JPS6333518A - Non-oriented electrical steel sheet having low iron loss and excellent magnetic flux density and its production - Google Patents
Non-oriented electrical steel sheet having low iron loss and excellent magnetic flux density and its productionInfo
- Publication number
- JPS6333518A JPS6333518A JP15881987A JP15881987A JPS6333518A JP S6333518 A JPS6333518 A JP S6333518A JP 15881987 A JP15881987 A JP 15881987A JP 15881987 A JP15881987 A JP 15881987A JP S6333518 A JPS6333518 A JP S6333518A
- Authority
- JP
- Japan
- Prior art keywords
- flux density
- magnetic flux
- less
- iron loss
- oriented electrical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は、鉄損が低くかつ磁束密度のすぐれた無方向性
電磁鋼板およびその製造法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a non-oriented electrical steel sheet with low core loss and excellent magnetic flux density, and a method for manufacturing the same.
無方向性電磁鋼板はモータ、変圧器の鉄心などに使用さ
れるが、最近ではこれらの電気機器は省エネルギータイ
プとすることを強く要請されている。Non-oriented electrical steel sheets are used for the cores of motors, transformers, etc., and recently there has been a strong demand for these electrical devices to be energy-saving types.
特に、従来から比較的に安価な無方向性電磁鋼板を主に
使用していた中小型電気機器に関して、価格が比較的安
く、磁束密度が高いという無方向性電磁鋼板の利点を保
ちながら、更に鉄損が低い素材の開発要請が強い。In particular, for small and medium-sized electrical equipment that has conventionally mainly used relatively inexpensive non-oriented electrical steel sheets, it is possible to improve There is a strong demand for the development of materials with low iron loss.
これに対応するには、鉄損がW、%/、。で4.5W/
kg以下と低くかつ磁束密度がB、。で1.71Te
sla以上のすぐれた無方向性電磁鋼板を製造する必要
がある。To accommodate this, the iron loss is W,%/,. at 4.5W/
kg or less and has a magnetic flux density of B. at 1.71 Te
There is a need to manufacture non-oriented electrical steel sheets with an excellent sla or better.
無方向性電磁鋼板の磁気特性として周知の如く鉄損と磁
束密度があり、該鉄損および磁束密度の値により360
級か439級までグレード付けされている。As is well known, the magnetic properties of non-oriented electrical steel sheets include iron loss and magnetic flux density, and depending on the values of iron loss and magnetic flux density, 360
It is graded up to 439 grade.
ところで鉄損の低い高級グレードを製造するにはSi含
有量を増すことが一般に行なわれることであり、例えば
860級はSi含有量は零に近いが、323級は約1.
5%、318級は約2.0%、39級は約3.0%噂と
なっている。一方このSi含有量の増加につれて磁束密
度は減少するので、従来の無方向性電磁鋼板の鉄損値と
磁束密度値の関係は第1図において曲線1.1′で示す
ようであり、即ち鉄損が低くなる程、磁束密度は減少し
でいる。By the way, in order to manufacture high-grade grades with low iron loss, it is common practice to increase the Si content. For example, the Si content of 860 grade is close to zero, but the Si content of 323 grade is about 1.
It is rumored that 5%, 318th grade is about 2.0%, and 39th grade is about 3.0%. On the other hand, as the Si content increases, the magnetic flux density decreases, so the relationship between the iron loss value and the magnetic flux density value of conventional non-oriented electrical steel sheets is as shown by curve 1.1' in Figure 1, that is, As the loss becomes lower, the magnetic flux density decreases.
またこの図において2はJIS規格C2552における
309〜S23の限界値をむすぶ直線である。Further, in this figure, 2 is a straight line connecting the limit values of 309 to S23 in JIS standard C2552.
従来においても、磁気特性を改良するには単にSi含有
量を増すのみでなく、Alの添加、Cの低減、Sの減少
、Bの添加などの成分的な処置や、焼鈍温度を高くする
こと、仕上焼鈍前の冷間圧下率を高くするなどの工夫が
なされている。Conventionally, in order to improve the magnetic properties, it is not only necessary to simply increase the Si content, but also to take component measures such as adding Al, reducing C, reducing S, and adding B, and increasing the annealing temperature. , efforts have been made to increase the cold reduction rate before final annealing.
例えば本発明者等も、Bを鋼中のN含有量と重量比B/
Nで関係をもたせて含有せしめ、これによって焼鈍にお
いて結晶粒の成長を促進させ鉄損の低い無方向性電磁鋼
板を経済的に製造することを特開昭54−163720
号公報で提案した。これによると鉄損の低いものが製造
されるが、鉄損値と磁束密度の関係はやはり第1図の曲
線1.1′の範囲内にある。For example, the present inventors also determined that B is the N content in steel and the weight ratio B/
JP-A-54-163720 describes the economical production of non-oriented electrical steel sheets with low iron loss by incorporating N in a manner that promotes the growth of crystal grains during annealing.
It was proposed in the publication. According to this, a product with low iron loss is manufactured, but the relationship between iron loss value and magnetic flux density is still within the range of curve 1.1' in FIG.
またSnを含有させて鉄損の低い無方向性電磁鋼板を製
造することが、例えば特開昭56−102520号公報
にて提案されている。Snの含有により鉄損は低くなる
が、Sff S n含有の作用を奏するには、熱延板焼
鈍において冷却速度を遅くし、また最終焼鈍における加
熱速度を遅くする必要がある等の作業上の制約を受ける
。またSnの含有によって鉄損の低下は図られても磁束
密度についてそれ程でなく、やはり前記第1図の曲線1
,1′の範囲内にあり、鉄損が低くかつ磁束密度のすぐ
れた無方向性電磁鋼板を製造する要請に応えることはで
きない。Furthermore, manufacturing a non-oriented electrical steel sheet with low iron loss by incorporating Sn has been proposed, for example, in Japanese Patent Laid-Open No. 102520/1983. The inclusion of Sn lowers the core loss, but in order to achieve the effect of SffSn inclusion, it is necessary to slow down the cooling rate during hot-rolled sheet annealing and slow down the heating rate during final annealing. subject to restrictions. Furthermore, although the iron loss is reduced by the inclusion of Sn, the magnetic flux density is not reduced by much, and the curve 1 in FIG.
, 1', and cannot meet the demand for producing a non-oriented electrical steel sheet with low iron loss and excellent magnetic flux density.
本発明はかかる実情から、鉄損がWIS/S。で4.5
w/kg以下と低鉄損でかつ磁灸密度がB、。In view of this fact, the present invention has an iron loss of WIS/S. So 4.5
Low iron loss of less than w/kg and magnetic moxibustion density of B.
1.71Tesla以上、すなわち、少なくとも第1図
の線3と等しい無方向性電磁wJ板を提供することを目
的とする。The object is to provide a non-directional electromagnetic wJ plate that is greater than or equal to 1.71 Tesla, ie at least equal to line 3 in FIG.
また、本発明は上述のとうり規定した鉄損および磁束密
度を有する無方向性電磁鋼板の製造方法を提供すること
を目的とする。Another object of the present invention is to provide a method for producing a non-oriented electrical steel sheet having the defined core loss and magnetic flux density as described above.
本発明者等は、珪素鋼にSnを含有させるとともにMn
含有量を高め、Bを鋼中のN含有量と重量比B/Nを予
め定められた関係の下に含有させた鋼を、熱間圧延した
後、熱延板焼鈍するか或は熱間圧延後700℃以上の高
温域で巻取り自己焼鈍すると、鉄損が低くかつ磁束密度
が高い電磁鋼が得られ、前記目的を達成できることを見
出した。The present inventors made silicon steel contain Sn and Mn.
After hot rolling a steel containing B with a higher B content and a predetermined relationship between the N content in the steel and the weight ratio B/N, hot rolled sheet annealing or hot rolling is performed. It has been found that when rolled and self-annealed in a high temperature range of 700° C. or higher after rolling, an electromagnetic steel with low core loss and high magnetic flux density can be obtained, and the above object can be achieved.
また前記熱延板焼鈍は連続短時間焼鈍が適用でき、さら
に冷間圧延後の仕上焼鈍も連続短時間焼鈍が適用できる
ことをつきとめた。即ち本発明の無方向性電磁鋼板は比
較的短時間の製造日数でかつ処理コストの安い工程にて
製造できる。In addition, it has been found that continuous short-time annealing can be applied to the hot-rolled sheet annealing, and continuous short-time annealing can also be applied to finish annealing after cold rolling. That is, the non-oriented electrical steel sheet of the present invention can be manufactured in a relatively short manufacturing period and in a process with low processing cost.
本発明は、前述の知見に基づいてなされたものであり、
その要旨とする処は、重量%で、C:0.015%以下
、St :0.3〜2.0%、Mn:1.0%を超え
1.5%以下、Sn : 0.02〜0.20%、酸
可溶Aji! : 0.005〜0.1%、N : 0
.007%以下、B:0.005%以下でかつB/N:
0.5〜1.5の関係を有し、残部Feおよび不可避的
不純物からなる鉄損が低くかつ磁束密度がすぐれた無方
向性電磁鋼板、及び重量%で、C: 0.015%以下
、Si :0、3〜2.0%、Mn:1.0%を超え1
.5%以下、S n : 0.02〜0.20%、酸
可溶Al : 0.005〜0.1%、N : 0.
007%以下、B : 0.005%以下でかつB/N
’: o、s 〜1.5の関係を有し、残部Feおよび
不可避的不純物からなる鋼を、熱間圧延した後、700
℃以上の温度域で巻取り自己焼鈍するか或は、熱間圧延
後750℃以上の温度域で熱延板焼鈍し、次いで1回若
しくは、中間焼鈍過程を介挿する2回以上の冷間圧延を
行ない、然る後、750℃以上の温度域での連続焼鈍を
行なうことを特徴とする、鉄損が低くかつ磁束密度がす
ぐれた無方向性電磁鋼板の製造法にある。さらに他の要
旨とする処は、冷延板の前記連続焼鈍の後に、圧下率2
〜10%でスキンパス圧延する点にある。The present invention was made based on the above-mentioned findings,
The gist of this is, in weight percent, C: 0.015% or less, St: 0.3 to 2.0%, Mn: more than 1.0% and 1.5% or less, Sn: 0.02 to 1.5%. 0.20%, acid soluble Aji! : 0.005-0.1%, N: 0
.. 007% or less, B: 0.005% or less, and B/N:
A non-oriented electrical steel sheet having a relationship of 0.5 to 1.5, with the balance being Fe and unavoidable impurities, and having low iron loss and excellent magnetic flux density, and in weight percent, C: 0.015% or less, Si: 0, 3-2.0%, Mn: over 1.0% 1
.. 5% or less, Sn: 0.02-0.20%, acid-soluble Al: 0.005-0.1%, N: 0.
0.007% or less, B: 0.005% or less and B/N
': o,s ~ 1.5, and the remainder consists of Fe and unavoidable impurities. After hot rolling, the steel
Either coiling and self-annealing in a temperature range of 750°C or higher, or hot rolling and then annealing in a temperature range of 750°C or higher, followed by cold rolling once or twice or more with an intermediate annealing process. The present invention provides a method for producing a non-oriented electrical steel sheet with low core loss and excellent magnetic flux density, which comprises rolling and then continuous annealing at a temperature of 750° C. or higher. Yet another point is that after the continuous annealing of the cold-rolled sheet, the reduction rate is 2.
The point is to perform skin pass rolling at ~10%.
以下に、本発明の詳細な説明する。The present invention will be explained in detail below.
先ず、鋼の成分について述べる。First, let's talk about the ingredients of steel.
Cは鉄損を高める有害な成分で、磁気時効の原因となる
ので0.015%以下とする。Mn、Snおよび脱酸目
的以外の酸可溶A1もしくはBの複合含有により鉄損の
低下と磁束密度を高める、好ましいC含有量は0.00
5%以下である。C is a harmful component that increases core loss and causes magnetic aging, so it should be kept at 0.015% or less. The preferable C content is 0.00, which reduces iron loss and increases magnetic flux density by containing Mn, Sn, and acid-soluble A1 or B for purposes other than deoxidizing.
It is less than 5%.
Stは周知のように鉄損を低下させる作用のある成分で
あり、この作用を奏するためには0.3%以上含有させ
る。一方、その含有量が増えると前述のように磁束密度
が低下し、また圧延作業性が劣化し、またコスト高とな
るので2.0%以下とする。As is well known, St is a component that has the effect of reducing iron loss, and in order to exhibit this effect, it is contained in an amount of 0.3% or more. On the other hand, if the content increases, the magnetic flux density decreases as described above, rolling workability deteriorates, and costs increase, so it is set to 2.0% or less.
Alは脱酸のために必要な成分で、この作用のために0
.005%以上含有させることが望ましい。Al is a necessary component for deoxidation, and for this action, 0
.. It is desirable to contain 0.005% or more.
Mnは酸化物や硫化物などの非金属介在物を生成し易い
ために従来は無方向性電磁鋼板の磁気特性向上に利用さ
れていなかったが、間純度鋼製造技術の発展によってそ
の利用が可能になった。本発明者の発見によれば、Mn
は磁気的性質に望ましい(100)および(110)集
合組織を発達させかつ磁気特性には望ましくない(11
1)集合Mn織を抑制する作用を有する。Mnの含有量
はこの作用をもたらすよう特願昭56−213368号
にて提案した様に0.75%を超える量が必要であるが
、後述のSnとの複合作用を発揮させるためには1.0
%を超える量であることが望ましい。Mnはフェライト
・オーステナイト変態温度を低下させるので、Mn含有
量が1.5%を越えると熱延板の焼鈍中にフェライト・
オーステナイト変態が起こって、Mnの集合組織改良作
用および磁性改良作用がなくなる。したがって、Mnの
含有量は1.0%を超え1.5%以下とする。Conventionally, Mn was not used to improve the magnetic properties of non-oriented electrical steel sheets because it easily generates nonmetallic inclusions such as oxides and sulfides, but with the development of high-purity steel manufacturing technology, its use is now possible. Became. According to the inventor's findings, Mn
develops (100) and (110) textures that are desirable for magnetic properties and (11) that are undesirable for magnetic properties.
1) It has the effect of suppressing aggregated Mn weave. In order to bring about this effect, the content of Mn needs to exceed 0.75% as proposed in Japanese Patent Application No. 56-213368. .0
It is desirable that the amount exceeds %. Mn lowers the ferrite-austenite transformation temperature, so if the Mn content exceeds 1.5%, ferrite-austenite transformation occurs during annealing of the hot-rolled sheet.
Austenite transformation occurs, and the texture-improving effect and magnetism-improving effect of Mn disappears. Therefore, the Mn content is set to more than 1.0% and less than 1.5%.
Nは磁気特性にとって有害な成分であるので、本発明で
は0.007%以下とする。Since N is a component harmful to magnetic properties, in the present invention it is set to 0.007% or less.
Bは本発明では重要な成分であり、後記するSn及びM
nとの複合作用により鉄損を低下させかつ磁束密度を高
める作用がある。この日は、鋼中のN含有量との重量比
B/Nの関係のもとに含有される。そしてB/Nが0.
5以下ではNの有害性を解消することが難しいので、下
限を0.5とする。一方、B/Nが増えると固溶Bが増
え鉄損と磁束密度を良好とすることが難しくなるので1
.5以下とする。またBの絶対的な含有量は鋼片の割れ
の発生を防止するために0.005%以下とする。B is an important component in the present invention, and includes Sn and M, which will be described later.
The combined action with n has the effect of reducing iron loss and increasing magnetic flux density. On this day, N is contained based on the relationship of the weight ratio B/N with the N content in the steel. And B/N is 0.
If it is less than 5, it is difficult to eliminate the harmful effects of N, so the lower limit is set to 0.5. On the other hand, as B/N increases, solute B increases and it becomes difficult to maintain good core loss and magnetic flux density.
.. 5 or less. Further, the absolute content of B is set to 0.005% or less in order to prevent the occurrence of cracks in the steel billet.
SnはMn及びBとの複合含有により、鉄損を低下しか
つ磁束密度を高める作用があるが、この作用を奏するた
めには0.02%以上必要である。一方この含有が増え
てもその作用は飽和しコスト高を招くので0.20%以
下とする。Sn has the effect of reducing iron loss and increasing magnetic flux density due to its composite content with Mn and B, but in order to exhibit this effect, it is necessary to have an amount of 0.02% or more. On the other hand, even if this content increases, its effect will be saturated and the cost will increase, so it is set to 0.20% or less.
上述の成分以外は、Feおよび不可避不純物である。Components other than those mentioned above are Fe and unavoidable impurities.
次に、本発明の特徴とする複合作用について説明する。Next, the combined effect that is a feature of the present invention will be explained.
Snは主として粒界に偏析して、粒界で開始される(1
11 )方位の再結晶を抑制し、粒内での再結晶を促進
する。また、Mnは上述のように(110)および(1
00)集合組織を発達させる作用を有する。さらにBは
NをBNとして固定するので、磁性に有害なAINの析
出を防止すると共に、このBNが結晶粒間に析出して、
磁気特性にとって望ましい(110)および(100)
集合組織の形成を促進する再結晶核としての作用を有す
る。Sn mainly segregates to the grain boundaries and is initiated at the grain boundaries (1
11) Suppresses recrystallization of orientation and promotes recrystallization within grains. Moreover, Mn is (110) and (1
00) It has the effect of developing texture. Furthermore, since B fixes N as BN, it prevents the precipitation of AIN, which is harmful to magnetism, and also prevents this BN from precipitating between crystal grains.
(110) and (100) desirable for magnetic properties
It acts as a recrystallization nucleus that promotes the formation of texture.
これらのSn、MnおよびBの作用が同時に実現された
時に始めて、所望の磁気特性が得られる。Desired magnetic properties can only be obtained when these effects of Sn, Mn and B are realized simultaneously.
上述のところから理解されるように本発明の無方向性電
磁鋼板においては、高いMn含有量が磁気特性向上に重
要な役割を担っている。このMn含有量に対する磁気特
性の依存性を第2図に示す。As understood from the above, in the non-oriented electrical steel sheet of the present invention, a high Mn content plays an important role in improving magnetic properties. The dependence of magnetic properties on this Mn content is shown in FIG.
この図面に示す無方向性電磁鋼板は第1表に示す組成の
鋼を、2.3 llIに熱間圧延し、750℃で捲取り
、900℃で2分間焼鈍し、0.53mの銅帯に冷間圧
延し、850℃で1分間仕上焼鈍し、6%の圧下率でス
キンパス圧延し、そして100%N2雰囲気で1時間7
90℃にて応力除去焼なましを行って製造したものであ
る。The non-oriented electrical steel sheet shown in this drawing is made by hot rolling steel having the composition shown in Table 1 to 2.3 llI, rolling it at 750°C, annealing it at 900°C for 2 minutes, and forming it into a 0.53m copper strip. cold rolled for 1 minute, finish annealed at 850°C for 1 minute, skin pass rolled at a rolling reduction of 6%, and annealed for 1 hour in a 100% N2 atmosphere.
It was manufactured by performing stress relief annealing at 90°C.
第1表
第2図から分かるように、Mn含有量が1%を越える場
合に、SnとBを0.5≦B / N≦1.5となるよ
うな重量比で含有する無方向性電磁鋼の鉄損及び磁束密
度がSnを含有しないものと比較して改良されている。As can be seen from Table 1 and Figure 2, when the Mn content exceeds 1%, the non-directional electromagnetic material contains Sn and B in a weight ratio such that 0.5≦B/N≦1.5. The iron loss and magnetic flux density of the steel are improved compared to those without Sn.
以下、本発明による製造方法を詳しく説明する。The manufacturing method according to the present invention will be explained in detail below.
前記成分からなる鋼は、転炉あるいは電気炉などで溶製
され、連続鋳造あるいは造塊後分塊圧延によりスラブと
される。Steel made of the above-mentioned components is melted in a converter or electric furnace, and is made into a slab by continuous casting or ingot-forming and then blooming rolling.
次いで所定の温度に加熱し熱間圧延されるが、この熱間
圧延においては熱間圧延後に700℃以上の温度で捲取
り、熱間コイルの保有する熱で自己焼鈍させる。この自
己焼鈍にさいしては熱間コイルに熱の放散を防ぐ保熱カ
バーを被せると都合がよい。ところで700℃以上で捲
取るのは、この温度未満ではその後の焼鈍時に微細な析
出物が形成され結晶粒の成長を抑制するからである。ま
た該温度以下ではSnとMnとBを複合して含有させて
いても鉄損を低下しかつ磁束密度を高めることができな
い。Next, it is heated to a predetermined temperature and hot rolled. In this hot rolling, after hot rolling, it is rolled up at a temperature of 700° C. or higher, and self-annealed using the heat possessed by the hot coil. During this self-annealing, it is convenient to cover the hot coil with a heat retaining cover to prevent heat dissipation. By the way, the reason why the steel is rolled up at 700° C. or higher is that if the temperature is lower than this temperature, fine precipitates are formed during subsequent annealing, which suppresses the growth of crystal grains. Moreover, below this temperature, even if Sn, Mn, and B are contained in combination, the core loss cannot be reduced and the magnetic flux density cannot be increased.
また熱間圧延において700℃以上の温度に捲取って自
己焼鈍させるのに代えて、熱間圧延後750℃以上の温
度で熱延板焼鈍する。これによっても鉄損を低くしかつ
磁束密度を高めることができるが、この作用効果を奏せ
しめるには750℃以上の温度で焼鈍する必要がある。Further, instead of rolling the sheet to a temperature of 700° C. or higher and self-annealing it during hot rolling, the hot-rolled sheet is annealed at a temperature of 750° C. or higher after hot rolling. Although this also makes it possible to lower the core loss and increase the magnetic flux density, it is necessary to perform annealing at a temperature of 750° C. or higher in order to achieve this effect.
この熱延板焼鈍においては、加熱速度および冷却速度が
ともに速い方がすぐれており、連続焼鈍を適用すること
ができる。In this hot-rolled sheet annealing, it is better to have both a faster heating rate and a faster cooling rate, and continuous annealing can be applied.
次いで1回の冷間圧延また中間に中間焼鈍をはさんで、
2回以上の冷間圧延により所定の板厚とされる。Then, with one cold rolling and intermediate annealing in between,
A predetermined plate thickness is obtained by cold rolling two or more times.
仕上焼鈍においては、低い加熱速度よりむしろ急速加熱
した場合が鉄損の低下と磁束密度を高める作用があるの
で連続焼鈍を行なう。このさいの焼鈍温度は750℃以
上で所望の磁気特性に応じて変えられる。In final annealing, continuous annealing is performed because rapid heating rather than a low heating rate has the effect of reducing core loss and increasing magnetic flux density. The annealing temperature at this time is 750° C. or higher and can be changed depending on the desired magnetic properties.
本発明において、連続焼鈍が好ましいと言うことは、磁
気特性の向上の他に生産性を高める面からも有利なこと
であり、SnとMnとBの複合台をの作用効果である。In the present invention, the fact that continuous annealing is preferable is advantageous not only from the viewpoint of improving magnetic properties but also from the viewpoint of increasing productivity, and is an effect of the composite plate of Sn, Mn, and B.
以上で、無方向性電磁鋼板が製造されるが、次いで応力
除去焼なましを行うか、あるいはスキンバスを2〜10
%の圧下率で行ない、所定形状に打抜き後に歪取り焼鈍
が施されるいわゆるセミプロセスタイプの無方向性電磁
鋼板を製造してもよい。With the above steps, a non-oriented electrical steel sheet is manufactured. Next, stress relief annealing is performed or a skin bath is applied for 2 to 10 minutes.
%, and a so-called semi-process type non-oriented electrical steel sheet may be manufactured in which strain relief annealing is performed after punching into a predetermined shape.
スキンパス率を2〜10%とするのは2%以下では歪取
り焼鈍において磁気特性がすぐれないからであり、また
上限を10%とするのは、これ以上になると磁気特性が
劣化するからである。The reason why the skin pass rate is set to 2 to 10% is because if it is less than 2%, the magnetic properties will not be excellent during strain relief annealing, and the reason why the upper limit is set to 10% is because if it exceeds this, the magnetic properties will deteriorate. .
次に実施例を示す。Next, examples will be shown.
実施例1
表2に示す成分の鋼を、同表に示す処理条件にて製造し
、磁気特性を測定した。その測定結果も同表に示してい
る。Example 1 Steels having the components shown in Table 2 were produced under the treatment conditions shown in Table 2, and their magnetic properties were measured. The measurement results are also shown in the same table.
以下余白
第1図に鋼隘11の組成を有する無方向性電磁鋼板の磁
気特性を示す。The magnetic properties of a non-oriented electrical steel sheet having the composition of steel plate 11 are shown in FIG. 1 below.
実施例2
前記実施例1で用いた鋼の熱延板を酸洗後0.521■
に冷間圧延し、750℃×60秒の連続焼鈍を行ない、
次いで圧下率4%でスキンパス圧延を施した。Example 2 After pickling the hot-rolled steel plate used in Example 1, the
cold rolled and continuously annealed at 750°C for 60 seconds,
Next, skin pass rolling was performed at a reduction rate of 4%.
その後、エプスタイン試料に切断し、790℃×lhr
の歪取り焼鈍を行ない磁気特性を測定した。Then, cut into Epstein samples and heat at 790°C x lhr.
The magnetic properties were measured after strain relief annealing.
その結果を表3に示す。The results are shown in Table 3.
表3 この磁気特性を第1図にm1lsとして示す。Table 3 This magnetic property is shown as m1ls in FIG.
以上のように本発明によれば鉄損が低くかつ磁束密度の
すぐれた無方向性電磁鋼板が提供されうる。As described above, according to the present invention, a non-oriented electrical steel sheet with low iron loss and excellent magnetic flux density can be provided.
第1図は従来の無方向性電磁鋼板および本発明で目標と
する鉄損W87.。と磁束密度B、。の関係を示す図、
第2図はMn含有量と鉄損WIs/s。と磁束密度B、
。の関係を示す図である。FIG. 1 shows a conventional non-oriented electrical steel sheet and an iron loss W87 targeted by the present invention. . and magnetic flux density B,. A diagram showing the relationship between
Figure 2 shows Mn content and iron loss WIs/s. and magnetic flux density B,
. FIG.
Claims (1)
2.0%、Mn:1.0%を超え1.5%以下、Sn:
0.02〜0.20%、酸可溶Al:0.005〜0.
1%、N:0.007%以下、B:0.005%以下で
かつB/N:0.5〜1.5の関係を有し、残部Feお
よび不可避的不純物からなる鉄損が低くかつ磁束密度が
すぐれた無方向性電磁鋼板。 2)重量%で、C:0.015%以下、Si:0.3〜
2.0%、Mn:1.0%を超え1.5%以下、Sn:
0.02〜0.20%、酸可溶Al:0.005〜0.
1%、N:0.007%以下、B:0.005%以下で
かつB/N:0.5〜1.5の関係を有し、残部Feお
よび不可避的不純物からなる鋼を、熱間圧延した後、7
00℃以上の温度域で巻取り自己焼鈍するか或は、熱間
圧延後750℃以上の温度域で熱延板焼鈍し、次いで1
回若しくは、中間焼鈍過程を介挿する2回以上の冷間圧
延を行ない、然る後、750℃以上の温度域での連続焼
鈍を行なうことを特徴とする、鉄損が低くかつ磁束密度
がすぐれた無方向性電磁鋼板の製造法。[Claims] 1) In weight%, C: 0.015% or less, Si: 0.3 to
2.0%, Mn: more than 1.0% and less than 1.5%, Sn:
0.02-0.20%, acid-soluble Al: 0.005-0.
1%, N: 0.007% or less, B: 0.005% or less, and has a relationship of B/N: 0.5 to 1.5, and the iron loss is low and the balance is Fe and unavoidable impurities. Non-oriented electrical steel sheet with excellent magnetic flux density. 2) In weight%, C: 0.015% or less, Si: 0.3~
2.0%, Mn: more than 1.0% and less than 1.5%, Sn:
0.02-0.20%, acid-soluble Al: 0.005-0.
1%, N: 0.007% or less, B: 0.005% or less, and has a relationship of B/N: 0.5 to 1.5, with the balance consisting of Fe and unavoidable impurities. After rolling, 7
Either coiling and self-annealing in a temperature range of 00°C or higher, or hot rolling annealing in a temperature range of 750°C or higher, then 1
It is characterized by low iron loss and magnetic flux density, which is characterized by cold rolling performed twice or more with an intermediate annealing process, and then continuous annealing in a temperature range of 750°C or higher. An excellent manufacturing method for non-oriented electrical steel sheets.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15881987A JPS6333518A (en) | 1987-06-27 | 1987-06-27 | Non-oriented electrical steel sheet having low iron loss and excellent magnetic flux density and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15881987A JPS6333518A (en) | 1987-06-27 | 1987-06-27 | Non-oriented electrical steel sheet having low iron loss and excellent magnetic flux density and its production |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58009398A Division JPS59157259A (en) | 1982-01-27 | 1983-01-25 | Non-oriented electrical steel sheet with low iron loss and excellent magnetic flux density and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6333518A true JPS6333518A (en) | 1988-02-13 |
JPH0419297B2 JPH0419297B2 (en) | 1992-03-30 |
Family
ID=15680063
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15881987A Granted JPS6333518A (en) | 1987-06-27 | 1987-06-27 | Non-oriented electrical steel sheet having low iron loss and excellent magnetic flux density and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6333518A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01219126A (en) * | 1988-02-26 | 1989-09-01 | Nkk Corp | Method for manufacturing non-oriented electrical steel sheet with excellent surface properties |
JPH01219124A (en) * | 1988-02-26 | 1989-09-01 | Nkk Corp | Method for manufacturing non-oriented electrical steel sheet with excellent pickling properties |
JPH03274247A (en) * | 1990-03-22 | 1991-12-05 | Sumitomo Metal Ind Ltd | Non-oriented electrical steel sheet with excellent magnetic properties |
KR100501000B1 (en) * | 1997-11-25 | 2005-10-12 | 주식회사 포스코 | Non-oriented electrical steel sheet with low iron loss after stress relief annealing and its manufacturing method |
US7759412B2 (en) | 2006-02-27 | 2010-07-20 | The Yokohama Rubber Co., Ltd. | Tire puncture sealant |
-
1987
- 1987-06-27 JP JP15881987A patent/JPS6333518A/en active Granted
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01219126A (en) * | 1988-02-26 | 1989-09-01 | Nkk Corp | Method for manufacturing non-oriented electrical steel sheet with excellent surface properties |
JPH01219124A (en) * | 1988-02-26 | 1989-09-01 | Nkk Corp | Method for manufacturing non-oriented electrical steel sheet with excellent pickling properties |
JPH03274247A (en) * | 1990-03-22 | 1991-12-05 | Sumitomo Metal Ind Ltd | Non-oriented electrical steel sheet with excellent magnetic properties |
KR100501000B1 (en) * | 1997-11-25 | 2005-10-12 | 주식회사 포스코 | Non-oriented electrical steel sheet with low iron loss after stress relief annealing and its manufacturing method |
US7759412B2 (en) | 2006-02-27 | 2010-07-20 | The Yokohama Rubber Co., Ltd. | Tire puncture sealant |
Also Published As
Publication number | Publication date |
---|---|
JPH0419297B2 (en) | 1992-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6256225B2 (en) | ||
EP0334224A2 (en) | Ultra-rapid annealing of nonoriented electrical steel | |
JPS6323262B2 (en) | ||
JP3855554B2 (en) | Method for producing non-oriented electrical steel sheet | |
JPH0713266B2 (en) | Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet with excellent iron loss | |
JPH0753886B2 (en) | Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet with excellent iron loss | |
JP3430794B2 (en) | Non-oriented electrical steel sheet excellent in magnetic properties and method for producing the same | |
JP3483265B2 (en) | Method for producing non-oriented electrical steel sheet with high magnetic flux density and low iron loss | |
JP3037878B2 (en) | Non-oriented electrical steel sheet excellent in iron loss after strain relief annealing and method for producing the same | |
JPS6333518A (en) | Non-oriented electrical steel sheet having low iron loss and excellent magnetic flux density and its production | |
JPH055126A (en) | Non-oriented electrical steel sheet manufacturing method | |
JPS6256922B2 (en) | ||
JPH04325629A (en) | Method for manufacturing non-oriented electrical steel sheet with excellent magnetic properties | |
JPH0949023A (en) | Method for producing unidirectional electrical steel sheet with excellent iron loss | |
JPH0657332A (en) | Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss | |
JP3294367B2 (en) | Non-oriented electrical steel sheet having high magnetic flux density and low iron loss and method of manufacturing the same | |
JPH0797628A (en) | Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss | |
JPH06256847A (en) | Method for producing unidirectional electrical steel sheet with excellent magnetic properties | |
JPH0477067B2 (en) | ||
JP2784661B2 (en) | Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet | |
JP3331402B2 (en) | Manufacturing method of semi-process non-oriented electrical steel sheet with excellent all-around magnetic properties | |
JPH0261031A (en) | Non-oriented electrical steel sheet with excellent magnetic properties and its manufacturing method | |
JPH03294422A (en) | Method for manufacturing non-oriented electrical steel sheet with excellent magnetic properties | |
JP4320794B2 (en) | Method for producing electrical steel sheet with excellent magnetic properties in the rolling direction | |
JPH046220A (en) | Method for manufacturing non-oriented electrical steel sheet with high magnetic flux density and low core loss |