[go: up one dir, main page]

JP2534214B2 - Silicon nitride sintered body and method for manufacturing the same - Google Patents

Silicon nitride sintered body and method for manufacturing the same

Info

Publication number
JP2534214B2
JP2534214B2 JP4119853A JP11985392A JP2534214B2 JP 2534214 B2 JP2534214 B2 JP 2534214B2 JP 4119853 A JP4119853 A JP 4119853A JP 11985392 A JP11985392 A JP 11985392A JP 2534214 B2 JP2534214 B2 JP 2534214B2
Authority
JP
Japan
Prior art keywords
sintering
sintered body
temperature
silicon nitride
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4119853A
Other languages
Japanese (ja)
Other versions
JPH05294731A (en
Inventor
哲郎 野瀬
紘 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4119853A priority Critical patent/JP2534214B2/en
Publication of JPH05294731A publication Critical patent/JPH05294731A/en
Application granted granted Critical
Publication of JP2534214B2 publication Critical patent/JP2534214B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高温大気中における強
度および靭性の優れた高密度窒化珪素質焼結体とその製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-density silicon nitride sintered body excellent in strength and toughness in a high temperature atmosphere and a method for producing the same.

【0002】[0002]

【従来の技術】窒化珪素は共有結合性の強い物質であ
り、強度、硬度、耐熱性、化学的安定性等において優れ
た特性を有することから、構造部材、特に熱機関として
例えばガスタービンエンジン部材等への適用が検討され
ている。
2. Description of the Related Art Silicon nitride is a substance having a strong covalent bond and has excellent properties such as strength, hardness, heat resistance and chemical stability. Application to such applications is under consideration.

【0003】エンジンの高効率化に伴い、1400℃以
上の温度での利用が期待されており、この条件下におい
て使用可能な高強度、高靭性、かつ高耐酸化性の材料が
望まれている。
[0003] With the increase in the efficiency of the engine, utilization at a temperature of 1400 ° C or higher is expected, and a material having high strength, high toughness and high oxidation resistance that can be used under these conditions is desired. .

【0004】窒化珪素は単味では焼結が困難であるた
め、一般に種々の添加物を加えて焼結されている。
Since it is difficult to sinter silicon nitride alone, it is generally sintered with various additives.

【0005】例えば酸化イットリウム(Y23)と酸化
アルミニウム(Al23)を添加した系では、耐熱衝撃
性においては優れたものが得られているが、耐熱性、機
械的強度、靭性に劣っている場合があった。
For example, in a system to which yttrium oxide (Y 2 O 3 ) and aluminum oxide (Al 2 O 3 ) are added, excellent heat shock resistance is obtained, but heat resistance, mechanical strength and toughness are obtained. Was sometimes inferior.

【0006】耐熱性を向上させることを目的として、特
開昭56―59674号公報に開示されている焼結体中
にメリライト鉱物相(Y23・Si34化合物)を生成
させた窒化珪素焼結体、および特開昭62―20286
4号公報に開示されている酸化ジルコニウム(Zr
2)+酸化イットリウム(Y23)+酸化珪素(Si
2)を添加し、焼結体中にZrO 2を析出させた窒化珪
素焼結体が試みられており、高温強度の向上等に効果が
認められることが知られている。
[0006] For the purpose of improving heat resistance,
In the sintered body disclosed in Japanese Patent Laid-Open No. 56-59674
Melilite mineral phase (Y2O3・ Si3NFourCompound)
Sintered silicon nitride sintered body, and JP-A-62-20286
Zirconium oxide (Zr
O2) + Yttrium oxide (Y2O3) + Silicon oxide (Si
O2) Is added, and ZrO is added to the sintered body. 2Deposited silicon nitride
An elemental sintered body has been tried, and it is effective in improving high temperature strength.
It is known to be recognized.

【0007】また、特開昭62―246865号公報に
開示されている希土類酸化物、ZrO2を含む焼結体で
粒界相にJ相(Si22O・2Y23)固溶体が存在す
る窒化珪素焼結体が試みられており、耐熱性、耐酸化
性、静的疲労特性の向上に効果が認められることが知ら
れている。
Further, a J-phase (Si 2 N 2 O.2Y 2 O 3 ) solid solution is formed in the grain boundary phase in a sintered body containing the rare earth oxide ZrO 2 disclosed in JP-A-62-246865. The existing silicon nitride sintered bodies have been tried, and it is known that they are effective in improving heat resistance, oxidation resistance and static fatigue characteristics.

【0008】また、ZrO2を焼結助剤として用いた焼
結体の耐酸化性の向上を目的として窒化珪素の焼結助剤
として酸化イットリウム(Y23)と共にジルコン(Z
rSiO4)を添加した系が特開平2―107566号
公報に開示されている。
Zircon (Z) as a sintering aid of silicon nitride is used together with yttrium oxide (Y 2 O 3 ) for the purpose of improving the oxidation resistance of a sintered body using ZrO 2 as a sintering aid.
A system to which rSiO 4 ) is added is disclosed in Japanese Patent Application Laid-Open No. 2-107566.

【0009】ところが、上記材料では、高温即時破断強
度は優れるものの、高温強度を維持したまま靭性および
耐酸化性を飛躍的に改善するには至っていない。
However, although the above materials have excellent high-temperature immediate rupture strength, the toughness and oxidation resistance have not been dramatically improved while maintaining the high-temperature strength.

【0010】例えば、焼結助剤として酸化ジルコニウム
(ZrO2)を用いた系では、焼結過程で添加したZr
2の一部が、Si34と反応を起こし、焼結体中に窒
化ジルコニウム(ZrN)として残留する。
For example, in a system using zirconium oxide (ZrO 2 ) as a sintering aid, Zr added during the sintering process
A part of O 2 reacts with Si 3 N 4, and remains as zirconium nitride (ZrN) in the sintered body.

【0011】このZrNは高温大気中でZrNからZr
2への酸化過程において約30%程度の体積膨張を起
こし、焼結体表面にクラックを生成せしめ強度特性を著
しく劣化させることが知られている。
This ZrN changes from ZrN to Zr in a high temperature atmosphere.
It is known that about 30% volume expansion occurs in the process of oxidation to O 2 , causing cracks on the surface of the sintered body and significantly deteriorating the strength characteristics.

【0012】従って、ZrNを含有する焼結体は、高温
構造材料としての信頼性に欠ける問題点があった。しか
し、ZrNの残留を完全に抑制することは困難であっ
た。
Therefore, the sintered body containing ZrN has a problem that it lacks reliability as a high temperature structural material. However, it was difficult to completely suppress the residual ZrN.

【0013】[0013]

【発明が解決しようとする課題】本発明の目的は、高温
酸化性雰囲気下であっても機械的強度の低下が小さい等
の耐熱性を有し、しかも高い靭性を有する窒化珪素質焼
結体とその製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a silicon nitride sintered body which has heat resistance such as a small decrease in mechanical strength even in a high temperature oxidizing atmosphere and has high toughness. And to provide a manufacturing method thereof.

【0014】[0014]

【課題を解決するための手段】本発明の窒化珪素質焼結
体は、窒化珪素(Si34)を主成分とし、粒界相とし
てZr3Er412結晶相が存在することを特徴とするも
のである。
The silicon nitride-based sintered body of the present invention contains silicon nitride (Si 3 N 4 ) as a main component and has a Zr 3 Er 4 O 12 crystal phase as a grain boundary phase. It is a feature.

【0015】その製造方法としては、酸化エルビウム
(Er23)5〜15重量%,ジルコン(ZrSi
4)1〜20重量%、及び残部が窒化珪素(Si
34)からなる混合粉末を成形し、該成形体を窒素ガス
雰囲気中にて1700〜2000℃の温度範囲で焼結
し、以下の少なくとも1つの手段により粒界相としてZ
3Er412結晶相を生成させることを特徴とするもの
である。
The manufacturing method is as follows: erbium oxide (Er 2 O 3 ) 5 to 15% by weight, zircon (ZrSi
O 4 ) 1 to 20% by weight, and the balance silicon nitride (Si
3 N 4 ) mixed powder is molded, the molded body is sintered in a nitrogen gas atmosphere in a temperature range of 1700 to 2000 ° C., and Z is used as a grain boundary phase by at least one of the following means.
It is characterized in that an r 3 Er 4 O 12 crystal phase is produced.

【0016】粒界相としてZr3Er412相を結晶化さ
せるためには、焼結の降温過程において5℃/分以下の
降温速度で冷却するか、降温過程で1500〜1700
℃、2時間以上保持の熱処理、あるいは焼結後、窒素雰
囲気にて1500〜1700℃、2時間以上保持の再加
熱処理の少なくとも1つの処理を行うようにする。
In order to crystallize the Zr 3 Er 4 O 12 phase as a grain boundary phase, cooling is performed at a temperature lowering rate of 5 ° C./min or less in the temperature lowering process of sintering, or 1500 to 1,700 in the temperature lowering process.
After the heat treatment of holding at 2 ° C. for 2 hours or more, or after the sintering, at least one treatment of 1500 to 1700 ° C. and the reheating treatment of holding for 2 hours or more is performed.

【0017】本発明における焼結体の粒界相としては、
実質的にZr3Er412結晶相のみが存在することが好
ましい。
As the grain boundary phase of the sintered body in the present invention,
It is preferred that substantially only the Zr 3 Er 4 O 12 crystalline phase be present.

【0018】ここでZr3Er412結晶相は、粉末X線
回折法により同定されJCDPSカード30―539で
示される3ZrO2・2Er23と同じ型の回折線を持
ち、高温酸化雰囲気中にて安定な高融点の結晶相であ
る。
Here, the Zr 3 Er 4 O 12 crystal phase has the same type of diffraction line as 3ZrO 2 .2Er 2 O 3 identified by the powder X-ray diffraction method and shown in JCDPS card 30-539, and has a high temperature oxidizing atmosphere. It is a crystalline phase with a high melting point that is stable inside.

【0019】ZrN相の生成を抑制し、焼結後の結晶化
処理によりZrを安定な化合物であるZr3Er412
することにより上述した課題を解決することが可能とな
る。
The above-mentioned problems can be solved by suppressing the formation of the ZrN phase and by converting Zr into a stable compound Zr 3 Er 4 O 12 by the crystallization treatment after sintering.

【0020】本発明においては、焼結助剤としてEr2
3を用いるが、Er23は、Si34の焼結時にα相
からβ相への結晶相転移をその融液中で促進させる機能
を持ち、更にSi34の柱状相の成長を助長することに
より高温強度及び靭性を向上させる。
In the present invention, Er 2 is used as a sintering aid.
The O 3 is used but, Er 2 O 3 is a crystal phase transition from Si 3 N alpha phase during sintering of 4 to β-phase has a function to promote its melt during further columnar phase the Si 3 N 4 The high temperature strength and toughness are improved by promoting the growth of.

【0021】また、本発明においては、Er23は焼結
降温過程もしくは再加熱処理中にZr SiO4と反応
し、Zr3Er412相を生成する。
Further, in the present invention, Er2O3Is sintered
Zr during cooling or reheating SiOFourReact with
And Zr3ErFourO12Generate phases.

【0022】Er23の添加量が15重量%を超えると
得られた焼結体の高温での機械的強度および耐酸化性が
低下するので、15重量%以下であることが好ましい。
If the amount of addition of Er 2 O 3 exceeds 15% by weight, the mechanical strength and oxidation resistance of the obtained sintered body at high temperature are deteriorated, so the content is preferably 15% by weight or less.

【0023】また5重量%より少ないと融液が不十分
で、相対密度で95%以下と十分な緻密化がなされない
ため好ましくない。
On the other hand, if the amount is less than 5% by weight, the melt is insufficient, and the relative density is 95% or less, which is not sufficiently densified, which is not preferable.

【0024】従ってその添加量としては5〜15重量%
の範囲であることがよく、特に十分に高い機械的強度、
靭性を得るためには、7〜12重量%の範囲であること
がより好ましい。
Therefore, the addition amount is 5 to 15% by weight.
It is often in the range of, especially high mechanical strength,
In order to obtain toughness, the range is more preferably 7 to 12% by weight.

【0025】ZrSiO4は上記Er23と共に焼結時
に液相を形成するが、ZrO2に比べて酸素原子を多く
保有しているため、ZrNが生成しにくい。
ZrSiO 4 forms a liquid phase during sintering together with Er 2 O 3 , but it has more oxygen atoms than ZrO 2, and therefore ZrN is less likely to be produced.

【0026】焼結助剤としてZrO2とSiO2を添加し
ても同様のモル比とすることは可能であるが、ZrO2
の窒化を抑制するためには、混練の際に各助剤が均一分
散する必要が有る。
Even if ZrO 2 and SiO 2 are added as a sintering aid, the same molar ratio can be obtained, but ZrO 2
In order to suppress the nitriding, it is necessary that each auxiliary agent be uniformly dispersed during kneading.

【0027】助剤の段階で既に酸素リッチの化合物とし
て存在するZrSiO4の方がZrNの生成抑制には有
利である。
ZrSiO 4 , which is already present as an oxygen-rich compound at the auxiliary stage, is more advantageous for suppressing the formation of ZrN.

【0028】また、ZrSiO4相は焼結の冷却過程も
しくは再加熱処理中においてEr23と反応し、高融点
でかつ高温酸化雰囲気中で安定なZr3Er412相を焼
結体の粒界相に析出することにより、優れた高温特性を
得ることができる。
Further, the ZrSiO 4 phase reacts with Er 2 O 3 during the cooling process of sintering or the reheating process, and the Zr 3 Er 4 O 12 phase having a high melting point and stable in a high temperature oxidizing atmosphere is sintered. By precipitating in the grain boundary phase of, excellent high temperature characteristics can be obtained.

【0029】本発明では焼結助剤としてZrSiO4
1〜20重量%含むが、1重量%より少ないと十分緻密
な焼結体が得られにくく、また、20重量%より多いと
十分な高温強度が得られない。
In the present invention, 1 to 20% by weight of ZrSiO 4 is contained as a sintering aid, but if it is less than 1% by weight, it is difficult to obtain a sufficiently dense sintered body, and if it is more than 20% by weight, a sufficiently high temperature is obtained. No strength can be obtained.

【0030】本発明において使用されるSi34粉末
は、α型の結晶構造をもつSi34粉末が焼結性の点か
ら好ましいが、β型あるいは非晶質Si34粉末が含ま
れていてもかまわない。
The Si 3 N 4 powder used in the present invention is Si 3 N 4 powder having an α-type crystal structure is preferable from the viewpoint of sintering property, beta type or amorphous Si 3 N 4 powder It does not matter if it is included.

【0031】焼結時に十分に高い密度とするためには、
平均粒径1μm以下の微粒子であることが望ましい。
In order to obtain a sufficiently high density during sintering,
Fine particles having an average particle diameter of 1 μm or less are desirable.

【0032】焼結助剤として添加するEr23、ZrS
iO4も均質かつ高密度の焼結体を得るためには平均粒
径が2μm以下の微粒子であることが好ましい。
Er 2 O 3 and ZrS added as sintering aids
In order to obtain a homogeneous and high density sintered body, iO 4 is also preferably fine particles having an average particle diameter of 2 μm or less.

【0033】本発明方法においては、これらの各成分の
混合は精製水、アセトンもしくはエタノール等の溶媒を
用い、Si34もしくはSiCのポット及びボールを用
いて遊星型混合機もしくはポットミル混合機にて行な
う。このように調整された混合粉末を加圧成形し所望の
形状の成形体とする。
In the method of the present invention, these components are mixed with each other using a solvent such as purified water, acetone or ethanol, and a planetary mixer or a pot mill mixer using Si 3 N 4 or SiC pots and balls. Do it. The mixed powder thus adjusted is subjected to pressure molding to obtain a molded body having a desired shape.

【0034】この成形体を窒素ガス雰囲気中にて170
0〜2000℃の温度範囲で焼結し、焼結体を得る。
This molded body was heated to 170 in a nitrogen gas atmosphere.
Sintering is performed in a temperature range of 0 to 2000 ° C. to obtain a sintered body.

【0035】焼結方法としては、常圧焼結法、ガス圧焼
結法、熱間静水圧プレス焼結法、ホットプレス焼結法を
用いることが可能であり、更に1種もしくは複数の焼結
法を組み合わせることも可能である。
As the sintering method, an atmospheric pressure sintering method, a gas pressure sintering method, a hot isostatic pressing sintering method, a hot pressing sintering method can be used, and one or more firings can be further performed. It is also possible to combine the methods.

【0036】焼結時の雰囲気はSi34の高温での分解
を抑制するために窒素ガス雰囲気とする。
The atmosphere during sintering is a nitrogen gas atmosphere in order to suppress decomposition of Si 3 N 4 at high temperature.

【0037】Si34は窒素ガス1気圧下では約185
0℃以上で分解が生じるため、1850℃以上にて焼結
を行う場合は、窒素ガス圧を焼結温度におけるSi34
の臨界分解圧力以上に設定するようにする。
Si 3 N 4 is about 185 under 1 atmosphere of nitrogen gas.
Since decomposition occurs at 0 ° C. or higher, when sintering at 1850 ° C. or higher, the nitrogen gas pressure is set to Si 3 N 4 at the sintering temperature.
Is set to be equal to or higher than the critical decomposition pressure.

【0038】ここで窒素ガスとは実質的にN2ガスのこ
とであるが、Ar等のその他の不活性ガスが含まれても
かまわない。
Here, the nitrogen gas is substantially N 2 gas, but other inert gas such as Ar may be contained.

【0039】焼結は1700〜2000℃の温度範囲に
て行われるが、1700℃未満ではSi34のβ粒の成
長が不十分であり高い靭性が得られず、また、十分な焼
結密度が得られない。2000℃超では生成するβ―S
34針状粒成長が著しく、強度が低下する。
Sintering is carried out in the temperature range of 1700 to 2000 ° C., but if it is less than 1700 ° C., the growth of β grains of Si 3 N 4 is insufficient and high toughness cannot be obtained. No density can be obtained. Β-S generated above 2000 ° C
i 3 N 4 Needle-shaped grains grow remarkably and the strength decreases.

【0040】また焼結の際には、焼結助剤からなる液相
中にSi34が溶解し再析出することで結晶相転移が生
じると伴に、緻密化し焼結が進行するが、この溶解・再
析出過程で、融液中へのSi34の固溶限界があるた
め、30分以上の保持が好ましい。
Further, during sintering, Si 3 N 4 is dissolved and reprecipitated in a liquid phase composed of a sintering aid to cause a crystal phase transition, resulting in densification and progress of sintering. During this dissolution / reprecipitation process, since there is a solid solution limit of Si 3 N 4 in the melt, holding for 30 minutes or more is preferable.

【0041】また、粒界相としてZr3Er412相を結
晶化させるためには、焼結の降温過程に5℃/分以下の
降温速度で冷却するか、降温過程で1500〜1700
℃、2時間以上保持の熱処理、あるいは焼結後、窒素雰
囲気中にて1500〜1700℃、2時間以上保持の再
加熱処理を行う、の少なくとも1つの手段を適用する。
In order to crystallize the Zr 3 Er 4 O 12 phase as a grain boundary phase, cooling is performed at a temperature lowering rate of 5 ° C./min or less during the temperature lowering process of sintering, or 1500 to 1700 during the temperature lowering process.
At least one means of applying heat treatment at 2 ° C. for 2 hours or more, or performing reheating treatment at 1500 to 1700 ° C. for 2 hours or more in a nitrogen atmosphere after sintering is applied.

【0042】降温過程でZr3Er412相を析出させる
場合の降温速度は5℃/分以下が好ましいが、更に望ま
しくは2℃/分以下である。
When the Zr 3 Er 4 O 12 phase is precipitated in the temperature lowering process, the temperature lowering rate is preferably 5 ° C./min or less, more preferably 2 ° C./min or less.

【0043】降温速度が5℃/分より速い場合はZr3
Er412相が十分生成しない。また、降温過程の際の
保持温度、および、再加熱処理の際の温度が1500℃
未満、1700℃超の場合も同様にZr3Er412相が
十分に生成しない。
When the temperature lowering rate is faster than 5 ° C./minute, Zr 3
Er 4 O 12 phase is not sufficiently formed. In addition, the holding temperature during the temperature lowering process and the temperature during the reheating treatment are 1500 ° C.
If the temperature is less than 1,700 ° C., the Zr 3 Er 4 O 12 phase is not sufficiently formed.

【0044】本発明の窒化珪素質焼結体の製造方法は、
Er235〜15重量%,ZrSiO41〜20重量
%,及び残部がSi34からなる混合粉末を成形し、該
成形体を窒素ガス雰囲気中で1700〜2000℃の温
度範囲で焼結し、降温過程あるいは再加熱処理により粒
界相としてZr3Er412結晶相を生成させるものであ
るが、これら条件の組み合わせにより初めて本課題が達
成された。
The method for producing a silicon nitride sintered body of the present invention is as follows:
Er 2 O 3 5 to 15 wt%, ZrSiO 4 1 to 20 wt%, and the balance by molding a mixed powder consisting of Si 3 N 4, a molded article in the temperature range of 1700-2000 ° C. in a nitrogen gas atmosphere The Zr 3 Er 4 O 12 crystal phase is formed as a grain boundary phase by sintering and a temperature lowering process or a reheating treatment, but this problem was achieved only by combining these conditions.

【0045】[0045]

【作用】本発明により得られる焼結体は、Si34の平
均結晶粒度が1〜3μm程度と大きくかつ柱状結晶粒が
絡み合った組織を呈し、またさらに粒界結晶相として融
点が高く高温酸化雰囲気中で安定なZr3Er412結晶
相が存在することにより、高温大気中にて高い強度を維
持したまま高い靭性を有し、抗折強さが大気中1400
℃にて500MPa以上の高強度でかつ靭性値KICが5
MPam1/2以上の高靭性を有する。
The sintered body obtained according to the present invention has a large average grain size of Si 3 N 4 of about 1 to 3 μm and exhibits a structure in which columnar crystal grains are entangled with each other, and further has a high melting point as a grain boundary crystal phase and high temperature. Due to the existence of a stable Zr 3 Er 4 O 12 crystal phase in an oxidizing atmosphere, it has a high toughness while maintaining a high strength in a high temperature atmosphere, and a flexural strength of 1400 in the atmosphere.
High strength of 500 MPa or more at ℃ and toughness value K IC of 5
It has a high toughness of at least MPam 1/2 .

【0046】特に高い坑折強度および靭性を有する焼結
体を得るためには、ガス圧焼結法、熱間静水圧プレス焼
結法、もしくはホットプレス法の加圧焼結法を用いるこ
とが好ましい。
In order to obtain a sintered body having particularly high bending strength and toughness, it is necessary to use a gas pressure sintering method, a hot isostatic press sintering method, or a pressure sintering method of a hot press method. preferable.

【0047】後述する実施例に示されているように14
00℃における坑折強さが700MPaを示す焼結体、
もしくはKICが7MPam1/2と極めて高い焼結体が得
られている。
As shown in the embodiment described later, 14
A sintered body having a bending strength at 700C of 700 MPa;
Alternatively, a sintered body having an extremely high K IC of 7 MPam 1/2 is obtained.

【0048】また複雑形状の焼結体を得るためには、ガ
ス圧焼結法、熱間静水圧プレス焼結法を用いることが好
ましい。
In order to obtain a sintered body having a complicated shape, it is preferable to use a gas pressure sintering method or a hot isostatic press sintering method.

【0049】次に本発明の実施例を比較例と共に説明す
る。
Next, examples of the present invention will be described together with comparative examples.

【0050】[0050]

【実施例】【Example】

【0051】[0051]

【実施例1】Si34(平均粒径0.5μm、α化率9
7%以上)にEr23粉末(平均粒径0.8μm)、及
びZrSiO4粉末(平均粒径0.3μm)を第1表に
示す所定量(重量%)添加し、溶媒としてアセトンを用
いてSi34製ボールミルで24時間混練した。
Example 1 Si 3 N 4 (average particle size 0.5 μm, α conversion 9
Er 2 O 3 powder (average particle size 0.8 μm) and ZrSiO 4 powder (average particle size 0.3 μm) were added in a predetermined amount (% by weight) shown in Table 1 to 7% or more), and acetone was used as a solvent. It was kneaded for 24 hours with a ball mill made of Si 3 N 4 .

【0052】次いで得られた混合粉末を使い、成形後、
常圧焼結を行った。成形条件としては金型1軸成形圧1
50MPa、冷間静水圧による加圧500MPaとし、
50mm×50mm×10mmの板状体を得た。
Next, using the obtained mixed powder, after molding,
Pressureless sintering was performed. Molding conditions include a mold 1 axis molding pressure 1
50 MPa, cold hydrostatic pressure 500 MPa,
A plate-like body having a size of 50 mm × 50 mm × 10 mm was obtained.

【0053】常圧焼結条件としては、1気圧窒素雰囲気
中1700〜1800℃にて6時間保持とした。
As the atmospheric pressure sintering conditions, the temperature was maintained at 1700 to 1800 ° C. for 6 hours in a nitrogen atmosphere of 1 atm.

【0054】粒界相の結晶化の条件としては、焼結後の
降温過程の徐冷を利用する場合には、降温速度を5℃/
分以下とし、降温過程にて保持する場合は1550〜1
650℃にて6時間保持とし、焼結後に再加熱処理を施
す場合は1500〜1700℃にて12時間保持とし
た。
As a condition for crystallization of the grain boundary phase, when slow cooling in the cooling step after sintering is used, the cooling rate is 5 ° C. /
If it is less than a minute and is kept in the temperature lowering process, 1550 to 1
The temperature was held at 650 ° C. for 6 hours, and when reheating treatment was performed after sintering, the temperature was held at 1500 to 1700 ° C. for 12 hours.

【0055】本発明により得られた各焼結体の特性を焼
結助剤の添加量、常圧焼結温度、結晶化条件、Zr3
412結晶相の有無と共に第1表に示す。
The characteristics of each of the sintered bodies obtained according to the present invention are shown by the amount of sintering aid added, the normal pressure sintering temperature, the crystallization conditions, and Zr 3 E.
Table 1 shows the presence or absence of the r 4 O 12 crystalline phase.

【0056】強度については、JIS R1601およ
び、JIS R1604に準拠し室温及び大気中140
0℃にて3点曲げ試験を行い坑折強さとして測定した。
The strength was measured at room temperature and atmospheric pressure in accordance with JIS R1601 and JIS R1604.
A three-point bending test was performed at 0 ° C., and the bending strength was measured.

【0057】1400℃での試験に際しては、大気中で
の酸化劣化を考慮し、予め1400℃大気中に24時間
保持した試験片を用いた。
At the time of the test at 1400 ° C., in consideration of the oxidative deterioration in the air, a test piece preliminarily kept in the air at 1400 ° C. for 24 hours was used.

【0058】靭性については室温にてJISR1607
のSEPB法により破壊靭性値KICを測定した。また焼
結体の結晶相はX線回折法を用いて分析した。
Regarding toughness, JIS R1607 was used at room temperature.
The fracture toughness value K IC was measured by the SEPB method. The crystal phase of the sintered body was analyzed using an X-ray diffraction method.

【0059】なお、本発明の範囲以外の条件にて作製さ
れた焼結体の特性値を併せて第1表に比較例として示
す。
Table 1 also shows, as comparative examples, the characteristic values of the sintered bodies produced under conditions outside the scope of the present invention.

【0060】第1表に示すように、本発明の実施例によ
るものは坑折強さ、靭性共に優れるが、比較例に該当す
る試料では本発明の実施例と比べて特に高温坑折強さが
劣ることが確認された。
As shown in Table 1, the samples according to the examples of the present invention are excellent in both bending strength and toughness, but the samples corresponding to the comparative examples have particularly high temperature bending strength as compared with the examples of the present invention. Was confirmed to be inferior.

【0061】本発明の場合、何れも、Zr3Er412
晶相の存在がX線回折法により確認された。
In each case of the present invention, the presence of the Zr 3 Er 4 O 12 crystal phase was confirmed by the X-ray diffraction method.

【0062】[0062]

【表1】 [Table 1]

【0063】[0063]

【表2】 [Table 2]

【0064】[0064]

【表3】 [Table 3]

【0065】[0065]

【実施例2】前記実施例1と同様に混合粉末を成形後、
加圧焼結により焼結体を作製した。
Example 2 After forming a mixed powder in the same manner as in Example 1,
A sintered body was produced by pressure sintering.

【0066】加圧焼結には、ガス圧焼結法、熱間静水圧
プレス法およびホットプレス法を用いた。
For pressure sintering, a gas pressure sintering method, a hot isostatic pressing method and a hot pressing method were used.

【0067】ガス圧焼結の場合は、前記実施例1と同様
に常圧焼結法により焼結体を作製した後、窒素ガス雰囲
気中4MPaの気圧下で、温度1700〜2000℃、
保持時間4時間の条件で再焼結した。
In the case of gas pressure sintering, after producing a sintered body by the atmospheric pressure sintering method as in Example 1, the temperature was 1700 to 2000 ° C. under a pressure of 4 MPa in a nitrogen gas atmosphere.
Resintering was performed under the condition that the holding time was 4 hours.

【0068】また、熱間静水圧プレス焼結の場合は、常
圧焼結法により作製された焼結体を窒素ガス雰囲気中1
00MPaの気圧下で、温度1800〜2000℃、保
持時間1時間の条件で再焼結した。
In the case of hot isostatic press sintering, a sintered body produced by a normal pressure sintering method is used in a nitrogen gas atmosphere.
It was re-sintered under the pressure of 00 MPa at a temperature of 1800 to 2000 ° C. and a holding time of 1 hour.

【0069】ホットプレス焼結の場合は、混合粉末を黒
鉛ダイス中に装填し、1気圧窒素ガス雰囲気中、40M
Paの圧力下で1750〜1850℃、保持時間2時間
の条件にて焼結した。
In the case of hot press sintering, the mixed powder is charged into a graphite die, and the mixture is placed in a 1 atm nitrogen gas atmosphere at 40 M
Sintering was performed under the conditions of 1750 to 1850 ° C. and a holding time of 2 hours under a pressure of Pa.

【0070】いずれの加圧焼結法を用いた場合も焼結
後、窒素雰囲気中大気圧にて1550℃、保持時間12
時間の再加熱処理を施した。
When any of the pressure sintering methods is used, after sintering, the temperature is 1550 ° C. and the holding time is 12 at the atmospheric pressure in a nitrogen atmosphere.
It was reheated for an hour.

【0071】実施例1と同様に本発明の範囲以外の条件
にて作製された焼結体の特性値を第2表に比較例として
示す。
Similar to Example 1, the characteristic values of the sintered body produced under the conditions outside the range of the present invention are shown in Table 2 as a comparative example.

【0072】実施例1と同様に焼結体の特性を焼結助剤
の添加量、焼結条件、Zr3Er412結晶相の有無と共
に第2表に示す。
As in Example 1, the characteristics of the sintered body are shown in Table 2 together with the amount of the sintering aid added, the sintering conditions, and the presence or absence of the Zr 3 Er 4 O 12 crystal phase.

【0073】実施例1同様、本発明による焼結体の特性
は坑折強さ、靭性共に優れるが、比較例に該当する試料
では本発明の実施例と比べて特に高温坑折強さ及び靭性
が劣ることが確認された。
Similar to Example 1, the sintered body according to the present invention is excellent in both bending strength and toughness. However, the samples corresponding to Comparative Examples have particularly high high temperature bending strength and toughness as compared with the Examples of the present invention. Was confirmed to be inferior.

【0074】また本発明の場合、実施例1同様、何れも
Zr3Er412相の存在がX線回折法により確認され
た。
In the case of the present invention, as in Example 1, the existence of the Zr 3 Er 4 O 12 phase was confirmed by the X-ray diffraction method.

【0075】[0075]

【表4】 [Table 4]

【0076】[0076]

【表5】 [Table 5]

【0077】[0077]

【発明の効果】本発明によれば、上記の如く耐熱性を十
分に備えた窒化珪素質焼結体において、機械的強度、靭
性をより優れたものとすることが可能となった。
According to the present invention, a silicon nitride sintered body having sufficient heat resistance as described above can have higher mechanical strength and toughness.

【0078】このことにより信頼性の非常に優れた窒化
珪素質焼結体の作製が可能となり、その工業的有用性は
非常に大きい。
As a result, it becomes possible to produce a silicon nitride-based sintered body having a very high reliability, and its industrial utility is very large.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 窒化珪素(Si34)を主成分とし、粒
界相としてZr3Er412結晶相が存在することを特徴
とする窒化珪素質焼結体。
1. A silicon nitride-based sintered body comprising silicon nitride (Si 3 N 4 ) as a main component and having a Zr 3 Er 4 O 12 crystal phase as a grain boundary phase.
【請求項2】 酸化エルビウム(Er23)5〜15重
量%,ジルコン(ZrSiO4)1〜20重量%、及び
残部が窒化珪素(Si34)からなる混合粉末を成形
し、該成形体を窒素ガス雰囲気中にて1700〜200
0℃の温度範囲で焼結し、以下の少なくとも1つの手段
により粒界相としてZr3Er412結晶相を生成させる
ことを特徴とする窒化珪素質焼結体の製造方法。 焼結の降温過程における降温速度を5℃/分以下とす
る。 焼結の降温過程において、1500〜1700℃の温
度範囲において2時間以上保持する。 焼結後、窒素雰囲気中、1500〜1700℃の温度
範囲において2時間以上保持の再加熱処理をする。
2. A mixed powder composed of 5 to 15% by weight of erbium oxide (Er 2 O 3 ), 1 to 20% by weight of zircon (ZrSiO 4 ) and the balance of silicon nitride (Si 3 N 4 ) is molded, 1700 to 200 in a nitrogen gas atmosphere
A method for producing a silicon nitride sintered body, which comprises sintering in a temperature range of 0 ° C. and producing a Zr 3 Er 4 O 12 crystal phase as a grain boundary phase by at least one of the following means. The temperature lowering rate in the temperature lowering process of sintering shall be 5 ° C / min or less.
It In the process of decreasing the temperature of the sintering, the temperature is kept in a temperature range of 1500 to 1700 ° C. for 2 hours or more. After the sintering, reheating treatment is performed for 2 hours or more in a temperature range of 1500 to 1700 ° C. in a nitrogen atmosphere.
JP4119853A 1992-04-15 1992-04-15 Silicon nitride sintered body and method for manufacturing the same Expired - Lifetime JP2534214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4119853A JP2534214B2 (en) 1992-04-15 1992-04-15 Silicon nitride sintered body and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4119853A JP2534214B2 (en) 1992-04-15 1992-04-15 Silicon nitride sintered body and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPH05294731A JPH05294731A (en) 1993-11-09
JP2534214B2 true JP2534214B2 (en) 1996-09-11

Family

ID=14771896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4119853A Expired - Lifetime JP2534214B2 (en) 1992-04-15 1992-04-15 Silicon nitride sintered body and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2534214B2 (en)

Also Published As

Publication number Publication date
JPH05294731A (en) 1993-11-09

Similar Documents

Publication Publication Date Title
JP2842723B2 (en) Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same
JP2534214B2 (en) Silicon nitride sintered body and method for manufacturing the same
JP2652936B2 (en) Silicon nitride sintered body and method for producing the same
JP3426823B2 (en) Silicon nitride sintered body and method for producing the same
JP3034100B2 (en) Silicon nitride sintered body and method for producing the same
JP2519076B2 (en) Method for manufacturing silicon carbide whisker-reinforced ceramics
JPH0259471A (en) High-temperature, high-strength silicon nitride sintered body and its manufacturing method
JP3124867B2 (en) Silicon nitride sintered body and method for producing the same
JP2534213B2 (en) Method for producing silicon nitride based sintered body
JP2746761B2 (en) Method for producing silicon nitride-silicon carbide composite sintered body
JPH0669905B2 (en) Silicon nitride sintered body and method for manufacturing the same
JP2944787B2 (en) SiC-based oxide sintered body and method for producing the same
JP2976534B2 (en) Silicon nitride sintered body and method for producing the same
JP2694369B2 (en) Silicon nitride sintered body
JPH03109269A (en) Sialon-based ceramics composite material reinforced with carbon fiber
JP3124862B2 (en) Method for producing silicon nitride based sintered body
JP3207045B2 (en) Method for producing silicon nitride based sintered body
JPH082961A (en) Metal particle dispersed aluminum oxide based sintered body and method for producing the same
JP2736427B2 (en) Silicon nitride sintered body and method for producing the same
JPH06287065A (en) Silicon nitride sintered compact and its production
JP2811493B2 (en) Silicon nitride sintered body
JP2783702B2 (en) Silicon nitride sintered body
JPH064514B2 (en) Method for manufacturing silicon nitride sintered body
JPH0559073B2 (en)
JP2694368B2 (en) Method for producing silicon nitride based sintered body

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960423

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 14