JP3025042B2 - Manufacturing method of ultra-low carbon steel - Google Patents
Manufacturing method of ultra-low carbon steelInfo
- Publication number
- JP3025042B2 JP3025042B2 JP3072814A JP7281491A JP3025042B2 JP 3025042 B2 JP3025042 B2 JP 3025042B2 JP 3072814 A JP3072814 A JP 3072814A JP 7281491 A JP7281491 A JP 7281491A JP 3025042 B2 JP3025042 B2 JP 3025042B2
- Authority
- JP
- Japan
- Prior art keywords
- molten steel
- gas
- decarburization
- inert gas
- blowing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、減圧下精錬装置を用い
た極低炭素鋼の製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing ultra-low carbon steel using a refining device under reduced pressure.
【0002】[0002]
【従来の技術】従来、極低炭素鋼の製造方法としては、
RH還流方式の真空脱ガス処理装置を用いて、未脱酸溶
鋼中に不活性ガスを吹込み、溶鋼を真空槽内に循環せる
ことにより溶鋼中の脱炭が行われてきた。このような溶
鋼の処理に際して、脱炭反応効率向上のために浸漬管径
拡大、循環Arガス流量の増加による溶鋼還流量の増大
化を図るとともに、溶鋼の撹拌力を増大せしめる事に重
点が置かれ、その例として特開昭57−110611号
公報記載の真空脱ガス処理装置が知られている。この装
置は図5に示すように真空槽8の底部でしかも浸漬管9
A,9Bの槽開口端間の位置に気体噴出口11を設けた
装置であり、真空槽内の溶鋼量(高さ)を500〜10
00mmに増大させた条件下で気体噴出口11より50
0〜2000Nl/minのAr等不活性ガスを溶鋼中
に吹き込むことにより、溶鋼2の液滴化を促進するとと
もに、真空槽内に露出する面積を増大させ、更に中性ま
たは酸化性のフラックスを添加しこれにより脱炭等を有
効に促進せしめようとするものである。図中1は取鍋、
10は不活性ガス噴出口を示す。2. Description of the Related Art Conventionally, methods for producing ultra-low carbon steel include:
Decarburization in molten steel has been performed by blowing an inert gas into undeoxidized molten steel using a RH reflux type vacuum degassing apparatus and circulating the molten steel in a vacuum chamber. In the treatment of such molten steel, emphasis is placed on increasing the diameter of the immersion pipe and increasing the amount of molten steel recirculated by increasing the circulating Ar gas flow rate to increase the decarburization reaction efficiency, and increasing the stirring power of the molten steel. As an example, a vacuum degassing apparatus described in Japanese Patent Application Laid-Open No. 57-110611 is known. This device is located at the bottom of the vacuum chamber 8 as shown in FIG.
A, 9B is a device provided with a gas jet port 11 at a position between the open ends of the tanks.
Under the condition increased to 00 mm, 50
By blowing 0 to 2000 Nl / min of an inert gas such as Ar into the molten steel, the molten steel 2 is promoted into droplets, the area exposed in the vacuum chamber is increased, and the neutral or oxidizing flux is further reduced. It is intended to effectively promote decarburization and the like by adding it. In the figure, 1 is a ladle,
Reference numeral 10 denotes an inert gas ejection port.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、前記の
従来技術の極低炭素鋼の製造装置では、脱炭効率を高め
るためには(具体的には脱炭処理時間の短縮及び極低炭
素鋼到達濃度の低減)、真空槽内溶鋼量を増化させた条
件下で気体噴出口11から吹き込むガス流量を増加させ
て、溶鋼の反応領域を増大させる方法を採っている。し
かしこの方法では、脱炭促進のための吹込みガス流量に
は上限があり、その上限を越えるとガスの吹抜けが生
じ、逆に溶鋼との反応領域が減少してしまう。このよう
に(還流)溶鋼底部でしかも開口端から不活性ガスを吹
き込む手法は、ガス吹抜けが生じないようなガス流量の
上限があるため脱炭効率向上に限界があると共に、真空
槽底部から上方(排気口方向)に向かってガスを吹き込
むため、真空槽のみならず真空排気装置のガスクーラー
にまで地金が飛散し実質上操業不可能となる。However, in the above-mentioned conventional apparatus for producing ultra-low carbon steel, in order to increase the decarburization efficiency (specifically, it is necessary to shorten the decarburization treatment time and to reach the ultra-low carbon steel). The method employs a method of increasing the flow rate of gas blown from the gas jet port 11 under the condition of increasing the amount of molten steel in the vacuum chamber to increase the reaction region of molten steel. However, in this method, there is an upper limit to the flow rate of the blown gas for promoting decarburization. If the flow rate exceeds the upper limit, gas blow-through occurs, and conversely, the reaction region with molten steel decreases. As described above, in the method of blowing the inert gas from the bottom of the (refluxed) molten steel and from the opening end, there is a limit to the improvement of the decarburization efficiency because there is an upper limit of the gas flow rate that does not cause gas blow-through, and the upper part from the vacuum tank bottom. Since the gas is blown toward (in the direction of the exhaust port), the metal scatters not only in the vacuum tank but also in the gas cooler of the vacuum exhaust device, and the operation becomes practically impossible.
【0004】本発明は前記のごとき従来技術の欠点を有
利に解決しようとするものである。The present invention seeks to advantageously overcome the disadvantages of the prior art as described above.
【0005】[0005]
【課題を解決するための手段】本発明の要旨は、真空脱
ガス槽と組み合わせた取鍋内の溶鋼に不活性ガス等のガ
スを吹き込み減圧精錬する方法において、真空脱ガス槽
内を減圧にすると共に、図1(b)のイ,ロ,ハ,ニで
囲まれる範囲内で未脱酸溶鋼に不活性ガスを吹き込み溶
鋼中炭素濃度が50ppm以下の領域でMgO,CaO
等のCOガス発生核となる粉体を吹き込むことを特徴と
する極低炭素鋼の製造方法にある。SUMMARY OF THE INVENTION The gist of the present invention is to provide a method for blowing a gas such as an inert gas into molten steel in a ladle combined with a vacuum degassing tank to reduce the pressure in the vacuum degassing tank. At the same time, an inert gas is blown into the undeoxidized molten steel within a range surrounded by a, b, c and d in FIG.
And the like, wherein a powder serving as a CO gas generating nucleus is blown.
【0006】すなわち、本発明は真空槽内に設置した取
鍋内溶鋼に減圧雰囲気下で上方より不活性ガスを吹き込
み、溶鋼の粒滴化を促進させ、真空槽内気液界面積増大
させること及びMgO,CaO等の粉体を吹き込むこと
により脱炭のためのCOガス発生核をつくること脱炭反
応促進を図るものである。以下にその詳細を述べる。That is, according to the present invention, an inert gas is blown from above into molten steel in a ladle installed in a vacuum chamber under a reduced pressure atmosphere to promote the dropletization of molten steel and increase the gas-liquid interface area in the vacuum chamber. And a powder of MgO, CaO or the like is blown to form a CO gas generating nucleus for decarburization to promote the decarburization reaction. The details are described below.
【0007】[0007]
【作用及び実施例】本発明において、溶鋼としていわゆ
る通常の未脱酸鋼が用いられる。まず溶鋼を入れた取鍋
は、真空脱ガス槽と組み合わされる。この場合、装置上
では真空脱ガス処理と並行して不活性ガス及び粉体を溶
鋼中に吹き込むことが可能であることが前提である。In the present invention, so-called ordinary non-deoxidized steel is used as molten steel. First, a ladle containing molten steel is combined with a vacuum degassing tank. In this case, it is assumed that the inert gas and the powder can be blown into the molten steel in parallel with the vacuum degassing process on the apparatus.
【0008】真空脱ガス槽内はまず減圧されはじめ、通
常の真空状態に至る。これらの減圧過程に略々並行して
不活性ガスを溶鋼中に吹き込む。First, the inside of the vacuum degassing tank starts to be depressurized and reaches a normal vacuum state. An inert gas is blown into the molten steel substantially in parallel with these pressure reduction processes.
【0009】但し、これらの方法は単に不活性ガスの吹
込みを行えば良いというものではなく特定の条件が必要
となる。[0009] However, these methods are not limited to simply blowing an inert gas, but require specific conditions.
【0010】即ち、溶鋼1トン当りの吹込みガス流量Q
を大きくした方が脱炭速度を大きくするのに有効であ
る。しかし、吹込みガス流量を増加していくと溶鋼の揺
動及びスプラッシュの発生が激しくなり真空槽内のみな
らず真空排気装置のガスクーラーにまで地金が飛散し実
質上操業不可能となる。又、ランス浸漬深さhを深くす
れば同一ガス流量でも撹拌力は大きくなるので、取鍋内
溶鋼の均一混合時間は短くなり、高炭素濃度領域での脱
炭速度は増大するものの溶鋼のスプラッシュ発生量は低
下し[C]≦30ppmのいわゆる極低炭素濃度領域で
は脱炭速度の低下が大きくなる。極低炭素濃度領域での
脱炭速度向上のためにはスプラッシュ発生量増大が不可
欠であるが取鍋からの溶鋼流出防止のために、例えば実
願昭60−84597号に開示されるような、図2に示
すスプラッシュ防止蓋7を設けることが望ましい(ここ
で、[C]は重量%で示した溶鋼中の炭素濃度であ
る)。That is, the flow rate Q of blown gas per ton of molten steel
It is effective to increase the decarburization rate to increase the decarburization rate. However, when the flow rate of the blown gas is increased, the rocking and splashing of the molten steel becomes severe, and the metal scatters not only in the vacuum chamber but also in the gas cooler of the vacuum exhaust device, and the operation becomes substantially impossible. In addition, if the lance immersion depth h is increased, the stirring power is increased even at the same gas flow rate, so that the uniform mixing time of the molten steel in the ladle is shortened, and the decarburization speed in the high carbon concentration region is increased, but the molten steel is splashed. The amount of generation is reduced, and in the so-called ultra-low carbon concentration range of [C] ≦ 30 ppm, the decarburization rate is greatly reduced. In order to improve the decarburization rate in the extremely low carbon concentration region, it is essential to increase the amount of splash. However, in order to prevent molten steel from flowing out from the ladle, for example, as disclosed in Japanese Utility Model Application No. 60-84597, It is desirable to provide a splash prevention lid 7 shown in FIG. 2 (where [C] is the carbon concentration in the molten steel in% by weight).
【0011】そこで図2に示すようなスプラッシュ防止
蓋7を設けた条件下で、ランス浸漬深さhと吹込みガス
流量を変化させ脱炭速度を調査し、吹込みガス流量の上
限及びランス浸漬深さの条件を求めた。これを図1
(a),(b)の概念図で示す。図において、1は取
鍋、2は未脱酸溶鋼、3は真空界面、4は取鍋底、5は
不活性ガス及び粉体吹込みランス、6はランスのガス及
び粉体吹込み口である。Therefore, under the condition that the splash prevention lid 7 as shown in FIG. 2 is provided, the lance immersion depth h and the blowing gas flow rate are changed to investigate the decarburization rate, and the upper limit of the blowing gas flow rate and the lance immersion Depth conditions were determined. Figure 1
(A) and (b) are conceptual diagrams. In the figure, 1 is a ladle, 2 is undeoxidized molten steel, 3 is a vacuum interface, 4 is a ladle bottom, 5 is an inert gas and powder injection lance, and 6 is a lance gas and powder injection port. .
【0012】真空界面3からランスのガス吹込み口6ま
での距離h、真空界面3から取鍋底4までの距離をHと
するとh/H=−0.117Q+1.97で求められる
Q以下にすることが望ましく、図(b)中Dの領域はス
プラッシュ過剰である。Assuming that a distance h from the vacuum interface 3 to the gas inlet 6 of the lance and a distance H from the vacuum interface 3 to the ladle bottom 4 are h / H = −0.117Q + 1.97 or less. It is desirable that the region D in FIG.
【0013】吹込みガス流量下限は、ランスノズル詰ま
りを防止し得る流量が必要で1.7Nl/min・ts
以上が望ましく、図(b)中Cの領域は不可である。又
ランスのガス吹込み位置として、気液界面積増大のため
にはh/Hが小さく浅い位置に吹き込むことが望ましい
が、撹拌力が低下し均一混合時間が大きくなり、高炭素
濃度領域での脱炭速度が低下し処理時間が長くなるので
実操業上適切な範囲が存在する。又、極端に深くすると
取鍋底4の敷レンガの溶損が激しくなる。敷レンガに悪
影響を及ぼさないようにするには、h/H≦0.8とす
ることである。即ち、通常操業上要求される脱炭率から
考えてh/H=−0.0208Q+0.433,h/H
=0.175Q−0.125で求められるQ以下の図3
中B,Fの領域は不可であり、結局図中Aの領域に特定
されるべきである。The lower limit of the flow rate of the blown gas is required to be a flow rate capable of preventing clogging of the lance nozzle, and is 1.7 Nl / min · ts.
The above is desirable, and the region C in FIG. In order to increase the gas-liquid boundary area, it is desirable to inject the gas into the lance at a shallow position where h / H is small and small. Since the decarburization speed decreases and the treatment time increases, there is an appropriate range for practical operation. Further, when the depth is extremely deep, the erosion of the brick at the ladle bottom 4 becomes severe. In order not to adversely affect the brick, h / H ≦ 0.8 is required. That is, h / H = −0.0208Q + 0.433, h / H in consideration of the decarburization rate required for normal operation.
FIG. 3 below Q determined by = 0.175Q-0.125
The areas B and F are not allowed, and should be specified as the area A in the figure.
【0014】以上の操業条件下で未脱酸溶鋼の脱炭処理
を行い、[C]≦50ppmとなった後にランス5から
吹き込む不活性ガスを搬送ガスとしてランスの不活性ガ
ス及び粉体吹込み口6より新たにMgO,CaO等のC
Oガス発生核となり得る粉体を吹き込む。The deoxidized molten steel is decarburized under the above operating conditions, and after [C] ≦ 50 ppm, the inert gas blown from the lance 5 is used as a carrier gas and the inert gas and the powder are blown into the lance. New C from Mg6, CaO, etc. from mouth 6
A powder that can be an O gas generation nucleus is blown.
【0015】なお、本発明により脱炭だけでなく脱水素
等の脱ガスにも改善効果が見られる。According to the present invention, not only decarburization but also degassing such as dehydrogenation can be improved.
【0016】次に本発明による実施例と比較例とを図3
及び図4に示す。図3は溶鋼300t/chの実施例に
より、脱炭処理時間20分の場合における脱炭率を表し
たもので、脱炭末期([C]≦50ppm)の領域でM
gOを吹き込んだ場合と吹き込まない場合とで比較して
示したものである。B,F領域では反応効率が不良であ
ることが認められるとともにAの領域で反応効率が良好
でありしかもMgOを吹き込んだ図中●印の場合の方が
更に到達[C]濃度が低く反応効率が良好になる。Next, an example according to the present invention and a comparative example are shown in FIG.
And FIG. FIG. 3 shows the decarburization rate in the case of a decarburization treatment time of 20 minutes in an example of molten steel of 300 t / ch. In the region of the last stage of decarburization ([C] ≦ 50 ppm),
This is a comparison between the case where gO is blown and the case where gO is not blown. It is recognized that the reaction efficiency is poor in the B and F regions, and the reaction efficiency is good in the region A. Further, in the case of the mark ● in which MgO is blown, the achieved [C] concentration is lower and the reaction efficiency is lower. Becomes better.
【0017】図4は前記と同様の溶鋼の実施例につい
て、スプラッシュ過剰による溶鋼流出を表したもので、
これからみてD領域のものが溶鋼揺動及びスプラッシュ
過剰であり粉体を吹き込むことにより溶鋼揺動及びスプ
ラッシュ発生に大きな変化が無いことがわかる。FIG. 4 shows the outflow of molten steel due to excess splash for the same example of molten steel as described above.
From this, it can be seen that in the region D, the molten steel oscillates and splashes are excessive, and there is no significant change in the molten steel oscillates and splashes generated by blowing powder.
【0018】[0018]
【発明の効果】本発明に従い、特定の条件により操業す
ることによって、溶鋼中[C]≦25ppmの極低炭素
鋼の製造が安定して可能となる。According to the present invention, by operating under specific conditions, it becomes possible to stably produce ultra-low carbon steel with [C] ≦ 25 ppm in molten steel.
【図1】(a),(b)は本発明の限定条件の説明図、FIGS. 1 (a) and 1 (b) are explanatory views of a limiting condition of the present invention,
【図2】本発明の実施態様の説明図、FIG. 2 is an explanatory diagram of an embodiment of the present invention,
【図3】本発明の実施例を示す図、FIG. 3 is a diagram showing an embodiment of the present invention;
【図4】本発明の実施例を示す図、FIG. 4 is a diagram showing an embodiment of the present invention;
【図5】従来法の実施態様の説明図。FIG. 5 is an explanatory view of an embodiment of a conventional method.
1…取鍋 2…未脱酸溶鋼 3…真空界面 4…取鍋底 5…不活性ガス及び粉体吹込みランス 6…不活性ガス及び粉体吹込みランスの吹き出し口 7…スプラッシュ防止蓋 8…RH真空槽 9A…吸い上げ管 9B…下降管 10…不活性ガス噴出口 11…不活性ガス噴
出口DESCRIPTION OF SYMBOLS 1 ... Ladle 2 ... Undeoxidized molten steel 3 ... Vacuum interface 4 ... Ladle bottom 5 ... Inert gas and powder blowing lance 6 ... Outlet of inert gas and powder blowing lance 7 ... Splash prevention lid 8 ... RH vacuum chamber 9A: suction pipe 9B: downcomer pipe 10: inert gas jet port 11: inert gas jet port
───────────────────────────────────────────────────── フロントページの続き (72)発明者 那須宗泰 君津市君津1番地 新日本製鐵株式会社 君津製鐵所内 (72)発明者 荻林成章 君津市君津1番地 新日本製鐵株式会社 君津製鐵所内 (56)参考文献 特開 昭58−22319(JP,A) 特開 平1−176018(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21C 7/072 C21C 7/10 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Muneyasu Nasu 1 Kimitsu, Kimitsu City Inside Nippon Steel Corporation Kimitsu Works (72) Inventor Shigeaki Ogibayashi 1 Kimitsu City, Kimitsu City Nippon Steel Corporation Kimitsu (56) References JP-A-58-22319 (JP, A) JP-A-1-176018 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C21C 7/072 C21C 7/10
Claims (1)
鋼に不活性ガス等のガスを吹き込み減圧精錬する方法に
おいて、真空脱ガス槽内を減圧にすると共に、図1
(b)のイ,ロ,ハ,ニで囲まれる範囲内で未脱酸溶鋼
に不活性ガスを吹き込む脱炭処理を行い、溶鋼中炭素濃
度が50ppm以下の領域でMgO,CaO等のCOガ
ス発生核となる粉体を吹き込み脱炭促進を行うことを特
徴とする極低炭素鋼の製造方法。1. A method of blowing a gas such as an inert gas into molten steel in a ladle combined with a vacuum degassing tank to reduce the pressure in the vacuum degassing tank.
(B) A decarburization treatment is performed by blowing an inert gas into the undeoxidized molten steel within a range surrounded by a, b, c, and d, and a CO gas such as MgO, CaO, etc. in a region where the carbon concentration in the molten steel is 50 ppm or less. A method for producing ultra-low carbon steel, comprising blowing a powder as a generation nucleus to promote decarburization.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3072814A JP3025042B2 (en) | 1991-04-05 | 1991-04-05 | Manufacturing method of ultra-low carbon steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3072814A JP3025042B2 (en) | 1991-04-05 | 1991-04-05 | Manufacturing method of ultra-low carbon steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04308024A JPH04308024A (en) | 1992-10-30 |
JP3025042B2 true JP3025042B2 (en) | 2000-03-27 |
Family
ID=13500259
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3072814A Expired - Fee Related JP3025042B2 (en) | 1991-04-05 | 1991-04-05 | Manufacturing method of ultra-low carbon steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3025042B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101412141B1 (en) * | 2013-03-28 | 2014-06-25 | 현대제철 주식회사 | Method for manufacturing molten steel |
-
1991
- 1991-04-05 JP JP3072814A patent/JP3025042B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101412141B1 (en) * | 2013-03-28 | 2014-06-25 | 현대제철 주식회사 | Method for manufacturing molten steel |
Also Published As
Publication number | Publication date |
---|---|
JPH04308024A (en) | 1992-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5902374A (en) | Vacuum refining method for molten steel | |
JP3025042B2 (en) | Manufacturing method of ultra-low carbon steel | |
JPH05239534A (en) | Method for melting non-oriented electric steel sheet | |
JP2988737B2 (en) | Manufacturing method of ultra-low carbon steel | |
JP2767674B2 (en) | Refining method of high purity stainless steel | |
JP3214730B2 (en) | Refining method of high purity steel using reflux type vacuum degasser | |
JP2582316B2 (en) | Melting method of low carbon steel using vacuum refining furnace | |
JP3118606B2 (en) | Manufacturing method of ultra-low carbon steel | |
JP2724035B2 (en) | Vacuum decarburization of molten steel | |
JP2819424B2 (en) | Manufacturing method of ultra-low carbon steel | |
JP3539740B2 (en) | Molten steel desulfurization method and vacuum degassing tank in reflux vacuum degassing tank | |
JP2728184B2 (en) | Oxygen top-blowing vacuum decarburization of molten steel | |
JP2998039B2 (en) | Manufacturing method of ultra-low carbon steel | |
JP2998038B2 (en) | Manufacturing method of ultra-low carbon steel | |
JPH04308027A (en) | Manufacturing method of ultra-low carbon steel | |
JP2991519B2 (en) | Manufacturing method of ultra-low carbon steel | |
JPH09143546A (en) | Oxygen top blowing method in rh degassing equipment | |
JPH07238312A (en) | Production of ultra low carbon steel and vacuum degassing equipment | |
JPH11158536A (en) | Melting method of ultra low carbon steel with excellent cleanliness | |
JPH04308026A (en) | Production of ultralow carbon steel | |
JPH04308028A (en) | Production of ultralow carbon steel | |
JP3297765B2 (en) | Desulfurization method of molten steel | |
JPH03281720A (en) | Manufacturing method of ultra-low carbon steel | |
JPH01268815A (en) | Vacuum degassing treatment of molten steel | |
JPS63266017A (en) | Heat-up refining method for molten steel in a ladle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19991214 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090121 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100121 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110121 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |