inferior.
【0074】また本発明の場合、実施例1同様、何れも
Zr3Er4O12相の存在がX線回折法により確認され
た。In the case of the present invention, as in Example 1, the presence of the Zr 3 Er 4 O 12 phase was confirmed by the X-ray diffraction method.
【0075】[0075]
【表4】 [Table 4]
【0076】[0076]
【表5】 [Table 5]
【0077】[0077]
【発明の効果】本発明によれば、上記の如く耐熱性を十
分に備えた窒化珪素質焼結体において、機械的強度、靭
性をより優れたものとすることが可能となった。According to the present invention, it has become possible to further improve the mechanical strength and toughness of a silicon nitride sintered body having sufficient heat resistance as described above.
【0078】このことにより信頼性の非常に優れた窒化
珪素質焼結体の作製が可能となり、その工業的有用性は
非常に大きい。As a result, it becomes possible to produce a silicon nitride sintered body having an extremely high reliability, and its industrial utility is very large.
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成4年5月27日[Submission date] May 27, 1992
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】請求項2[Name of item to be corrected] Claim 2
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
Claims (2)
界相としてZr3Er4O12結晶相が存在することを特徴
とする窒化珪素質焼結体。1. A silicon nitride-based sintered body containing silicon nitride (Si 3 N 4 ) as a main component and having a Zr 3 Er 4 O 12 crystal phase as a grain boundary phase.
量%,ジルコン(ZrSiO4)1〜20重量%、及び
残部が窒化珪素(Si3N4)からなる混合粉末を成形
し、該成形体を窒素ガス雰囲気中にて1700〜200
0℃の温度範囲で焼結し、以下の少なくとも1つの手段
により粒界相としてZr3Er4O12結晶相を生成させる
ことを特徴とする窒化珪素質焼結体の製造方法。 焼結の降温過程における降温速度を5℃/分とする。 焼結の降温過程において、1500〜1700℃の温
度範囲において2時間以上保持する。 焼結後、窒素雰囲気中、1500〜1700℃の温度
範囲において2時間以上保持の再加熱処理をする。2. A mixed powder composed of 5 to 15% by weight of erbium oxide (Er 2 O 3 ), 1 to 20% by weight of zircon (ZrSiO 4 ) and the balance of silicon nitride (Si 3 N 4 ) is molded, The molded product is 1700 to 200 in a nitrogen gas atmosphere.
A method for producing a silicon nitride sintered body, comprising sintering in a temperature range of 0 ° C., and producing a Zr 3 Er 4 O 12 crystal phase as a grain boundary phase by at least one of the following means. The temperature lowering rate in the temperature lowering process of sintering is 5 ° C./min. In the temperature decreasing process of sintering, the temperature is maintained at 1500 to 1700 ° C. for 2 hours or more. After the sintering, a reheating treatment is performed for 2 hours or more in a temperature range of 1500 to 1700 ° C. in a nitrogen atmosphere.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4119853A JP2534214B2 (en) | 1992-04-15 | 1992-04-15 | Silicon nitride sintered body and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4119853A JP2534214B2 (en) | 1992-04-15 | 1992-04-15 | Silicon nitride sintered body and method for manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05294731A true JPH05294731A (en) | 1993-11-09 |
JP2534214B2 JP2534214B2 (en) | 1996-09-11 |
Family
ID=14771896
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4119853A Expired - Lifetime JP2534214B2 (en) | 1992-04-15 | 1992-04-15 | Silicon nitride sintered body and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2534214B2 (en) |
-
1992
- 1992-04-15 JP JP4119853A patent/JP2534214B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2534214B2 (en) | 1996-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2534214B2 (en) | Silicon nitride sintered body and method for manufacturing the same | |
JP2652936B2 (en) | Silicon nitride sintered body and method for producing the same | |
JP2519076B2 (en) | Method for manufacturing silicon carbide whisker-reinforced ceramics | |
JP3426823B2 (en) | Silicon nitride sintered body and method for producing the same | |
JP2658944B2 (en) | Silicon nitride-titanium nitride composite ceramics and method for producing the same | |
JPH0259471A (en) | High-temperature, high-strength silicon nitride sintered body and its manufacturing method | |
JP2746761B2 (en) | Method for producing silicon nitride-silicon carbide composite sintered body | |
JP3124863B2 (en) | Silicon nitride sintered body and method for producing the same | |
JP3124867B2 (en) | Silicon nitride sintered body and method for producing the same | |
JP2534213B2 (en) | Method for producing silicon nitride based sintered body | |
JP3207045B2 (en) | Method for producing silicon nitride based sintered body | |
JPH0669905B2 (en) | Silicon nitride sintered body and method for manufacturing the same | |
JPH06100376A (en) | Sintered beta-sialon and its production | |
JP2694369B2 (en) | Silicon nitride sintered body | |
JPH082961A (en) | Metal particle dispersed aluminum oxide based sintered body and method for producing the same | |
JP3124862B2 (en) | Method for producing silicon nitride based sintered body | |
JPH03164472A (en) | Method for manufacturing silicon nitride sintered body | |
JP3764497B2 (en) | Sialon sintered body | |
JP2783702B2 (en) | Silicon nitride sintered body | |
JPH064514B2 (en) | Method for manufacturing silicon nitride sintered body | |
JP3207065B2 (en) | Silicon nitride sintered body | |
JP2811493B2 (en) | Silicon nitride sintered body | |
JP2736427B2 (en) | Silicon nitride sintered body and method for producing the same | |
JPH0524926A (en) | Method for producing silicon nitride-silicon carbide composite sintered body | |
JPH08175873A (en) | Silicon nitride sintered body and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19960423 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080627 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090627 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090627 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100627 Year of fee payment: 14 |