JPH05279740A - Method for manufacturing high-silicon non-oriented electrical steel sheet with extremely excellent magnetic properties - Google Patents
Method for manufacturing high-silicon non-oriented electrical steel sheet with extremely excellent magnetic propertiesInfo
- Publication number
- JPH05279740A JPH05279740A JP7799292A JP7799292A JPH05279740A JP H05279740 A JPH05279740 A JP H05279740A JP 7799292 A JP7799292 A JP 7799292A JP 7799292 A JP7799292 A JP 7799292A JP H05279740 A JPH05279740 A JP H05279740A
- Authority
- JP
- Japan
- Prior art keywords
- oriented electrical
- electrical steel
- steel sheet
- cold rolling
- magnetic properties
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Metal Rolling (AREA)
- Continuous Casting (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
Abstract
(57)【要約】
【目的】 移動更新する冷却体表面によって凝固せしめ
た鋳造鋼帯を用いて高珪素無方向性電磁鋼板を製造する
場合の最適冷間圧延率を規定する。
【構成】 4.0%<Si≦8.0wt%、Al≦2.0
wt%の高珪素無方向性電磁鋼板の溶鋼を移動更新する冷
却体表面によって凝固せしめ、酸洗、冷間圧延、仕上げ
焼鈍をする工程において、冷間圧延率を5%以上40%
未満とする。このように冷間圧延率が比較的低い場合、
仕上げ焼鈍後の製品板の集合組織が柱状晶のそれで先鋭
化される。この方法によると無方向性電磁鋼板にとって
理想とも言える集合組織ランダムキューブ({100}
〈0vw〉)が製品板で得られる。
【効果】 本方法によると磁気特性が極めて優れた高珪
素無方向性電磁鋼板が得られるので新製品となり得る。
(57) [Abstract] [Purpose] The optimum cold rolling rate is specified when a high silicon non-oriented electrical steel sheet is produced using a cast steel strip solidified by a moving and renewing cooling body surface. [Structure] 4.0% <Si ≤ 8.0 wt%, Al ≤ 2.0
In the process of solidifying the wt% high silicon non-oriented electrical steel sheet with the moving and renewing surface of the cooling body, pickling, cold rolling and finish annealing, the cold rolling rate is 5% or more and 40% or more.
Less than When the cold rolling ratio is relatively low,
The texture of the product sheet after finish annealing is sharpened by that of columnar crystals. According to this method, a textured random cube ({100} that can be said to be ideal for non-oriented electrical steel sheets)
<0vw>) is obtained with the product plate. [Effects] According to this method, a high-silicon non-oriented electrical steel sheet having extremely excellent magnetic properties can be obtained, which can be a new product.
Description
【0001】[0001]
【産業上の利用分野】本発明は、磁束密度が極めて高
く、鉄損が低い高珪素無方向性電磁鋼板の製造方法に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-silicon non-oriented electrical steel sheet having extremely high magnetic flux density and low iron loss.
【0002】[0002]
【従来の技術】近年、回転機用磁芯材料としての無方向
性電磁鋼板に対する品質向上の要求は省エネルギーの観
点から、益々強くなっている。電磁鋼板製造メーカーの
側においても、この要望に応えるべく鋭意無方向性電磁
鋼板の磁気特性の向上のための研究開発が進められてき
ており、工業的には、JISに規定されている数々の無
方向性電磁鋼板が製造されている。2. Description of the Related Art In recent years, demands for quality improvement of non-oriented electrical steel sheets as magnetic core materials for rotating machines have become stronger from the viewpoint of energy saving. In order to meet this demand, the manufacturers of electromagnetic steel sheets are also conducting research and development to improve the magnetic properties of non-oriented electrical steel sheets, and industrially, a number of them are specified in JIS. Non-oriented electrical steel sheets are manufactured.
【0003】無方向性電磁鋼板の製造プロセスにおい
て、鉄損値が低い製品を得るためには、従来、鋼をその
溶製段階で高純度化する、鋼中のSi含有量を多くす
る、仕上げ焼鈍において温度・時間を十分に採る等の手
段が採られてきたが、後工程の作業性を考慮して従来S
iの含有量は、上限は4%と規定されていた。In the manufacturing process of non-oriented electrical steel sheets, in order to obtain a product having a low iron loss value, conventionally, the steel is highly purified in its melting stage, the Si content in the steel is increased, and the finishing is performed. Means such as sufficient temperature and time have been adopted in the annealing, but the conventional S
The upper limit of the content of i was specified to be 4%.
【0004】しかしながら、これらの技術的手段による
ときは、製品の鉄損値は、低くなるけれど、集合組織の
観点から磁束密度が低くなると言う問題がある。又、S
iが請求範囲の如く高い場合は、通常の製造方法では、
熱間圧延以降の工程では、脆性のため作業性が実際的で
ない。この困難を克服するために、温間圧延、浸珪素処
理等の方法が考案されている。However, when these technical means are used, the iron loss value of the product is low, but there is a problem that the magnetic flux density is low from the viewpoint of texture. Also, S
When i is high as in the claims, in the usual manufacturing method,
In the steps after hot rolling, workability is not practical due to brittleness. In order to overcome this difficulty, methods such as warm rolling and silicon immersion treatment have been devised.
【0005】一方近年移動更新する冷却体表面によって
凝固せしめる方法が開発され、無方向性電磁鋼板分野に
も適用されはじめている。しかし、これまでの場合は、
Si%が4重量%以下、冷間圧延率が40%以上であっ
た。冷間圧延圧下率が40%以上では、仕上げ終焼鈍後
の集合組織は、鋼板面に平行な面指数としては、{10
0}のみでなく{111}面もかなり強く、磁気特性、
特に磁束密度の向上に限界があった。On the other hand, in recent years, a method of solidifying by a moving and renewing surface of a cooling body has been developed and is beginning to be applied to the field of non-oriented electrical steel sheets. But so far,
The Si% was 4% by weight or less, and the cold rolling ratio was 40% or more. When the cold rolling reduction ratio is 40% or more, the texture after the final finish annealing has a surface index parallel to the steel sheet surface of {10.
Not only 0} but also the {111} plane is quite strong,
In particular, there was a limit to the improvement of magnetic flux density.
【0006】[0006]
【発明が解決しようとする課題】本発明は、上記従来技
術における問題を解決するものであって、高Si化によ
る磁束密度の低下を補償し、更に向上させるために、移
動更新する冷却体表面に凝固せしめる鋼帯鋳造法を採用
し、全周方位での鉄損が低くかつ、磁束密度が極めて高
い高珪素無方向性電磁鋼板を供給することができる製造
方法を提供することを目的とする。SUMMARY OF THE INVENTION The present invention is to solve the above-mentioned problems in the prior art. In order to compensate for and further improve the decrease in magnetic flux density due to high Si, the surface of the cooling body is renewed by moving. It is an object of the present invention to provide a manufacturing method capable of supplying a high-silicon non-oriented electrical steel sheet having a low iron loss in all circumferential directions and an extremely high magnetic flux density by adopting a steel strip casting method for solidifying into ..
【0007】[0007]
【課題を解決するための手段】本発明者等は、鋭意開発
を行ったところ、Si含有量が、4重量%を超え、且つ
冷間圧延圧下率が、40未満の場合に優れた磁気特性を
持つ無方向性電磁鋼板製造方法を見つけ出した。すなわ
ち本発明はこのような知見に基づくものであって、その
特徴とする処は、重量%で、4.0%<Si≦8.0
%、Al≦2.0%を含有する溶鋼(いわゆる非変態
鋼)を、移動更新する冷却体表面によって凝固せしめて
鋳造鋼帯とし、次いで、該当鋳造鋼帯を冷間圧延して所
定の厚さ(最終板厚)とした後、仕上げ焼鈍する無方向
性電磁鋼板の製造方法において、冷間圧延に際し圧延率
を5%以上40%未満(好ましくは、30%未満)とす
る磁気特性が極めて優れた高珪素無方向性電磁鋼板の製
造方法である。Means for Solving the Problems The inventors of the present invention have made intensive studies and found that when the Si content exceeds 4% by weight and the cold rolling reduction is less than 40, excellent magnetic properties are obtained. The non-oriented electrical steel sheet manufacturing method with has been found out. That is, the present invention is based on such knowledge, and the characteristic feature thereof is that, in% by weight, 4.0% <Si ≦ 8.0.
%, Al ≦ 2.0% of molten steel (so-called non-transformed steel) is solidified by a moving and renewing surface of a cooling body to form a cast steel strip, and then the cast steel strip is cold-rolled to a predetermined thickness. In the manufacturing method of the non-oriented electrical steel sheet that is finish-annealed after the final (thickness), the magnetic properties that make the rolling ratio 5% or more and less than 40% (preferably less than 30%) during cold rolling are extremely high. This is a method of manufacturing an excellent high-silicon non-oriented electrical steel sheet.
【0008】以下、本発明を詳細に説明する。発明者等
は、本発明における技術的課題を解決すべく鋭意検討を
重ねた結果、溶鋼から直接的に鋳造薄帯を得、その後の
冷間圧延率を適切にとることによって、仕上げ焼鈍後の
製品における集合組織を制御することができ、これによ
って磁束密度が極めて高く鉄損が良好な(鉄損値が低
い)無方向性電磁鋼板を得るに成功した。The present invention will be described in detail below. The inventors, as a result of repeated intensive studies to solve the technical problem in the present invention, directly obtain a casting ribbon from molten steel, by appropriately taking the cold rolling rate thereafter, after finish annealing We were able to control the texture in the product, and succeeded in obtaining a non-oriented electrical steel sheet with extremely high magnetic flux density and good iron loss (low iron loss value).
【0009】先ず、成分系について説明すると、製品の
機械特性の向上、磁気特性、耐錆性等の向上或いは、そ
の他の目的のために、Mn,P,B,Ni,Cr,S
b,Sn,Cuを1種または、2種以上含有させても本
発明の効果は損なわれない。また本発明は次の成分が含
まれる。Cは、0.050%以下であれば、本発明の目
的を達することができる。無方向性電磁鋼板の用途は、
主に回転機であり、磁気特性の安定という観点からは、
無方向性電磁鋼板の使用中に磁気特性の劣化(磁気時
効)を起こさないことが要求される。Sは、鋼の溶製段
階で不可避的に混入する元素であり、凝固後の冷却中に
Mnと結合してMnSを形成するため、0.0100%
以下とすべきである。Nは、0.010%以下であれば
よい。Nは、Sと同様に、移動更新する冷却体表面によ
って急速に凝固する場合、鋼帯中に固溶され、更に冷却
中にAlN,MnS等の析出物を形成し、仕上げ焼鈍時
に再結晶粒の成長を妨げたり製品が磁化されるときに磁
壁の移動を妨げるいわゆるピニング効果を発揮し製品の
低鉄損化を妨げる要因になる。このため、N≦0.01
0%以下とすべきである。First, the component system will be explained. For the purpose of improving the mechanical properties of the product, improving the magnetic properties, rust resistance, etc., or for other purposes, Mn, P, B, Ni, Cr, S.
The effect of the present invention is not impaired even if one, two or more kinds of b, Sn and Cu are contained. The present invention also includes the following components. If C is 0.050% or less, the object of the present invention can be achieved. Applications of non-oriented electrical steel sheets are
It is mainly a rotating machine, and from the viewpoint of stable magnetic characteristics,
It is required that the deterioration of the magnetic properties (magnetic aging) does not occur during the use of the non-oriented electrical steel sheet. S is an element that is inevitably mixed during the melting stage of steel and is combined with Mn to form MnS during cooling after solidification, so 0.0100%
Should be: N may be 0.010% or less. Like S, when N solidifies rapidly due to the moving and renewing surface of the cooling body, N forms a solid solution in the steel strip and forms precipitates such as AlN and MnS during cooling, and recrystallized grains during finish annealing. And the so-called pinning effect that hinders the movement of the magnetic domain wall when the product is magnetized and becomes a factor that hinders the reduction of iron loss of the product. Therefore, N ≦ 0.01
It should be 0% or less.
【0010】Siは、従来からよく知られているように
鋼板の固有抵抗を増加させ渦流損を低減するため添加さ
れる。4.0%を超えてSiを添加すると、加工性が極
端に劣化し、冷間圧延が困難なものとなる。しかし、1
00℃〜300℃での温間処理の適用、及び鋳込み鋳片
の厚みを薄くする等の方法により、酸洗、冷間圧延がで
きるようになった。このため、ただ単にSi含有量が多
いことは、高珪素無方向性電磁鋼板製造に関して大きな
問題ではなくなった。また、従来よりよく知られている
ように、Fe−Si合金では、6.5%Siで磁歪が極
めて小さくなるため、電気機器での騒音改善になる。A
lもSiと同様に、鋼板の固有抵抗を増加させ渦流損を
低減するため添加される。この目的のため従来から変態
を有しない無方向性電磁鋼板には、最大2.0%のAl
が添加されている。さらに添加量を増加することは、原
理的には可能であるが、Si含有量が既に多いため製造
コストを考慮して、最大2.0%とする。Si is added to increase the specific resistance of the steel sheet and reduce the eddy current loss, as is well known in the art. If Si is added in excess of 4.0%, the workability will be extremely deteriorated and cold rolling will become difficult. But 1
Pickling and cold rolling became possible by applying a warm treatment at 00 ° C. to 300 ° C. and by reducing the thickness of the cast ingot. For this reason, simply having a high Si content is no longer a major problem in the production of high-silicon non-oriented electrical steel sheets. Further, as is well known in the art, since the Fe—Si alloy has an extremely small magnetostriction at 6.5% Si, it improves noise in electrical equipment. A
Similarly to Si, l is added to increase the specific resistance of the steel sheet and reduce the eddy current loss. For this purpose, a non-oriented electrical steel sheet that has not been conventionally transformed has a maximum Al content of 2.0%.
Has been added. Although it is possible in principle to increase the added amount, the maximum Si content is 2.0% in consideration of the manufacturing cost because the Si content is already large.
【0011】尚Mnは、その含有量が、0.1%より少
ないと製品の加工性が劣化するからまた、Sの無害化さ
せるために添加される。しかしながら、Mnの添加量
が、2.0%を超えると製品の磁束密度が、著しく劣化
するからMn≦2.0%でなければならない。またB
は、Nを無害化のために必要に応じて添加される。すな
わち添加する場合は、Nの量とのバランスが必要である
から最大含有量を0.005%とする。極低窒素鋼を溶
製すれば、Nは、無害化できるので、この場合添加の必
要性は少ない。If the content of Mn is less than 0.1%, the workability of the product is deteriorated, and Mn is added to render S harmless. However, if the added amount of Mn exceeds 2.0%, the magnetic flux density of the product is significantly deteriorated, so Mn ≦ 2.0% must be satisfied. Also B
Is added as needed to render N harmless. That is, when it is added, it is necessary to balance with the amount of N, so the maximum content is made 0.005%. If ultra-low nitrogen steel is melted, N can be rendered harmless, and in this case, the need for addition is small.
【0012】次に、本発明の製造プロセス条件につい
て、説明する。移動更新する冷却体表面によって凝固せ
しめて得られる鋳造鋼帯を比較的高い冷間圧延率で圧延
する場合は、磁束密度は高くなるが、凝固過程で形成さ
れた柱状晶は、この高い圧延率でかなり破壊され、製品
板の再結晶集合組織は、鋼板法線‖〈111〉軸密度と
鋼板法線‖〈100〉軸密度は同程度であり無方向性電
磁鋼板にとって理想的な集合組織ではない。本発明者ら
は、鋭意研究を続けたところ、40%未満(好ましくは
30%未満)の冷延圧下率では、鋳造時に形成された柱
状晶を核として、仕上げ焼鈍後の再結晶集合組織は、ほ
ぼ完全な、{100}〈0vw)(ランダムキューブ)
となることを見い出した。この理由は、未だ明確ではな
いが、柱状晶の集合組織である{100}〈0vw〉
(ランダムキューブ)は相対的に加工歪が蓄積し難いた
め軽度の冷延圧下率では、圧延集合組織も、ランダムキ
ューブのまま温存され、仕上げ焼鈍時の再結晶段階で、
それが再結晶及び粒成長し(むしろ、歪誘起粒界移動と
言うべき)、ランダムキューブが先鋭化するためと考え
られる。また、冷延圧下率が5%未満であると、鋳造時
の表面性状がそのまま残存し製品に適さないので5%以
上とする。更に、冷間圧延性の観点からも、高珪素材の
このような軽圧下(5〜40%好ましくは5〜30%)
は、70%前後の従来の冷間圧延率よりも、実生産に適
している。図1は、Si:6.3〜6.7%(重量)を
含む溶鋼を移動更新する冷却体表面によって凝固せしめ
て鋳造鋼帯とし、次いで、該当鋳造鋼帯を冷間圧延して
所定の厚さとした後、仕上げ焼鈍する無方向性電磁鋼板
の製造方法において、冷間圧延率と磁束密度(B50
(T))の関係を示した。この図から上記したように圧
下率が5〜40%がよいことがわかる。更に、製品厚み
で鋳造することが考えられるが、この場合は、5%未満
の冷延圧下率の場合と同様に表面性状が製品に適さない
ばかりでなく図1に示すように、磁気特性自体もあまり
良好でない。Next, the manufacturing process conditions of the present invention will be described. When the cast steel strip obtained by solidifying by the moving and renewing cooling body surface is rolled at a relatively high cold rolling rate, the magnetic flux density is high, but the columnar crystals formed during the solidification process have this high rolling rate. The recrystallized texture of the product sheet is similar to that of the steel sheet normal ‖ <111> axial density and the steel sheet normal ‖ <100> axial density, which is an ideal texture for non-oriented electrical steel sheets. Absent. The inventors of the present invention have conducted extensive studies and found that at a cold rolling reduction of less than 40% (preferably less than 30%), the recrystallized texture after finish annealing was caused by the columnar crystals formed during casting as nuclei. , Almost perfect, {100} <0vw) (random cube)
I found that The reason for this is not clear yet, but the texture of columnar crystals is {100} <0vw>.
(Random cube) is relatively hard to accumulate processing strain, so at a low cold rolling reduction, the rolling texture remains the same as the random cube, and at the recrystallization stage during finish annealing,
It is considered that this is due to recrystallization and grain growth (rather, it should be called strain-induced grain boundary movement), and the random cube is sharpened. Further, if the cold rolling reduction is less than 5%, the surface properties at the time of casting remain as they are and are not suitable for the product. Further, also from the viewpoint of cold rolling property, such a light reduction of a high silicon material (5 to 40%, preferably 5 to 30%)
Is more suitable for actual production than the conventional cold rolling rate of around 70%. FIG. 1 shows that a molten steel containing Si: 6.3 to 6.7% (weight) is solidified by a moving and renewing surface of a cooling body to form a cast steel strip, and then the corresponding cast steel strip is cold-rolled to a predetermined temperature. In the method for producing a non-oriented electrical steel sheet, which is subjected to finish annealing after being made to have a thickness, the cold rolling rate and the magnetic flux density (B50
(T)) is shown. From this figure, it is understood that the rolling reduction is preferably 5 to 40% as described above. Further, it is conceivable that the product is cast at the product thickness. In this case, the surface properties are not suitable for the product as in the case of the cold rolling reduction of less than 5%, and as shown in FIG. Is not very good.
【0013】図2に本発明で得られた仕上げ焼鈍後製品
板の集合組織を示す。図のように非常に素晴らしいいわ
ゆるランダムキューブが得られている。これは、高珪素
無方向性電磁鋼板にとって理想的とも言える。FIG. 2 shows the texture of the finished annealed product sheet obtained in the present invention. As you can see, a very nice so-called random cube is obtained. It can be said that this is ideal for high silicon non-oriented electrical steel sheets.
【0014】[0014]
【実施例】以下、本発明の実施態様を述べる。表1の成
分の溶鋼(残部Fe及び不可避的不純物からなる)を移
動更新する冷却体表面にて凝固せしめて直接0.56mm
及び0.62mmの鋼帯を得た。その後、酸洗を施し、
0.50mmの厚みに冷間圧延をした。冷間圧延された鋼
板を脱脂し、連続焼鈍炉にて1050℃で30秒焼鈍し
た。その後、磁気特性(22.5度毎の平均)をエプシ
ュタイン法にて測定した。これらの値を、比較法である
冷間圧延率40%以上の場合(鋼の厚を2.0mm、及び
1.5mm)と比較した。The embodiments of the present invention will be described below. Directly 0.56 mm by solidifying the molten steel (comprising the balance Fe and unavoidable impurities) of the components shown in Table 1 on the surface of the moving cooling body
And a steel strip of 0.62 mm was obtained. After that, pickling,
Cold rolled to a thickness of 0.50 mm. The cold-rolled steel sheet was degreased and annealed at 1050 ° C. for 30 seconds in a continuous annealing furnace. Then, the magnetic characteristics (average every 22.5 degrees) were measured by the Epstein method. These values were compared with the case of the cold rolling ratio of 40% or more (steel thickness of 2.0 mm and 1.5 mm) which is a comparative method.
【0015】[0015]
【表1】 [Table 1]
【0016】このように移動更新する冷却体表面によっ
て凝固せしめて鋳造鋼帯とし、次いで、該当鋳造鋼帯を
冷間圧延して所定の厚さとした後、仕上げ焼鈍する高珪
素無方向性電磁鋼板の製造方法において、冷間圧延に際
し圧延率を5%以上40%未満とすると冷延圧延率が高
い場合と比べて磁気特性が極めて優れた高珪素無方向性
電磁鋼板が得られる。A high-silicon non-oriented electrical steel sheet that is solidified by the moving and renewing surface of the cooling body to form a cast steel strip, and then the corresponding cast steel strip is cold-rolled to a predetermined thickness and then finish-annealed. In the manufacturing method described above, when the rolling rate is set to 5% or more and less than 40% during cold rolling, a high-silicon non-oriented electrical steel sheet having extremely excellent magnetic properties as compared with the case where the cold rolling rate is high can be obtained.
【0017】[0017]
【発明の効果】以上のように本発明によれば高Si含有
の無方向性電磁鋼板を、移動更新する冷却体表面に凝固
せしめ、低い適正な冷間圧延率で圧延して得ることによ
り、磁気特性の極めて優れた製品とすることができる。As described above, according to the present invention, the non-oriented electrical steel sheet containing high Si is solidified on the surface of the cooling body to be moved and renewed, and is obtained by rolling at a low proper cold rolling rate. It is possible to obtain a product having extremely excellent magnetic properties.
【図1】冷間圧延率と磁束密度との関係を示す図であ
る。FIG. 1 is a diagram showing a relationship between a cold rolling rate and a magnetic flux density.
【図2】本発明仕上げ焼鈍材の{100}正極点図であ
る。FIG. 2 is a {100} positive electrode diagram of the finish annealed material of the present invention.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/06 (72)発明者 本間 穂高 福岡県北九州市戸畑区飛幡町1番1号 新 日本製鐵株式会社八幡製鐵所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical display location C22C 38/06 (72) Inventor Hodaka Hodaka No. 1 Tobata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka New Japan Steelworks Yawata Works
Claims (1)
Al≦2.0%、残部Fe及び不可避的不純物からなる
溶鋼を、移動更新する冷却体表面によって凝固せしめて
鋳造鋼帯とし、次いで、該当鋳造鋼帯を冷間圧延して所
定の厚さとした後、仕上げ焼鈍する高珪素含有無方向性
電磁鋼板の製造方法において、冷間圧延に際し圧延率を
5%以上40%未満とすることを特徴とする磁気特性が
極めて優れた高珪素無方向性電磁鋼板の製造方法。1. In% by weight, 4.0% <Si ≦ 8.0%,
Molten steel consisting of Al ≦ 2.0%, balance Fe and unavoidable impurities is solidified into a cast steel strip by the moving and renewing surface of the cooling body, and then the cast steel strip is cold-rolled to a predetermined thickness. In the method for producing a high silicon-containing non-oriented electrical steel sheet, which is subsequently finish-annealed, a high silicon non-oriented electromagnetic sheet having extremely excellent magnetic properties, characterized in that a rolling ratio is set to 5% or more and less than 40% during cold rolling. Steel plate manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7799292A JPH05279740A (en) | 1992-03-31 | 1992-03-31 | Method for manufacturing high-silicon non-oriented electrical steel sheet with extremely excellent magnetic properties |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7799292A JPH05279740A (en) | 1992-03-31 | 1992-03-31 | Method for manufacturing high-silicon non-oriented electrical steel sheet with extremely excellent magnetic properties |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05279740A true JPH05279740A (en) | 1993-10-26 |
Family
ID=13649323
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7799292A Withdrawn JPH05279740A (en) | 1992-03-31 | 1992-03-31 | Method for manufacturing high-silicon non-oriented electrical steel sheet with extremely excellent magnetic properties |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05279740A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009091213A1 (en) * | 2008-01-16 | 2009-07-23 | Formation method for rotated cube texture, and electrical steel sheet produced using the same | |
US8911565B2 (en) | 2009-10-28 | 2014-12-16 | Nippon Steel & Sumitomo Metal Corporation | Fe-based metal plate and method of manufacturing the same |
WO2019182022A1 (en) | 2018-03-23 | 2019-09-26 | 日本製鉄株式会社 | Non-oriented electromagnetic steel sheet |
-
1992
- 1992-03-31 JP JP7799292A patent/JPH05279740A/en not_active Withdrawn
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009091213A1 (en) * | 2008-01-16 | 2009-07-23 | Formation method for rotated cube texture, and electrical steel sheet produced using the same | |
US8911565B2 (en) | 2009-10-28 | 2014-12-16 | Nippon Steel & Sumitomo Metal Corporation | Fe-based metal plate and method of manufacturing the same |
US9679687B2 (en) | 2009-10-28 | 2017-06-13 | Nippon Steel & Sumitomo Metal Corporation | Fe-based metal plate and method of manufacturing the same |
WO2019182022A1 (en) | 2018-03-23 | 2019-09-26 | 日本製鉄株式会社 | Non-oriented electromagnetic steel sheet |
KR20200116990A (en) | 2018-03-23 | 2020-10-13 | 닛폰세이테츠 가부시키가이샤 | Non-oriented electrical steel sheet |
US11421297B2 (en) | 2018-03-23 | 2022-08-23 | Nippon Steel Corporation | Non-oriented electrical steel sheet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2708682B2 (en) | Non-oriented electrical steel sheet having extremely excellent magnetic properties and method for producing the same | |
JP3387980B2 (en) | Method for producing non-oriented silicon steel sheet with extremely excellent magnetic properties | |
JPH0753886B2 (en) | Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet with excellent iron loss | |
JPH05279740A (en) | Method for manufacturing high-silicon non-oriented electrical steel sheet with extremely excellent magnetic properties | |
JP3387962B2 (en) | Manufacturing method of non-oriented electrical steel sheet with extremely excellent magnetic properties | |
JP3310004B2 (en) | Manufacturing method of unidirectional electrical steel sheet | |
JPH06128642A (en) | Method for manufacturing high-silicon non-oriented electrical steel sheet with extremely excellent magnetic properties | |
JPS6333518A (en) | Non-oriented electrical steel sheet having low iron loss and excellent magnetic flux density and its production | |
JP3294367B2 (en) | Non-oriented electrical steel sheet having high magnetic flux density and low iron loss and method of manufacturing the same | |
JPH06287639A (en) | Production of nonoriented silicon steel sheet excellent in all-around magnetic property | |
JPH0657332A (en) | Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss | |
JPS63176427A (en) | Manufacturing method of unidirectional high silicon steel sheet | |
JP3023620B2 (en) | Method of manufacturing thin slab for unidirectional electrical steel sheet | |
JPH05279826A (en) | Production of 'permalloy(r)' excellent in impedance relative magnetic permeability | |
JPH02258922A (en) | Production of grain-oriented silicon steel sheet with high magnetic flux density | |
JPH0631394A (en) | Method for manufacturing thin cast piece for non-oriented electrical steel sheet | |
JP3067896B2 (en) | Method of manufacturing thin slab for unidirectional electrical steel sheet | |
JP3348827B2 (en) | Method for manufacturing non-oriented electrical steel sheet with high magnetic flux density and low iron loss | |
JP3358138B2 (en) | Method for producing semi-process non-oriented electrical steel sheet with excellent isotropic magnetic properties | |
JP3387971B2 (en) | Manufacturing method of electrical steel sheet for stationary equipment with excellent bidirectional magnetic properties | |
JPH05186831A (en) | Production of grain-oriented silicon steel sheet having crystal orientation integrated in goss orientation | |
JPH09125145A (en) | Method of manufacturing non-oriented electrical steel sheet with high magnetic flux density and low iron loss | |
JPH05186829A (en) | Production of grain-oriented silicon steel sheet having crystal orientation integrated in goss orientation | |
JPH0794689B2 (en) | Method for producing unidirectional electrical steel sheet with excellent magnetic properties | |
JP2758915B2 (en) | Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19990608 |