[go: up one dir, main page]

JPH05287357A - Ultra low carbon steel melting method - Google Patents

Ultra low carbon steel melting method

Info

Publication number
JPH05287357A
JPH05287357A JP8376192A JP8376192A JPH05287357A JP H05287357 A JPH05287357 A JP H05287357A JP 8376192 A JP8376192 A JP 8376192A JP 8376192 A JP8376192 A JP 8376192A JP H05287357 A JPH05287357 A JP H05287357A
Authority
JP
Japan
Prior art keywords
molten steel
gas
lance
ladle
low carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8376192A
Other languages
Japanese (ja)
Inventor
Akito Kiyose
清瀬明人
Hironori Goto
後藤裕規
Muneyasu Nasu
那須宗泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8376192A priority Critical patent/JPH05287357A/en
Publication of JPH05287357A publication Critical patent/JPH05287357A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To produce an extremely low carbon steel with only a small damage on a ladle by setting the ladle incorporating molten steel into a vacuum vessel, dipping a lance having injection holes arranged at mutually opposite into the molten steel and injecting inert gas from both injection holes while rotating the lance at a specific angular velocity. CONSTITUTION:The ladle 4 incorporating the molten steel 1 is set in the vacuum vessel 5, and after exhausting the air and reducing the pressure in the vacuum vessel 5, while injecting the inert gas of Ar, etc., from the injection holes 2A, 2B arranged at mutually opposite side to the tip part of the lance 3 dipping the tip part into the molten steel 1, the lance 3 is rotated. By making the rotating angular velocity omega of the lance 3 the value shown in the inequality (in the inequality, (n): natural number, T: period for developing Ar gas bubble from the gas injection holes 2A, 2B), as the Ar gas is injected into the molten steel in all over the direction, the fixed part in the ladle 4 is not much eroded, and as the Ar gas injecting quantity can be increased, C in the molten steel is efficiently floated up and reduced as CO by the vacuum degassing, and the extremely low carbon steel can easily be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶鋼を装入した取鍋全
体を真空槽内に装入し、減圧下において溶鋼の脱ガス処
理を実施する装置(以下、取鍋型脱ガス装置と記す)に
おいて、溶鋼中の炭素(以下、[C]と記す)の含有量
を極微量、例えば、0.001mass%以下まで除去
し、極低炭素鋼を溶製するための効率的かつ経済的な極
低炭素鋼の溶製方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for charging a whole ladle charged with molten steel into a vacuum chamber and performing degassing treatment of molten steel under reduced pressure (hereinafter referred to as ladle type degassing apparatus). In the above), the content of carbon (hereinafter, referred to as [C]) in the molten steel is removed to an extremely small amount, for example, 0.001 mass% or less, and it is efficient and economical for producing an extremely low carbon steel. The present invention relates to a method for melting a very low carbon steel.

【0002】[0002]

【従来の技術】取鍋型脱ガス装置における極低炭素鋼溶
製方法として本発明者らは、溶鋼中にランスを浸漬し、
不活性ガスを吹込むとともに、取鍋底部に設置したガス
吹込み口より不活性ガスを吹込む方法(特開平03−2
81718)をすでに考案している。この方法により、
20分間の脱炭処理で、[C]濃度が0.001〜0.
0015mass%の極低炭素鋼を製造する技術を確立
している。しかしながら、最近、極低炭素鋼の加工性向
上、時効硬化防止の観点からさらなる極低炭素化の要求
が強くなってきており、これに対応していくことを考慮
すると、上記方法では、必ずしも十分とは言えない。
2. Description of the Related Art As a method for melting ultra-low carbon steel in a ladle-type degassing apparatus, the inventors of the present invention immersed a lance in molten steel,
A method of blowing an inert gas, and at the same time, blowing the inert gas from a gas inlet provided at the bottom of the ladle (Japanese Patent Laid-Open No. 03-2
81718) has already been devised. By this method,
After 20 minutes of decarburization, the [C] concentration was 0.001 to 0.
We have established the technology to manufacture ultra low carbon steel with 0015 mass%. However, recently, from the viewpoints of workability improvement of ultra-low carbon steel and prevention of age hardening, there is a strong demand for further ultra-low carbon, and in view of responding to this, the above method is not always sufficient. It can not be said.

【0003】[0003]

【発明が解決しようとする課題】前記の取鍋底部に設置
したガス吹込み口より不活性ガスを吹込む方法において
は、ガス吹込み口付近の耐火物の溶損が大きく、鍋の補
修・整備に手間がかかり、生産性に悪影響を及ぼす。さ
らにポーラスプラグを用いてガスを溶鋼に吹込む場合に
は、大量のガスを吹込むためには、多数のポーラスプラ
グを設置することが必要になり、ますます鍋の整備に手
間がかかる。このように従来以上の脱炭を促進すること
は容易ではない。
In the method of injecting an inert gas from the gas inlet provided at the bottom of the ladle, the melting loss of the refractory near the gas inlet is large, and the pot repair / It takes time and effort to maintain it, which adversely affects productivity. Furthermore, in the case of blowing gas into molten steel using a porous plug, it is necessary to install a large number of porous plugs in order to blow a large amount of gas, and it becomes more and more troublesome to maintain the pot. In this way, it is not easy to promote decarburization more than ever before.

【0004】[0004]

【課題を解決するための手段】本発明は、上記課題を解
決するため、減圧下において、溶鋼の脱炭処理を実施す
るにあたり、真空槽5内の溶鋼1にガス噴出方向が互い
に逆向きの2つのガス噴出口2A,2Bを有するランス
3を溶鋼1に浸漬し、Tをガス噴出口2A,2Bからの
気泡の発生周期,nを自然数としたとき、 (4n−3)π/(4T)<ω<(4n−1)π/(4
T) を満たす角速度ωでランス(3)をその中心軸の周りに
回転させながら不活性ガスを吹込むことを特徴とする極
低炭素鋼の溶製方法、を提供するものである。
In order to solve the above-mentioned problems, according to the present invention, when decarburizing the molten steel under reduced pressure, the gas jetting directions in the molten steel 1 in the vacuum tank 5 are opposite to each other. When the lance 3 having the two gas ejection ports 2A and 2B is immersed in the molten steel 1 and T is the generation period of bubbles from the gas ejection ports 2A and 2B and n is a natural number, (4n-3) π / (4T ) <Ω <(4n-1) π / (4
The present invention provides a method for melting ultra-low carbon steel, which comprises blowing an inert gas while rotating the lance (3) around its central axis at an angular velocity ω satisfying T).

【0005】[0005]

【作用】以下、本発明について詳細に述べる。一般に、
減圧下での溶鋼の脱炭反応は、大きくつぎの3種類に分
類される。すなわち、 溶鋼内部、耐火物表面で[C]と酸素(以下、[O]
と記す)との反応、この場合はCO気泡の発生を伴う。 減圧雰囲気にさらされている溶鋼自由表面での、
[C]と[O]との反応。 溶鋼中に吹込まれたアルゴン気泡と溶鋼との界面で起
こる[C]と[O]との反応。 とに分類される。これらの反応の内、[C]濃度が0.
020mass%超の領域ではの反応が主体であるこ
とが明らかにされている。この領域では、溶鋼内部から
CO気泡発生が活発に起こっており、Arガスを溶鋼中
に分散させて、気・液反応界面積を拡大しても脱炭反応
の促進には効果が小さい。
The present invention will be described in detail below. In general,
The decarburization reaction of molten steel under reduced pressure is roughly classified into the following three types. That is, [C] and oxygen (hereinafter referred to as [O] in the molten steel and refractory surface.
With the formation of CO bubbles. On the free surface of molten steel exposed to a reduced pressure atmosphere,
Reaction between [C] and [O]. Reaction between [C] and [O] occurring at the interface between the molten steel and argon bubbles blown into the molten steel. Classified as and. Among these reactions, the [C] concentration was 0.
It has been clarified that the reaction is dominant in the region of more than 020 mass%. In this region, CO bubbles are actively generated from inside the molten steel, and even if Ar gas is dispersed in the molten steel to increase the gas-liquid reaction interface area, the effect of promoting the decarburization reaction is small.

【0006】[C]濃度が0.020mass%以下、
0.005mass%超の領域では、の反応の割合が
[C]濃度の低下とともに小さくなり、気・液反応界面
積を増大させ脱炭反応を促進させるため、吹込みArガ
スを分散させることは重要であるが、Arガス分散によ
る脱炭反応促進効果は不十分である。
[C] concentration is 0.020 mass% or less,
In the region of more than 0.005 mass%, the ratio of the reaction of becomes smaller as the concentration of [C] decreases and the gas-liquid reaction boundary area increases to promote the decarburization reaction. Although important, the decarburization reaction promoting effect of Ar gas dispersion is insufficient.

【0007】一方、[C]濃度が0.005mass%
以下の領域では、脱炭反応は、の溶鋼自由表面及び
のアルゴン気泡と溶鋼との界面での反応が主体となる。
この領域では、溶鋼中に吹込むArガスの流量を多くす
るとともに、吹込まれたAr気泡を溶鋼中に分散させて
気・液反応界面積を大きくすることが脱炭反応の促進に
は特に重要である。
On the other hand, the [C] concentration is 0.005 mass%
In the following region, the decarburization reaction mainly consists of the reaction at the free surface of the molten steel and at the interface between the argon bubbles and the molten steel.
In this region, increasing the flow rate of Ar gas blown into the molten steel and dispersing the blown Ar bubbles in the molten steel to increase the gas-liquid reaction interface area are particularly important for promoting the decarburization reaction. Is.

【0008】本発明者は、溶鋼中にArガスを分散する
ための方法として溶鋼中にランスを浸漬し、ランスを回
転させながらArガスを吹込む方法を検討した。
The present inventor has examined a method for dispersing Ar gas in molten steel by immersing the lance in the molten steel and blowing Ar gas while rotating the lance.

【0009】図1は、本発明の実施様態を示す図であ
る。すなわち、減圧下において、溶鋼の脱炭処理を実施
するにあたり、真空槽5内の溶鋼1にガス噴出方向が互
いに逆向きの2つのガス噴出口2A,2Bを有するラン
ス3を溶鋼1に浸漬し、ランス3をその中心軸の周りに
回転させながら不活性ガスを吹込むことによりAr気泡
を溶鋼中に分散させる。
FIG. 1 is a diagram showing an embodiment of the present invention. That is, when performing decarburization treatment of molten steel under reduced pressure, a lance 3 having two gas ejection ports 2A and 2B whose gas ejection directions are opposite to each other is immersed in the molten steel 1 in the vacuum tank 5. The Ar bubbles are dispersed in the molten steel by blowing an inert gas while rotating the lance 3 around its central axis.

【0010】Ar気泡を溶鋼中に分散させるにあたり、
ランス3の回転速度は重要である。
In dispersing Ar bubbles in molten steel,
The rotation speed of the lance 3 is important.

【0011】図2は、ランスの回転の角速度ωと脱炭反
応の容量係数kcとの関係を示した図である。ここで、
脱炭反応の容量係数は(1)式で定義される。
FIG. 2 is a diagram showing the relationship between the angular velocity ω of rotation of the lance and the capacity coefficient kc of the decarburization reaction. here,
The capacity coefficient of the decarburization reaction is defined by the equation (1).

【0012】 −d[mass%C]/dt=・[mass%C] (1) ただし、[mass%C]は[C]濃度、tは時間であ
る。
-D [mass% C] / dt = · [mass% C] (1) where [mass% C] is the [C] concentration and t is time.

【0013】気泡発生周期をTとすると、ω=nπ/T
(nは自然数)のときはArガスが一定の方向にしか噴
出されず、噴出された気泡が容易に合体するため、脱炭
促進効果は小さい。それに対して、角速度ωを(2)式
の範囲にしたときはArガスがいろいろな方向に噴出さ
れ、気泡が取鍋内に分散されるため脱炭促進効果が大き
く、ガスをランス3を回転しない場合に比べて約5倍k
cが大きくなっている。
Assuming that the bubble generation period is T, ω = nπ / T
When (n is a natural number), the Ar gas is ejected only in a certain direction, and the ejected bubbles are easily combined, so that the decarburization promoting effect is small. On the other hand, when the angular velocity ω is set in the range of the formula (2), Ar gas is ejected in various directions and bubbles are dispersed in the ladle, so that the decarburization promoting effect is large and the gas is rotated by the lance 3. Approximately 5 times more k than without
c is large.

【0014】 (4n−3)π/(4T)<ω<(4n−1)π/(4T) (2) 以上、溶鋼の脱炭処理に本発明の方法を適用する場合に
ついて説明したが、本発明の方法は、脱炭ならず、溶鋼
の脱窒、脱水素にも有効である。
(4n-3) π / (4T) <ω <(4n-1) π / (4T) (2) The case of applying the method of the present invention to the decarburization treatment of molten steel has been described above. The method of the present invention is effective for denitrification and dehydrogenation of molten steel without decarburization.

【0015】さらに、本発明の方法は、RH,DHのよ
うに取鍋内の溶鋼の一部を真空槽内に吸い上げて脱炭処
理を行う装置においても真空槽内の溶鋼にArガスを吹
込む方法として有効である。
Further, according to the method of the present invention, Ar gas is blown to the molten steel in the vacuum tank even in an apparatus for decarburizing by sucking a part of the molten steel in the ladle into the vacuum tank like RH and DH. It is effective as a way to get in.

【0016】[0016]

【実施例】初期成分が[C];0.02mass%,
[Si];0.1mass%以下、[Mn];0.01
〜0.5mass%,[P];0.005〜0.02m
ass%、[S];0.003〜0.005mass
%,[Al];0.002mass%以下の溶鋼の脱炭
実験を真空溶解炉を用いて実施した。溶鋼1中にランス
3を浸漬し、ガス噴出口2A,2Bより互いに逆向きに
Arガスを溶鋼中に吹込んだ。
[Example] The initial component is [C]; 0.02 mass%,
[Si]; 0.1 mass% or less, [Mn]; 0.01
~ 0.5mass%, [P]; 0.005-0.02m
% ass, [S]; 0.003 to 0.005 mass
%, [Al]; 0.002 mass% or less decarburization experiment of molten steel was carried out using a vacuum melting furnace. The lance 3 was immersed in the molten steel 1, and Ar gas was blown into the molten steel in opposite directions from the gas ejection ports 2A and 2B.

【0017】溶鋼重量は100kgで、槽内の圧力は1
70mmHgである。ガス噴出口の直径は0.002
m,吹込み深さは0.25m,吹込みガス流量は毎分2
Nl,ガス噴出口の数は2個である。
The weight of molten steel is 100 kg and the pressure in the tank is 1.
It is 70 mmHg. The diameter of the gas outlet is 0.002
m, blowing depth is 0.25 m, blowing gas flow rate is 2 per minute
The number of Nl and gas ejection ports is two.

【0018】気泡発生周期Tは、気泡直径を(3)式の
Davidson and Amickの式(Journalof American Institu
te of Chemical Engineering,vol.2(1956),p.337)を用
いて計算し、気泡1個当りの体積と、ガス噴出口1個当
りの吹込みガス流量から(4)式で求めた。
The bubble generation period T is defined by the bubble diameter expressed by equation (3).
Davidson and Amick's formula (Journal of American Institu
te of Chemical Engineering, vol.2 (1956), p.337) and calculated from the volume per bubble and the flow rate of gas blown into each gas outlet according to equation (4).

【0019】[0019]

【数1】 [Equation 1]

【0020】ここで、DB は気泡直径(m),Qはガス
噴出口1個当りの吹込みガス流量(m3 /s),dN
ガス噴出口の直径(m)を表わす。本実施例の条件で
は、気泡発生周期は約0.01秒であった。
Here, D B is the bubble diameter (m), Q is the flow rate of gas blown per gas outlet (m 3 / s), and d N is the diameter (m) of the gas outlet. Under the conditions of this example, the bubble generation period was about 0.01 seconds.

【0021】図3に[C]濃度の経時変化を示す。本発
明の方法では、25πラジアン/秒の角速度でランスを
回転させた。比較例は、ランスを50πラジアン/秒で
回転した場合である。20分の脱炭処理後の[C]の濃
度は、比較例では0.0015mass%であるのに対
して本発明の方法では、0.0007mass%まで達
した。
FIG. 3 shows the change with time of the [C] concentration. In the method of the present invention, the lance was rotated at an angular velocity of 25π radians / second. The comparative example is when the lance is rotated at 50π radians / second. The concentration of [C] after the decarburization treatment for 20 minutes was 0.0015 mass% in the comparative example, while it reached 0.0007 mass% in the method of the present invention.

【0022】[0022]

【発明の効果】本発明により、取鍋4全体を真空槽5内
に装入し、溶鋼1中に不活性ガスを吹込む方式の真空脱
ガス装置において、従来の様な、ポーラスプラグによる
ガス吹込み方法ではなく、所定の回転速度で旋回するラ
ンス3によるガス吹込み方法により、溶損の大きいポー
ラスプラグに起因する鍋の修理・整備に掛かる手間を省
く事ができ、更に、吹込みガス流量も容易に増大する事
ができるので[C]濃度が、0.001%以下の極低炭
素鋼を容易に出来る様になった。
According to the present invention, in the vacuum degassing apparatus of the type in which the entire ladle 4 is charged into the vacuum tank 5 and the inert gas is blown into the molten steel 1, the gas by the porous plug as in the conventional case is used. By using the gas injection method using the lance 3 that swirls at a predetermined rotation speed instead of the injection method, it is possible to save the trouble of repairing and servicing the pan due to the porous plug with large melting loss. Since the flow rate can be easily increased, it became possible to easily produce an ultra low carbon steel having a [C] concentration of 0.001% or less.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法の実施様態を示す図。FIG. 1 is a diagram showing an embodiment of the method of the present invention.

【図2】脱炭反応の容量係数とランス回転の角速度との
関係を示す図。
FIG. 2 is a diagram showing a relationship between a capacity coefficient of a decarburization reaction and an angular velocity of lance rotation.

【図3】[C]濃度の経時変化を示す図。FIG. 3 is a view showing a change with time of [C] concentration.

【符号の説明】[Explanation of symbols]

1…溶鋼 2A,2B…ガス
噴出口 3…ランス 4A…取鍋 5…真空槽
1 ... Molten steel 2A, 2B ... Gas ejection port 3 ... Lance 4A ... Ladle 5 ... Vacuum tank

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 減圧下において、溶鋼の脱炭処理を実施
するにあたり、真空槽(5)内の溶鋼(1)にガス噴出
方向が互いに逆向きの2つのガス噴出口(2A),(2
B)を有するランス(3)を溶鋼(1)に浸漬し、Tを
ガス噴出口(2A),(2B)からの気泡の発生周期,
nを自然数としたとき、 (4n−3)π/(4T)<ω<(4n−1)π/(4
T) を満たす角速度ωでランス(3)をその中心軸の周りに
回転させながら不活性ガスを吹込むことを特徴とする極
低炭素鋼の溶製方法。
1. When carrying out decarburization treatment of molten steel under reduced pressure, two gas ejection ports (2A), (2) having opposite gas ejection directions to the molten steel (1) in a vacuum tank (5) are provided.
The lance (3) having B) is immersed in the molten steel (1), and T is a cycle of generation of bubbles from the gas jet ports (2A) and (2B).
When n is a natural number, (4n−3) π / (4T) <ω <(4n−1) π / (4
T) A method for melting ultra-low carbon steel, which comprises blowing an inert gas while rotating the lance (3) around its central axis at an angular velocity ω satisfying
JP8376192A 1992-04-06 1992-04-06 Ultra low carbon steel melting method Withdrawn JPH05287357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8376192A JPH05287357A (en) 1992-04-06 1992-04-06 Ultra low carbon steel melting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8376192A JPH05287357A (en) 1992-04-06 1992-04-06 Ultra low carbon steel melting method

Publications (1)

Publication Number Publication Date
JPH05287357A true JPH05287357A (en) 1993-11-02

Family

ID=13811562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8376192A Withdrawn JPH05287357A (en) 1992-04-06 1992-04-06 Ultra low carbon steel melting method

Country Status (1)

Country Link
JP (1) JPH05287357A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5902374A (en) * 1995-08-01 1999-05-11 Nippon Steel Corporation Vacuum refining method for molten steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5902374A (en) * 1995-08-01 1999-05-11 Nippon Steel Corporation Vacuum refining method for molten steel

Similar Documents

Publication Publication Date Title
JPH05287357A (en) Ultra low carbon steel melting method
KR930011671B1 (en) Manufacturing method of ultra low carbon steel
JP2582316B2 (en) Melting method of low carbon steel using vacuum refining furnace
JP2767674B2 (en) Refining method of high purity stainless steel
JP3153048B2 (en) Melting method of low nitrogen steel by low vacuum refining
JP3118606B2 (en) Manufacturing method of ultra-low carbon steel
JP2819424B2 (en) Manufacturing method of ultra-low carbon steel
JPH07238312A (en) Production of ultra low carbon steel and vacuum degassing equipment
JP3025042B2 (en) Manufacturing method of ultra-low carbon steel
JP3225747B2 (en) Vacuum degassing of molten steel
JP2648769B2 (en) Vacuum refining method for molten steel
JPH06299228A (en) Method for melting extra low carbon steel
JP3749622B2 (en) Dehydrogenation method for molten steel
JPH05279721A (en) Method for removing slag in converter
JP3706451B2 (en) Vacuum decarburization method for high chromium steel
JPH05311227A (en) Reduced pressure-vacuum degassing refining method for molten metal
JP2988737B2 (en) Manufacturing method of ultra-low carbon steel
JP2915772B2 (en) A method for blowing oxygen gas over a vacuum refining furnace using a straight body immersion tube
JPS62297422A (en) Method and apparatus for degassing of molten al or al alloy
JPH06240332A (en) Method for refining molten metal and bottom blowing tuyere for refining molten metal
JPH06212242A (en) Vacuum refining of molten steel in ladle
JP3777065B2 (en) Powder dephosphorization method for low carbon molten steel under reduced pressure and reaction vessel for powder dephosphorization under reduced pressure
JPS5822319A (en) Manufacturing method for ultra-low hydrogen and ultra-low sulfur steel
JPH11131131A (en) Method of manufacturing steel containing nitrogen
JP2005060801A (en) Top-blown lance for vacuum degassing vessel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990608